
4 November/December 2021 Copublished by the IEEE Computer and Reliability Societies 1540-7993/21©2021IEEE

FROM THE EDITORS

Toward Fail Safety for
Security Decisions

I was thinking about what I wanted to write
about for my first editorial in IEEE Security

& Privacy, when I came across this statement
in the 2019 Application Security Risk Report
by Micro Focus1 (free, but it requires regis-
tration): “Because people are prone to error,
manual security tasks that can otherwise be
automated are at risk of being done incor-
rectly.” While this is not a surprising state-
ment in and of itself, it reminded me of the
many ad hoc decisions being made by peo-
ple in various roles in computing systems—
from programmers to administrators to end
users—that we require to be correct for a sys-
tem to achieve security goals.

I normally work and teach topics related
to operating systems and software security,
where we aim to build methods to detect
and/or resolve security problems in current
systems. As a result, our aim is to automate
security decisions as much as is practical.
However, with increasing frequency, we are
running into cases where systems request
manual security decisions, but these often
complex and ad hoc decisions are being
made by people with little guidance and
essentially no safety net. While this may not
be a surprise to people who work on usable
security or social engineering, a question
is this: How can researchers help systems
avoid creating vulnerabilities resulting from
such manual decisions?

Examples of How User
Decisions Impact Security
To provide some context in which to discuss
the prevalence and variety of ad hoc manual
security decisions that must be made, let me
give you a brief review of some examples (from
my research and teaching) of the types of these
decisions that we depend upon people to
make correctly. Mobile systems often depend

on users to authorize security-sensitive access
requests made by third-party apps. However,
such decisions may put users’ privacy at risk.
Consider the problem of authorizing whether
a third-party app can use a device sensor
(such as a camera or microphone). Mobile
systems lack insight into the functionality
that users expect from third-party apps, prob-
ably because they want lots of these apps to
be developed for their platforms. However,
the result is that they depend on users to
authorize security-sensitive accesses with lit-
tle or no guidance about the potential risks.
For example, once an app has been granted
access to a sensor, it may use that sensor
freely in many cases. One type of malware,
called a remote access Trojan, exploits this
approach to obtain access to use device sen-
sors to spy on users.

We have proposed methods to help users
limit the misuse of sensors by restricting the
freedom apps have to exploit such manual
authorizations.9,10 However, risks remain as
long as the system design does not account
for potential abuses systematically.

In addition, authorizations that users are
asked to make in mobile systems may have
unforeseen side effects. When a user grants
an Android permission to an app, some of
these permissions may result, invisibly to
the user, in changes to the file system’s access
control policy. Even the Android original
equipment manufacturers (OEMs) may
have difficulty foreseeing the implications of
such side effects. We recently found vulner-
abilities caused indirectly by users granting
Android permissions that permit malicious
apps to modify critical files and compromise
privileged services.7 In this case, manual user
decisions interact with the permissions con-
figured manually by Android OEM admin-
istrators to create exploitable situations that
were not foreseen.

The first two examples highlight the manual
decisions made by end users primarily, but of

Digital Object Identifier 10.1109/MSEC.2021.3096614
Date of current version: 28 October 2021

Trent Jaeger
Associate Editor in Chief

www.computer.org/security 5

http://rs.ieee.org

The IEEE Reliability Society (RS) is a technical Society within the
IEEE, which is the world’s leading professional association for the
advancement of technology. The RS is engaged in the engineering
disciplines of hardware, software, and human factors. Its focus on the
broad aspects of reliability allows the RS to be seen as the IEEE Specialty
Engineering organization. The IEEE Reliability Society is concerned
with attaining and sustaining these design attributes throughout
the total life cycle. The Reliability Society has the management,
resources, and administrative and technical structures to develop
and to provide technical information via publications, training,
conferences, and technical library (IEEE Xplore) data to its
members and the Specialty Engineering community. The IEEE
Reliability Society has 28 chapters and members in 60 countries
worldwide.

