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ABSTRACT
Static analysis has gained much attention over the past few
years in applications such as bug finding and program verifi-
cation. As software becomes more complex and componen-
tized, it is common for software systems and applications
to be implemented in multiple languages. There is thus a
strong need for developing analysis tools for multi-language
software. We introduce a technique called Analysis Pre-
serving Language Transformation (aplt) that enables the
analysis of multi-language software, and also allows analy-
sis tools for one language to be applied to programs written
in another. aplt preserves data and control flow informa-
tion needed to perform static analyses, but allows the trans-
lation to deviate from the original program’s semantics in
ways that are not pertinent to the particular analysis. We
discuss major technical difficulties in building such a transla-
tor, using a C-to-Java translator as an example. We demon-
strate the feasibility and effectiveness of aplt using two us-
age cases: analysis of the Java runtime native methods and
reuse of Java analysis tools for C. Our preliminary results
show that a control- and data-flow equivalent model for na-
tive methods can eliminate unsoundness and produce reli-
able results, and that aplt enables seamless reuse of analysis
tools for checking high-level program properties.
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1. INTRODUCTION
Static analysis is often used to build models of software

for the purpose of extracting or verifying properties of code.
This has proven to have many applications in software en-
gineering, including refactoring [34], program comprehen-
sion [17], and maintenance [46]. In particular, static analysis
has been successfully applied to the area of security, where
the analyses aim to determine whether or not a given piece
of software violates a set of security properties [6, 7, 12,
18, 23, 24, 30, 42, 49, 50]. Examples of security proper-
ties include complete mediation of mandatory access con-
trol mechanisms [49], proper input sanitization [29], absence
of vulnerabilities such as Time of Check to Time of Use
(tocttou) [10], buffer overflow [31] and format string [42],
permission computations [30], and placement of privileged
calls [38].

There are a myriad of vendors who provide customized
software engineering tools tailored to particular applications
and languages. Although this has been sufficient in the past,
software and systems are becoming more complex and com-
ponentized, and are now frequently implemented in multiple
languages. For example, the JavaTMruntime libraries in-
clude “native” methods written in other languages, usually
for performance or compatibility reasons. The reference im-
plementation of the Java 1.4.2 runtime library includes 1338
native methods (about 2% of all methods).

It is thus desirable to have a multi-lingual tool that can
apply the same analysis across all the different languages
used by a software system. In the case of security analy-
sis, this is a necessity rather than a luxury, because making
end-to-end security guarantees or assurance statements re-
quires that the security properties are preserved across the
entire software stack. In other words, the soundness of the
security analysis depends on analyzing the entire code. For
example, in the case of permission analysis [30], where the
least privileges required to complete a task are computed
for a given task, it is necessary that the native methods are
included in the analysis for the results to be sound.

Another need for general multi-lingual analysis capabili-
ties arises in analysis reuse. Many of the high-level prop-
erties we are interested in, such as the complete mediation
property, are language-independent. It is thus desirable to
apply an analysis developed for one language to software
written in a different language. In addition, programmers



often implement novel analysis techniques for their favorite
language. It typically takes a long time for similar features
to be ported to tools for other languages. For example,
the safe Java typestate checker developed at ibm Research
employs advanced techniques, such as adaptive verification
based on the nature of property being verified [20, 48], and
integrated aliasing and verification, which are lacking in con-
temporary C checkers. On the other hand, the esp [14]
checker for C uses advanced path-sensitive analysis tech-
niques which are not present in current Java checkers. Thus,
techniques that enable the analysis of multiple languages
can also be used to facilitate tool reuse by allowing analysis
written for one language to be applied to software written
in another language. Essentially, we wish to offer users the
freedom to choose a checker most suitable for the proper-
ties to be checked, without worrying about the underlying
implementation language of the target program.

