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FROM THE EDITORS

Toward Fail Safety for  
Security Decisions

I was thinking about what I wanted to write 
about for my first editorial in IEEE Security 

& Privacy, when I came across this statement 
in the 2019 Application Security Risk Report 
by Micro Focus1 (free, but it requires regis-
tration): “Because people are prone to error, 
manual security tasks that can otherwise be 
automated are at risk of being done incor-
rectly.” While this is not a surprising state-
ment in and of itself, it reminded me of the 
many ad hoc decisions being made by peo-
ple in various roles in computing systems—
from programmers to administrators to end 
users—that we require to be correct for a sys-
tem to achieve security goals.

I normally work and teach topics related 
to operating systems and software security, 
where we aim to build methods to detect 
and/or resolve security problems in current 
systems. As a result, our aim is to automate 
security decisions as much as is practical. 
However, with increasing frequency, we are 
running into cases where systems request 
manual security decisions, but these often 
complex and ad hoc decisions are being 
made by people with little guidance and 
essentially no safety net. While this may not 
be a surprise to people who work on usable 
security or social engineering, a question 
is this: How can researchers help systems 
avoid creating vulnerabilities resulting from 
such manual decisions?

Examples of How User 
Decisions Impact Security
To provide some context in which to discuss 
the prevalence and variety of ad hoc manual 
security decisions that must be made, let me 
give you a brief review of some examples (from 
my research and teaching) of the types of these 
decisions that we depend upon people to 
make correctly. Mobile systems often depend 

on users to authorize security-sensitive access 
requests made by third-party apps. However, 
such decisions may put users’ privacy at risk. 
Consider the problem of authorizing whether 
a third-party app can use a device sensor 
(such as a camera or microphone). Mobile 
systems lack insight into the functionality 
that users expect from third-party apps, prob-
ably because they want lots of these apps to 
be developed for their platforms. However, 
the result is that they depend on users to 
authorize security-sensitive accesses with lit-
tle or no guidance about the potential risks. 
For example, once an app has been granted 
access to a sensor, it may use that sensor 
freely in many cases. One type of malware, 
called a remote access Trojan, exploits this 
approach to obtain access to use device sen-
sors to spy on users.

We have proposed methods to help users 
limit the misuse of sensors by restricting the 
freedom apps have to exploit such manual 
authorizations.9,10 However, risks remain as 
long as the system design does not account 
for potential abuses systematically.

In addition, authorizations that users are 
asked to make in mobile systems may have 
unforeseen side effects. When a user grants 
an Android permission to an app, some of 
these permissions may result, invisibly to 
the user, in changes to the file system’s access 
control policy. Even the Android original 
equipment manufacturers (OEMs) may 
have difficulty foreseeing the implications of 
such side effects. We recently found vulner-
abilities caused indirectly by users granting 
Android permissions that permit malicious 
apps to modify critical files and compromise 
privileged services.7 In this case, manual user 
decisions interact with the permissions con-
figured manually by Android OEM admin-
istrators to create exploitable situations that 
were not foreseen.

The first two examples highlight the manual 
decisions made by end users primarily, but of 
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course, the origins of many risks are 
the results of ad hoc manual deci-
sions made by programmers. I teach 
a course in secure software develop-
ment, so I see inexperienced pro-
grammers who frequently use unsafe 
application programming interfaces 
(APIs; for example, C string func-
tions). These students are often un -
aware of why those APIs are unsafe, 
much less of how to produce safe 
code. Some interactive development 
environments identify problems and 
replacements, but clearly inexperi-
enced programmers have more flex-
ibility in using unsafe languages than 
they should. And, undoubtedly, this 
is only the tip of the iceberg; there 
remain many decisions that may 
impact security even for type-safe 
programming environments.

Unfortunately, all of these types 
of ad hoc security decisions appear 
in the emerging Internet of Things 
(IoT). First, IoT systems depend 
on users to make decisions about 
authorizing IoT apps to access de -
vices, which may grant malicious 
apps the ability to eavesdrop.4 Sec-
ond, researchers have found that 
determining who has the authority 
to make security decisions regard-
ing changes in permissions is exac-
erbated in multiuser IoT settings.13

Third, IoT users are allowed to 
make unsafe programming decisions, 
such as in the form of trigger-action 
rules, which have been found to lead 
to errors.8 In IoT systems, end users 
may make ad hoc decisions in the 
roles of programmer, administrator, 
and end user at one time.

One could argue that these are 
weaknesses introduced because the 

developers of systems “punt” critical 
security decisions to their users, be 
they programmers, administrators, 
or end users. However, while, ide-
ally, the developers should prevent 
these situations, it may be inevitable 
that some manual decisions that 
impact security may be delegated to 
users, especially for user-configured 
systems, such as mobile and IoT 
systems. A question we examine 
is: If there will be manual decisions 
that may impact systems security, 
how should we build systems to pre-
vent those decisions from becom-
ing exploitable?

A Design Goal: 
Fail-Safe Decisions
Saltzer and Schroeder suggested 
that secure systems provide fail-safe 
defaults to prevent ad hoc  security 
decisions from violating a system’s 
security goals.11 By fail-safe de -
faults, they argue that we should 
“base access decisions on permis-
sion rather than exclusion.” That is, 
we should have an approach that 
expresses the permissions that are 
granted rather than those that are 
denied. Fundamentally, the prob-
lem with the latter is that if we make 
a mistake in choosing which privi-
leges to deny, then an error may 
lead to unauthorized access. In the 
former case, a mistake will result in 
denied access, which will not violate 
a security goal (thus, it is “safer”).