The Reliability Society is the IEEE professional society for
Reliability Engineering, along with other Specialty Engineering
disciplines. These disciplines are design engineering fields that apply
scientific knowledge so that their specific attributes are designed
into the system/product/device/process to assure that it will
perform its intended function for the required duration within
a given environment, including the ability to test and support it
throughout its total life cycle. This is accomplished concurrently
with other design disciplines by contributing to the planning
and selection of the system architecture, design implementation,
materials, processes, and components; followed by verifying
the selections made by thorough analysis and test and then
sustainment.

Visit the IEEE Reliability Society website as it is the gateway
to the many resources that the RS makes available to its members
and others interested in the broad aspects of Reliability and Specialty
Engineering.

Executive Committee (ExCom) Members: Carole Graas,
President; Christian Hansen, Sr. Past President; Jeffrey Voas, Jr. Past
President; Lou Gullo, VP Technical Activities; Carole Graas, VP
 Publications; Jason Rupe, VP Meetings and Conferences; Qiang
Miao, VP Membership; Preeti Chauhan, Secretary; Steven Li,
Treasurer

Administrative Committee (AdCom) Members:
Carole Graas, Evelyn Hirt, Qiang Miao, J. Bret Michael, Jason Rupe,
Daniel Sniezek, Loretta Arellano, Pierre Dersin, Lou Gullo, Yan-Fu
Li, Nihal Sinnadurai, Robert Stoddard, Alex Dely, Donald Dzedzy,
Ruizhi (Ricky) Gao, Z. Steven Li, Farnoosh Naderkhani, Charles H.
Recchia

course, the origins of many risks are
the results of ad hoc manual deci-
sions made by programmers. I teach
a course in secure software develop-
ment, so I see inexperienced pro-
grammers who frequently use unsafe
application programming interfaces
(APIs; for example, C string func-
tions). These students are often un -
aware of why those APIs are unsafe,
much less of how to produce safe
code. Some interactive development
environments identify problems and
replacements, but clearly inexperi-
enced programmers have more flex-
ibility in using unsafe languages than
they should. And, undoubtedly, this
is only the tip of the iceberg; there
remain many decisions that may
impact security even for type-safe
programming environments.

Unfortunately, all of these types
of ad hoc security decisions appear
in the emerging Internet of Things
(IoT). First, IoT systems depend
on users to make decisions about
authorizing IoT apps to access de -
vices, which may grant malicious
apps the ability to eavesdrop.4 Sec-
ond, researchers have found that
determining who has the authority
to make security decisions regard-
ing changes in permissions is exac-
erbated in multiuser IoT settings.13

Third, IoT users are allowed to
make unsafe programming decisions,
such as in the form of trigger-action
rules, which have been found to lead
to errors.8 In IoT systems, end users
may make ad hoc decisions in the
roles of programmer, administrator,
and end user at one time.

One could argue that these are
weaknesses introduced because the

developers of systems “punt” critical
security decisions to their users, be
they programmers, administrators,
or end users. However, while, ide-
ally, the developers should prevent
these situations, it may be inevitable
that some manual decisions that
impact security may be delegated to
users, especially for user-configured
systems, such as mobile and IoT
systems. A question we examine
is: If there will be manual decisions
that may impact systems security,
how should we build systems to pre-
vent those decisions from becom-
ing exploitable?

A Design Goal:
Fail-Safe Decisions
Saltzer and Schroeder suggested
that secure systems provide fail-safe
defaults to prevent ad hoc security
decisions from violating a system’s
security goals.11 By fail-safe de -
faults, they argue that we should
“base access decisions on permis-
sion rather than exclusion.” That is,
we should have an approach that
expresses the permissions that are
granted rather than those that are
denied. Fundamentally, the prob-
lem with the latter is that if we make
a mistake in choosing which privi-
leges to deny, then an error may
lead to unauthorized access. In the
former case, a mistake will result in
denied access, which will not violate
a security goal (thus, it is “safer”).