One approach to multi-language analysis is to have mul-
tiple analyzers, one for each target language, implementing
the same analysis. Results from each analyzer are then com-
bined at the end. This approach does not entirely satisfy
the completeness requirement, because each analysis is local
to the specific component, and cross-component interactions
are lost due to the localized analysis scope. As a result, each
analysis is only partial, thus the soundness of the analysis
can not be guaranteed. In addition, this approach is not cost
effective: the learning curve is steep for porting an analy-
sis to each different target language. Worse, the effort is
quadratic on the number of analysis, since a new port is
required for each new analysis/language pair.

Another approach to solving the multi-lingual analysis
problem is to build analysis frameworks by translating mul-
tiple front-ends to a Common Intermediate Representation
(cir) and performing the analysis on the cir [2, 35]. Such an
effort, although desirable, is not feasible in our case for two
reasons: Firstly, constructing an intermediate representa-
tion that can encompass all language semantics required for
the analysis to be sound is a non-trivial task, and secondly,
such an approach would require us to port all currently exist-
ing analyses to the new cir. This is not practical. Instead,
we prefer a solution that allows us to reuse off-the-shelf tools
that are already available on the market.

In this paper, we propose a new approach. Instead of
porting the analyses, we translate the program of interest
from its original language to a target language for which
the analysis is to be applied. At first glance, this looks
like an intractable task. Traditionally, language transla-
tion is done for the purposes of compilation, for which it
is crucial that the translated program execute identically to
the original program. Implementing this is a difficult task.
The crucial observation that makes our approach feasible is
that, for many analyses, such as ours whose purposes are
to detect bugs and security violations, preserving the ex-
ecution semantics is not necessary. For example, typical
security-related analyses are mainly concerned with deter-
mining whether certain “bad” code paths are executed, but
are not concerned about properties like whether certain ex-
pressions are constant. Therefore, in our translation, suffi-
cient data and control flow information needed to perform
static analysis are preserved, while the translation is allowed
to deviate from the original program’s semantics in other as-
pects that are not pertinent to our analysis task. We call
this technique Analysis Preserving Language Transforma-

tion (aplt), as opposed to Execution Preserving Language
Transformation (eplt), where the translated program exe-
cutes the same as the original version.

Compared to the traditional approach of porting analy-
sis algorithms, our approach offers two advantages. First,
because the analysis can be performed on the entire code
base, the analysis is complete. Secondly, the approach is
more cost effective: once the translator is developed, we
can reuse it with existing analyses as well as future ones.
Compared with the cir approach, our approach has much
broader applicability, as the target language is a standard
language, not an intermediate language that is specific to a
particular analysis engine. What we give up for this general-
ity is precision with regard to code generation. However, our
translation is precise with respect to a large class of analyses
(with a few exceptions, see Section 6). If the ultimate goal
is code analysis, rather than code generation, we believe the
tradeoff is worthwhile.

We demonstrate the feasibility of aplt through two usage
cases. Based on the aplt technology we built a C to Java
translator called fictoj. We perform security analyses [30,
38] on the Java runtime native methods after translating
them to a Java equivalent form using fictoj. Our prelim-
inary results show that a control- and data-flow equivalent
model for native methods can eliminate unsoundness and
produce reliable results. Using fictoj, we have also suc-
cessfully applied an advanced analysis available to Java (the
safe model checker) to programs written in C, for which no
tool with equivalent capabilities is publicly available. These
results demonstrate that analysis preserving language trans-
formation is practical. Further, it serves as a powerful foun-
dation for solving real world software engineering challenges,
in particular, multi-lingual program analysis and analysis
reuse.

In the remainder of this paper, we present in more detail
our proposed approach. We have implemented a specific
aplt translator from C into Java, which we describe in de-
tail in Section 3. We provide details of experiences and
experimental results in Section 4. We finish by describing
related work and our future research goals.

2. ANALYSIS-PRESERVING
LANGUAGE TRANSFORMATION

In general, faithful translation between languages is dif-
ficult, if not impossible. Different languages support differ-
ent approaches to data representation. Consequently, map-
ping the data operations between languages often requires a
significant transformation of the structure of the program.
This difficulty is particularly visible when translating low-
level data manipulation (such as C pointer arithmetic) to a
high-level language (such as Java).