A problem is that in complex 
systems a false denial may cause 
users to take countermeasures that 
reduce the effectiveness of defenses. 
I have been told how people per-
sonally disable security features 
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to avoid fixing what they perceive 
to be false denials of functionality 
because security systems can be 
too difficult to debug. We certainly 
do not want users to disable secu-
rity features as a resolution. Thus, 
a variety of systems “overpermis-
sion” their users and applications 
to avoid false denials. For exam-
ple, it is difficult for developers 
to predict all the uses expected of 
IoT systems configured by users.8 
This leaves an issue of how we can 
enable users to make security deci-
sions that are fail safe.

One focus has been to enable 
users to make better decisions. 
Work that improves the usability 
of securing systems should enable 
users to produce decisions that are 
more likely to comply with security 
goals, even fail safety in some cases. 
Van Oorschot describes design 
principles and guidelines for usable 
security in his book Computer Secu-
rity and the Internet: Tools and Jewels 
(Information Security and Cryptogra-
phy).12 The principle of making “safe 
choices easy” advocates to “[d]esign 
systems with ’paths of least resis-
tance’ yielding secure user choices,” 
which encourages fail-safe defaults. 
However, as we have described, it 
may be difficult for programmers 
to predict safe defaults, leading to 
potential problems.

Researchers have long known 
how to enforce forms of fail safety. 
For example, capability systems 
have long proposed techniques to 
prevent the delegation or use of a 
capability that may lead to security 
errors5,6 by checking capabilities 
against a safety policy (for example, 
a mandatory access control policy) 
prior to delegation. However, these 
low-level mechanisms do not apply 
for the types of manual decisions 
we have discussed here. In addi-
tion, the number of manual deci-
sions that would require some 
form of safety policy checks could 
be high and growing for domains 
like the IoT.

Using Fail Safety  
Effectively
We still lack effective approaches to 
manage the fail safety of manual deci-
sions. One problem is that specify-
ing fail-safety requirements may itself 
turn into yet another ad hoc secu-
rity decision for people to make. 
For example, if we have to define fail 
safety specifically for each device 
deployment in each IoT system, 
then fail safety will not scale.

Since about the same time of 
Saltzer and Schroeder’s work,11 
researchers have envisioned safety 
based on information-flow security 
policies for secrecy3 and integrity.2 
Researchers have long envisioned 
that information-flow security should 
form a foundation for fail safety. 
Unfortunately, commercial systems 
and programs were not designed with 
information flow in mind, so legacy 
systems often do not comply.

However, some commercial sys-
tems are reducing the gap with respect 
to information flow. We recently 
found that the Android 11 system’s 
access control policy has only about  
30 resources that may be involved in a 
violation of information-flow integ-
rity,7 even when accounting for how 
users may grant Android permissions. 
In this case, we apply an automated anal-
ysis to detect when manual decisions 
may use unsafe resources or expand 
the number of unsafe resources 
relative to information-flow inte -
grity requirements.

However, in IoT systems, we 
need to consider safety from addi-
tional perspectives. For example, 
IoT safety may be defined in terms 
of the physical properties of a sys-
tem. Thus, we will likely need new 
principles for fail safety, but ide-
ally these rules will be independent 
of a specific app and/or a specific 
deployment like information flow. 
In addition, we must consider safety 
for security decisions in IoT systems 
for manual decisions for the various 
roles of programmers, administra-
tors, and end users.

Finally, another challenge is how 
to leverage fail-safety requirements 
effectively. As an analogy, consider 
the significant body of research in 
vulnerability detection and testing 
that evaluates artifacts against secu-
rity requirements, some of which 
could be considered safety require-
ments. However, such evaluation 
methods are typically not inte-
grated with the ecosystem of the 
artifact, limiting the utility of such 
techniques. Ideally, we can envi-
sion a risk analysis that identifies 
manual decisions whose outcomes 
may violate fail-safety requirements 
(such as information flow) to aid 
system developers in identifying 
which manual decisions may lead 
to problems. Then, we need to con-
sider how to develop techniques 
that aid in manual decision making 
as an integral part of each system’s 
ecosystem to improve our ability to 
achieve fail safety.

A s complex systems (includ-
ing mobile and IoT systems) 

evolve, it will be interesting to see 
how researchers propose to build 
systems that help users make safe 
decisions and p r o v i d e  meth-
od s  to validate those decisions 
against safety criteria. What safety 
criteria should be defined? Can 
researchers develop methods that 
can achieve or at least be measured 
in terms of fail safety? Can these 
methods account for the variety 
of safety problems associated with 
user decisions as programmers, 
administrators, and end users? 
How can methods to improve the 
security of user decision making 
be integrated effectively into eco-
systems? How might we use arti-
ficial intelligence as an intelligent 
cybersecurity assistant to improve 
fail safety in such decisions? IEEE 
Security & Privacy welcomes the 
submission of articles on chal-
lenges in securing systems in each 
of these dimensions. 
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