A problem is that in complex
systems a false denial may cause
users to take countermeasures that
reduce the effectiveness of defenses.
I have been told how people per-
sonally disable security features

Digital Object Identifier 10.1109/MSEC.2020.3044408

6 IEEE Security & Privacy November/December 2021

FROM THE EDITORS

to avoid fixing what they perceive
to be false denials of functionality
because security systems can be
too difficult to debug. We certainly
do not want users to disable secu-
rity features as a resolution. Thus,
a variety of systems “overpermis-
sion” their users and applications
to avoid false denials. For exam-
ple, it is difficult for developers
to predict all the uses expected of
IoT systems configured by users.8
This leaves an issue of how we can
enable users to make security deci-
sions that are fail safe.

One focus has been to enable
users to make better decisions.
Work that improves the usability
of securing systems should enable
users to produce decisions that are
more likely to comply with security
goals, even fail safety in some cases.
Van Oorschot describes design
principles and guidelines for usable
security in his book Computer Secu-
rity and the Internet: Tools and Jewels
(Information Security and Cryptogra-
phy).12 The principle of making “safe
choices easy” advocates to “[d]esign
systems with ’paths of least resis-
tance’ yielding secure user choices,”
which encourages fail-safe defaults.
However, as we have described, it
may be difficult for programmers
to predict safe defaults, leading to
potential problems.

Researchers have long known
how to enforce forms of fail safety.
For example, capability systems
have long proposed techniques to
prevent the delegation or use of a
capability that may lead to security
errors5,6 by checking capabilities
against a safety policy (for example,
a mandatory access control policy)
prior to delegation. However, these
low-level mechanisms do not apply
for the types of manual decisions
we have discussed here. In addi-
tion, the number of manual deci-
sions that would require some
form of safety policy checks could
be high and growing for domains
like the IoT.

Using Fail Safety
Effectively
We still lack effective approaches to
manage the fail safety of manual deci-
sions. One problem is that specify-
ing fail-safety requirements may itself
turn into yet another ad hoc secu-
rity decision for people to make.
For example, if we have to define fail
safety specifically for each device
deployment in each IoT system,
then fail safety will not scale.

Since about the same time of
Saltzer and Schroeder’s work,11
researchers have envisioned safety
based on information-flow security
policies for secrecy3 and integrity.2
Researchers have long envisioned
that information-flow security should
form a foundation for fail safety.
Unfortunately, commercial systems
and programs were not designed with
information flow in mind, so legacy
systems often do not comply.

However, some commercial sys-
tems are reducing the gap with respect
to information flow. We recently
found that the Android 11 system’s
access control policy has only about
30 resources that may be involved in a
violation of information-flow integ-
rity,7 even when accounting for how
users may grant Android permissions.
In this case, we apply an automated anal-
ysis to detect when manual decisions
may use unsafe resources or expand
the number of unsafe resources
relative to information-flow inte -
grity requirements.

However, in IoT systems, we
need to consider safety from addi-
tional perspectives. For example,
IoT safety may be defined in terms
of the physical properties of a sys-
tem. Thus, we will likely need new
principles for fail safety, but ide-
ally these rules will be independent
of a specific app and/or a specific
deployment like information flow.
In addition, we must consider safety
for security decisions in IoT systems
for manual decisions for the various
roles of programmers, administra-
tors, and end users.

Finally, another challenge is how
to leverage fail-safety requirements
effectively. As an analogy, consider
the significant body of research in
vulnerability detection and testing
that evaluates artifacts against secu-
rity requirements, some of which
could be considered safety require-
ments. However, such evaluation
methods are typically not inte-
grated with the ecosystem of the
artifact, limiting the utility of such
techniques. Ideally, we can envi-
sion a risk analysis that identifies
manual decisions whose outcomes
may violate fail-safety requirements
(such as information flow) to aid
system developers in identifying
which manual decisions may lead
to problems. Then, we need to con-
sider how to develop techniques
that aid in manual decision making
as an integral part of each system’s
ecosystem to improve our ability to
achieve fail safety.