On the other hand, there is sufficient common ground be-
tween the control-flow and the data-flow structures of many
languages. Many such constructs operate similarly across
a broad family of imperative languages: basic blocks, func-
tions, conditionals and loops, as well as lexical scopes and
lexical bindings. Consequently, control and data-flow oper-
ations are easier to translate faithfully than operations on
data representation.

Fortunately, the classes of security properties we are in-
terested in verifying are high-level properties [11, 12, 30, 49].
Therefore, analyses of these high level properties are more



sensitive to control and data flow, and much less sensitive to
data values [21]. Below we list a few representative examples
of these properties and explain why this is the case.

• Complete Mediation. Complete mediation [41] re-
quires that all security sensitive operations must be
mediated through a reference monitor [49].

• Tainted Variables Analysis. Tainted variable analy-
sis aims to find unsanitized variables that can reach
security sensitive sections of the code space and thus
affect security decisions [38, 42]. For example, in the
case of the Linux kernel, we are interested in whether a
variable coming from an un-authenticated source (e.g.,
a user supplied input without sanitation) can reach se-
curity sensitive sections of the code base (e.g., inside
the kernel space).

• Access Rights Analysis. In the Java security model,
applications must obtain permissions first before in-
voking privileged (security sensitive) operations. Least
privilege permission calculation tries to statically de-
termine the minimum set of permissions required by
the application to carry out its functionality [30].

• Privileged Code Placement. Some languages, such
as Java and Microsoft .net Common Language Run-
time (clr), have adopted a form of access control
based on stack inspection. When access to a restricted
resource is attempted, all the callers on the stack need
to be granted the necessary permission. If library
code attempts a security-sensitive operation that its
clients did not explicitly request (such as reading from
a configuration file), that operation should be made
privileged. Privileged code in libraries prevents the
stack inspection mechanism to reach client code. A
privileged-code analysis analyzes library code to detect
which code portions of that library should be made
privileged to prevent client code from requiring unnec-
essary permissions [38].

• TOCTTOU Vulnerability Analysis. tocttou at-
tacks refer to attacks that exploit the timing window
between the time of check and the time of the actual
operation. A tocttou analysis aims to catch such
vulnerabilities [10].

These properties concern whether certain “bad” code paths
are executed, rather than whether a variable holds a certain
value at a particular execution point. Verification of such
properties thus requires analyses that are less accurate than
those used for code generation. On the other hand, since the
target software of these analyses are often large systems,
such as the Linux kernel, comprising of thousands, if not
millions, lines of code, the analyses have to be sufficiently
scalable to handle such large code bases.

A common tradeoff of accuracy for scalability is to collapse
all references to array elements to the 0th element, essen-
tially modeling the array as a giant union of all its elements.
Also, many C analysis engines assume type safety and ignore
pointer arithmetic. For instance, the cqual analysis tool
does not attempt to model unsafe features of C, such as type
casts, variable-argument functions, and arbitrary pointer
arithmetic [22]. Despite this limitation, cqual has proved
to be a valuable tool [42, 49]. When using these analysis

engines we therefore can safely skip translation of pointer
arithmetic without sacrificing analysis accuracy. Similarly,
we generally do not need to track the array index value dur-
ing translation.

The aplt approach takes advantage of these observations
and does not try to translate the data values faithfully in
all cases. Instead, it tackles the generally easier problem
of preserving sufficiently precise control and data flow in-
formation. Given an input program, the aplt translator
conservatively generates an equivalent output program with
regards to control and data flow required for the analysis.
In general, the input program and the output program do
not execute alike (in fact, the output program probably does
not run at all). However, the difference is not consequential
to a typical program analysis, including those in which we
are interested.

Based on the above discussion, we give a semi-formal de-
finition of analysis-preserving language translation. Let L1

and L2 be two languages, AL2 be an analysis for language
L2, and I : L1 → L2 be an ideal, perfect, translation func-
tion that converts all programs written in language L1 to ex-
actly equivalent programs in L2. Further let AL2(p) denote
the result of executing analysis AL2 on program p. Then we
say that a translator T : L1 → L2 that translates (possibly
imperfectly) programs written in language L1 to language
L2 is analysis-preserving with respect to analysis A if for all
programs P written in language L1, AL2(T (P )) is equiva-
lent to AL2(I(P )), where equivalence means that the results
of the analyses are the same.