A s complex systems (includ-
ing mobile and IoT systems)

evolve, it will be interesting to see
how researchers propose to build
systems that help users make safe
decisions and p r o v i d e meth-
od s to validate those decisions
against safety criteria. What safety
criteria should be defined? Can
researchers develop methods that
can achieve or at least be measured
in terms of fail safety? Can these
methods account for the variety
of safety problems associated with
user decisions as programmers,
administrators, and end users?
How can methods to improve the
security of user decision making
be integrated effectively into eco-
systems? How might we use arti-
ficial intelligence as an intelligent
cybersecurity assistant to improve
fail safety in such decisions? IEEE
Security & Privacy welcomes the
submission of articles on chal-
lenges in securing systems in each
of these dimensions.

www.computer.org/security 7

References
1. “2019 application security risk

report,” Micro Focus International
PLC, Newbury, Berkshire, U.K.,
2019. [Online]. Available: https://
www.microfocus.com/en-us/assets/
security/application-security-risk
-report

2. K. J. Biba, “Integrity considerations
for secure computer systems,”
MITRE, Bedford, MA, Tech. Rep.
MTR-3153, 1977.

3. D. Denning, “A lattice model of
secure information flow. Commun.
ACM, vol. 19, no. 5, pp. 236–243,
May 1976. doi: 10.1145/360051.
360056.

4. E. Fernandes, J. Jung, and A. Prakash,
“Security analysis of emer ging smart
home applications,” in Proc. IEEE
Symp. Security Privacy, 2016, pp.
636–654.

5. L Gong. “A secure identity-based
capability system,” in Proc. IEEE Symp.

Security Privacy, 1989, pp. 56–63. doi:
10.1109/SECPRI.1989.36277.

6. P. A. Karger and A. J. Herbert, “An
augmented capability architecture
to support lattice security and trace-
ability of access,” in Proc. IEEE Symp.
Security Privacy, 1984, pp. 2–12. doi:
10.1109/SP.1984.10001.

7. Y.-T. Lee et al., “Polyscope: Multi-
policy access control analysis to
triage android systems,” in Proc. 30th
USENIX Security Symp., Aug. 2021.

8. M. Palekar, E. Fernandes, and F.
Roesner, “Analysis of the suscepti-
bility of smart home programming
interfaces to end user error,” in Proc.
IEEE Workshop on Internet Safe
Things, 2019, pp. 138–143. doi:
10.1109/SPW.2019.00034.

9. G. Petracca, Y. Sun, A.-A. Reineh,
J. Grossklags, P. McDaniel, and T.
Jaeger, “Entrust: Regulating sen-
sor access by cooperating programs
via delegation graphs,” in Proc. 28th

USENIX Security Symp., Aug. 2019,
pp. 567–584.

10. G. Petracca, A. Atamli-Reineh, Y. Sun,
J. Grossklags, and T. Jaeger, “Aware:
Preventing abuse of privacy-sensitive
sensors via operation bindings,” in
Proc. 26th USENIX Security Symp.,
2017, pp. 379–396.

11. J. H. Saltzer and M. D. Schroeder,
“The protection of information in
computer systems,” Proc. IEEE, vol.
63, no. 9, 1975, pp. 1278–1308. doi:
10.1109/PROC.1975.9939.

12. P. C. van Oorschot, “Computer security
and the Internet—Tools and jewels,”
in Information Security and Cryptogra-
phy. Berlin: Springer-Verlag, 2020. doi:
10.1007/978-3-030-33649-3.

13. E. Zeng and F. Roesner, “Under-
standing and improving security and
privacy in multi-user smart homes: A
design exploration and in-home user
study,” in Proc. 28th USENIX Security
Symp., 2019, pp. 159–176.

From the analytical engine to the supercomputer,
from Pascal to von Neumann, from punched
cards to CD-ROMs—IEEE Annals of the History
of Computing covers the breadth of computer
history. � e quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history activities,
and international conferences.

www.computer.org/annals
Digital Object Identifier 10.1109/MSEC.2021.3117322