By definition, the soundness of our aplt translator de-
pends on whether the target analysis falls into the category
of analyses that the translator is designed to support. Our
experiences show that the class of analyses our aplt transla-
tor supports is sufficiently general and encompassing that for
almost all security analyses we are interested in, the trans-
lator is sound. In addition, the translator preserves precise
control information (with a few exceptions discussed in Sec-
tion 6) 1). Thus, for analyses that concern only control
flow [28, 12], the translator is sound. For more precise (and
less scalable) analyses, such as those supporting path sensi-
tivity, our translator is not sound. Even in those cases, we
argue that the aplt translator is useful, because it makes
analyses available for target languages that otherwise would
not get analyzed at all (e.g., native code in a Java envi-
ronment). In this regard, we share the same philosophy as
Hallem, Chelf, Xie, and Engler on soundness vs. useful-
ness [24].

To illustrate the feasibility and complexity that arise in
building a translator that sufficiently preserves the control
and data flow information, we next describe the techniques
we developed in tackling these issues, using a C-to-Java
translator named fictoj as an example. Although the exam-
ple is specific to C and Java, the techniques are sufficiently
generic so they can be applied to building other translators.

3. FICTOJ: A C-TO-JAVA TRANSLATOR
The main novelty of our translator lies in two aspects:

implementing function pointers using virtual methods and
anonymous inner classes in Java; and implementing goto

1Although our translator does not handle certain excep-
tional cases, the translator can detect such usages and reject
the program.



C Java

int i; int[] i;

int *pi; int[] pi;

int **ppi; int[][] ppi;

*pi = 23; pi[0] = 23;

*ppi = pi; ppi[0] = pi;

scanf("%i", &i); scanf("%i", i);

*i++; i[0]++;

pi = &i; pi = i;

(*pi)++; pi[0]++;

Table 1: C to Java Mappings for Pointer Related
Language Constructs.

translation in a way that does not modify control and data
flow of the original program. Although most of the transla-
tion is done at the source level, fictoj is essentially a C to
Java bytecode translator. Translation of basic data struc-
tures is done in a straightforward way (Section 3.1), whereas
pointers require some special handling (Section 3.2). Sec-
tion 3.3 and Section 3.4 detail our approaches to dealing
with function pointers and goto statements. Due to space
constraints, we only highlight the main technical challenges
in this section. Our research report [26] contains a more
complete treatment of this topic.

3.1 Basic Translation
Simple types such as char, int and float in C are mapped

directly to the same types in Java. Structures and unions are
mapped to classes with all fields declared as public. Func-
tions become public methods of a global class representing
the entire file being translated.

Sideway casts (casts of class types that do not have inher-
itance relationship) are statically illegal in Java, so they are
first generalized as an Object instance, and when needed,
cast to the appropriate type.

3.2 Pointers
One of the challenges in translating C to Java is, of course,

dealing with C pointers. Our approach maps C pointers
to Java arrays of length one. Dereferencing a pointer thus
becomes referencing the 0th element of the array. Simi-
larly, variables and fields whose addresses are being taken
are given an extra level of dereference via arrays of size one.
Accesses to these variables in C thus need to be mapped to
accesses to the 0th element of the translated array variables.
Multilevel pointers work exactly the same, with the one-
dimensional array replaced by a multi-dimensional array.
Table 1 shows translations for pointer related data struc-
tures.

3.3 Function Pointers
fictoj maps C function pointers to Java virtual methods

utilizing Java’s anonymous inner classes. The mapping con-
sists of 3 steps. All function pointer types are first mapped
to a class Fn. This class is constructed with one method
named idrCall, overloaded multiple times. For each signa-
ture of different length used at an indirect call site anywhere
in the program, idrCall is overloaded one more time. Step
1 in Table 2 shows how this step works. This approach does

not modify the control flow of the program (it does intro-
duce an additional level of indirection through the wrapper
class).

Whenever the address of a function is taken, the class Fn is
extended anonymously. The member method with matching
arguments is overridden to branch to the destination func-
tion, as shown in Step 2 of Table 2. Finally, indirect call
sites are then relinked to transit via the virtual function, as
shown in Step 3.

3.4 Variable Argument Functions
Functions with variable numbers of arguments (vararg

functions) are implemented with a method that has one ar-
gument of type Object[]. At each call to a vararg function,
the arguments are packed into an array before being passed
to the function.

In C, vararg functions implement their own argument
unpacking. No attempt is made to translate the variety of
unpacking protocols available. Rather unfortunately, this
means the body of such functions cannot be processed and
a warning is printed on standard error whenever one is omit-
ted.

Translation of indirect calls to vararg functions requires
another level of indirection. First, the default bodies of
the indirect methods package their arguments into an ar-
ray. They then invoke another method varargCall, which
is overridden to invoke the destination function when the
address of a vararg function is taken, as described in Sec-
tion 3.3. The overriding method is guaranteed to receive its
arguments in an array with the same number of arguments
as provided by the call site.

Our original design point was to use Java 1.3 and 1.4 as
the target environment for the translation. At that time,
the Java language, compilers and runtime did not support
vararg functions. With Java 5, it is possible to use its sup-
port for variable argument functions. In Java 5, the vararg

capability is implemented by autoboxing the argument pa-
rameters into an Object array. The net effect is identical to
our translation process.

3.5 Goto Translation
Although Java does not support goto statements, Java

bytecode does have have a goto instruction. fictoj per-
forms the goto translation in two steps. First, it hides the
goto statements in the Java source code and then reinserts
them in the bytecode. In contrast to the standard goto elim-
ination algorithm [19], which introduces new variables and
modifies the control and data flow of the original code, our
goto translation algorithm takes great care to avoid intro-
ducing spurious control or data paths so that the translation
does not alter analysis results in any unintended way.

With the standard goto elimination algorithm, even if the
translated code runs correctly and produces the same re-
sults, the results from static analysis might still be different
due to the side effects of the translation. Figure 1 shows
a simple C program and the resulting translation accord-
ing to the goto elimination algorithm described in Erosa et.
al. [19]. The introduction of the goto_L1 variable and the
additional if (!goto_L1) statement in line 10 create an in-
feasible path that goes from statement 5 (the true block
of the if (goto_L1) statement) to statement 11 (the true
block of the if (!goto_L1) statement), and finally to state-
ment 14. Although a precise static analysis tool (e.g., one



C Java

Step 1. public class Fn {
int (*fa)(int); public int idrCall(int p1) { ... }

}
Step 2. int a(int p1) { ... } public int a(int p1) { ... }

fa = &a; Fn fa = new Fn() {
int idrCall(int p1) { return a(p1); }
}

Step 3. x = (*fa)(23); x = fa.idrCall(23);

Table 2: C to Java Mappings for Function Pointers.

switch (i) { 1. switch (i) {
case 1: 2. case 1:
if (cond) 3. boolean goto_L1 = cond;

goto L1; 4. if (goto_L1)
break; -> 5. break;

case 2: 6. break;
... 7. case 2:

} 8. ...
... 9. }
L1: 10. if (!goto_L1) {
do_sth(); 11. ...

12. }
13. L1:
14. do_sth();

Figure 1: A Goto Elimination Example.

switch (i) { 1. switch (i) {
case 1: 2. case 1:
if (cond) 3. if (cond)

goto L1; 4. Dummy.go_to("L1");
break; -> 5. break;

case 2: 6. case 2:
... 7. ...

} 8. }
... 9. ...
L1: 10. Dummy.label("L1");
do_sth(); 11. do_sth();

Figure 2: Goto Elimination in fictoj.

that supports path sensitivity) might detect that the two
true blocks cannot both be executed (because the condition
expressions in the two if statements are negations of each
other), most scalable static analysis tools, including the ones
we use, do not support path sensitivity. Our goto translation
algorithm, in contrast, does not introduce any new variables
and infeasible paths.

Our goto translation algorithm is based on the jlapack
tool [16] and uses a combination of simple control flow analy-
sis and binary rewriting techniques to achieve the goal of
preserving precise flow information. The algorithm con-
sists of three stages. In the first stage, goto statements and
their destination labels are converted into a dummy call pair
Dummy.go_to("dst") and Dummy.label("dst"), as shown in
Figure 2. In the second stage, we compile the converted Java
source into Java object code. In the final stage, we use a bi-
nary rewriting tool called shrike [37] to replace the dummy
calls with goto statements.

The rewriting of goto statements with dummy calls can
potentially make certain parts of the code unreachable, which
is not allowed in Java. For example, if line 9 in Figure 2 is
a return statement, then the Java compiler will complain
that line 10 is unreachable (not surprisingly, a C compiler
would allow such cases).

To solve this problem, in the first stage we perform some
simple control flow analysis to determine if the goto des-
tination statement is reachable after the translation. If it
is unreachable, we replace any statement before the desti-
nation statement that diverts the control flow (e.g. break,
continue, and return) into corresponding dummy forms
(e.g., Dummy.Return()) that will pass the Java compiler.
Note that a break statement is replaced with a pair of
Dummy.go_to() and Dummy.label() statements, where the
dummy label statement is inserted at the end of scope en-
closing the break statement. If the break statement takes
a label argument, then no additional dummy label state-
ment is created. Similarly, a continue statement is re-
placed with a pair of Dummy.go_to() and Dummy.label()

statements with the dummy label statement inserted at the
beginning of the inner-most loop scope.

4. RESULTS
In this section we evaluate the feasibility and effectiveness

of analysis preserving language transformation, using fictoj
as an example. To validate the correctness of our transla-
tor implementation, we selected an existing C analysis, re-
implemented the same analysis on Java and compared the
two results. We then demonstrated the effectiveness of aplt
by showing how it can help (1) analyze multi-language soft-
ware such as the Java runtime; and (2) make state-of-the-art
analysis techniques readily available to languages other than
the original target language.

4.1 Translator Validation
In this experiment, we test fictoj by comparing an analy-

sis written for C with the same analysis ported for Java tar-
get programs. We select a target program, translate it to a
Java equivalent with fictoj and then apply the ported Java
analysis on the translated code. The comparison allows us
to determine the correctness and robustness of the translator
implementation.

The analysis concerns the verification of the complete me-
diation property of reference monitor interfaces, which states
that all security-sensitive operations must go through the
reference monitor interface. An example reference monitor
is the Linux Security Modules (lsm) interface [47]. The



1: /* Code from fs/read_write.c */
2: sys_lseek(unsigned int fd, ...) {
3: struct file * file = fget(fd);
4: ...
5: retval = security_ops->file_ops

->llseek(file);
6: if (retval) {
7: // failed check, exit
8: goto bad;
9: }
10: // passed check, perform operation
11: retval = llseek(file, ...);
12: }

Figure 3: An example of lsm hook.

Linux Security Module provides a Mandatory Access Con-
trol (mac) architecture inside the Linux kernel. Before each
security-sensitive operation, a hook invokes a reference mon-
itor which determines if the current process has sufficient
authority to perform the operation. In this architecture,
the security of the kernel depends on verifying that each
security-sensitive operation is collectively dominated by its
checks. That is, all paths through the kernel leading to a
security-sensitive operation include at least one correspond-
ing check.

The code segment in Figure 3 shows an example of
what lsm hooks look like. The function sys_lseek()

implements the system call lseek. The security hook,
security_ops->file_ops->llseek(file) (line 5), is in-
serted before the actual work (the call llseek() at line 11)
takes place. The goal is to check that all security-sensitive
operations (e.g., llseek()) are dominated by a check to the
reference monitor (e.g., the security hook at line 5).

Verifying the complete mediation property is challeng-
ing, because there is often a long path between the lo-
cation of the security check (e.g., check that the user has
delete permission), and the location of the security-sensitive
operation (e.g., actually remove the file). The paths are
often inter-procedural, and involve multiple operations on
security-sensitive data structures. It is difficult, for exam-
ple, to verify that the file the kernel is about to delete is the
same file whose permissions were checked against those of
the process, many function calls ago.

We had previously verified the correctness of the place-
ment of the lsm hooks [49], using the type-based program
analysis tool called cqual [21]. Since cqual targets C, we
were able to analyze the Linux kernel directly. Although
cqual was able to find bugs, it also generated many false
positives, which required tedious sorting by hand.

We ported the complete mediation analysis to a Java
analysis engine called jaba [30, 38], a tool developed in-
ternally in ibm. jaba is a highly-scalable interprocedural
Java bytecode analysis engine with the following character-
istics: it is context-sensitive, intraprocedural flow sensitive,
interprocedural flow insensitive, path insensitive, and field
sensitive [40]. By using a more powerful analysis engine, we
expected the analysis to be more precise.

We translated Linux kernel version 2.4.9, containing
207,670 lines of complex C code, 4,836 functions and 1,121
structure types. The resulting Java object file had a size
of 1.2 megabytes. We then applied the complete mediation
analysis based on jaba.

The analysis on jaba found all true positives that were
captured using the cqual tool. This served as empirical

evidence that our translator implementation from C to Java
was correct with respect to the analysis. In addition, the
analysis based on jaba generated significantly fewer false
positives (172 vs. 524 with cqual), indicating that the tech-
niques employed in the dominance checker improved its ac-
curacy compared to the previous approach.

We are encouraged by this result — it demonstrates that
analysis preserving transformation is not only practical, but
that it is also effective for very low-level programs such as
the Linux kernel.

4.2 APLT Usage Scenarios
This section describes two interesting experimental results

that we obtained with our aplt.

4.2.1 Analysis of Multi-language Software
Traditionally, Java static analyzers have been unsound

due to their inability to model the execution of native meth-
ods. Even programs that do not explicitly contain native
methods can end up causing the execution of native meth-
ods through the underlying libraries. Some static analyzers
include stubs that represent the execution of a few native
methods. However, those stubs are often manually con-
structed, increasing the likelihood that the control and data
flow of the modeled native code is not faithfully represented.
In addition, potentially, the process of creating the stubs
must be repeated every time a new version of the software
is released since the control and data flow may change across
different releases.

The aplt presented in this paper has allowed us to auto-
matically model native methods written in C with control-
and data-flow equivalent Java methods, and to analyze
multi-language programs that consist of Java code trig-
gering the execution of native methods written in C. For
the purposes of this paper, our technique has been applied
only to some security-sensitive native methods, such as the
four forms of method AccessController.doPrivileged().
This method is invoked by trusted library code to per-
form security-sensitive operations without requiring client
code to be authorized [38]. Without a sound model
for doPrivileged(), any authorization analysis of a Java
program would be severely incomplete since the security-
sensitive operation would not be represented in the static-
analysis model.

The authorization analyses we performed were the access-
rights analysis [30] and privileged-code analysis [38], both
based on jaba. To demonstrate the validity of our tech-
nique, this section shows the analyses performed on large
code bases. Specifically, we analyzed Eclipse V3.1 to identify
(1) the permissions required by each Eclipse plug-in and (2)
which portions of plug-in code should be made privileged in
order to allow Eclipse to run with a Java 2 SecurityManager

enabled without forcing the client to be granted unnecessary
permissions, which would constitute a violation of the Prin-
ciple of Least Privilege [41]. The results reported are from
executing the analyses on an ibm Personal Computer with
an Intel 1.6 GHz Pentium M processor and 1 GB of RAM,
running Microsoft Windows XP SP2. The security analyzer
ran on top of a Sun Microsystems Java Runtime Environ-
ment (jre) V1.4.2 04. The jre functionality was made part
of the analysis scope by including the jre V1.4.2 04 system
and extension libraries. For each plug-in, all its public and
protected methods were considered as entry points.



Eclipse Classes Methods Nodes Edges Instr. (bytes) doPriv. Perms
Plugin w/o w w/o w w/o w w/o w w/o w w/o w w/o w

ant.core 394 765 1246 2679 5604 14113 13176 27648 67668 164060 52 55 28 79
core.runtime 728 1102 3570 5195 18023 27966 37286 58743 179187 289052 110 116 17 75
osgi 926 1289 4543 6296 27353 41832 65373 110608 258909 384219 466 492 18 142
core.resources 751 1087 3679 5063 20556 29182 56830 74505 211350 304258 204 214 21 47

Table 3: Analysis Results without (w/o) and with (w) Models for Native Methods

Table 3 shows, for some Eclipse plug-ins, the number of
classes and methods actually analyzed, the number of nodes
and edges in the call graph, the instruction bytes, the num-
ber of doPrivileged() locations suggested by the analyzer,
and the number of permission requirements reported. For
each of these attributes, two values are reported: those ob-
tained without the models for native methods, and those
obtained with the models for native methods. In each case,
higher numbers represent higher precision. In particular,
the number of doPrivileged() locations and permission re-
quirements reported in Table 3 are important because they
strictly represent the security problems detected by the sta-
tic analyzer and quantify the precision of the security analy-
sis. Specifically,

• Missing a doPrivileged() suggested location would
cause client code to require unnecessary permissions at
run time. If client code is not sufficiently authorized,
run-time authorization failures will occur, causing the
entire system to fail. Solving this problem by granting
extra permissions to client code would not be a safe
solution since it would constitute a violation of the
Principle of Least Privilege. Therefore, an analysis
that correctly reports all the suggested locations where
doPrivileged() should be called can help preventing
authorization failures and security problems.

• In Java (and other stack-inspection-based authoriza-
tion systems, such as Microsoft .net clr), when se-
curity is enabled, every time an authorization check
is performed all the callers on the stack will need to
be granted the permission being checked. To model
the stack inspection mechanism without missing a
permission requirement, a static analyzer must over-
approximate all the possible stacks of execution. To
achieve this result, it is necessary to have a sound rep-
resentation of the native methods encountered during
the execution of a program and its underlying libraries.
Otherwise, the analysis will potentially miss permis-
sion requirements.

The differences in the results obtained without and with
the models for native methods, as reported in Table 3,
quantify what we have just observed. Specifically, the re-
sults with the models for native methods are more precise
(more doPrivileged() and permission requirements are de-
tected and reported) because the automatically generated
models for the four forms of doPrivileged() are included
in the analysis scope. In particular, with the translated
methods, the privilege-code analysis discovers many ad-
ditional opportunities for inserting doPrivileged() calls:
ant.core has 3 more, core.runtime has 6, osgi has 26,
and core.resources has 10; and the access-right analysis
detects, respectively, 51, 58, 124, and 26 new permission re-
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Figure 4: Typestate Model for tocttou Vulnerabil-
ity

quirements that are missing when the translated methods
are not included.

4.2.2 Analysis Reuse
Our analysis of interest in this case is typestate verifica-

tion [44, 43] a technique that uses data flow to track the
typestates of variables at each program points and detect
operations that violate the typestate rules of the language.
Typically, the user specifies the properties to be verified us-
ing a finite state automaton. The verifier then checks if the
error state in the finite automaton can be reached.

We are interested in typestate analysis for two main rea-
sons. First, since its introduction, it has gained much at-
tention in the space of software verification. In particular,
we have found it to be suitable for verifying security proper-
ties. Secondly, the properties to be verified using typestate
analysis are typically high level properties, and thus lend
themselves to analysis reuse.

We next show an example of security property that can
be checked using typestate analysis, namely, the (tocttou)
vulnerability [10]. tocttou is a special type of race con-
dition that allows an attacker to perform an unauthorized
operation due to the time difference between the authoriza-
tion check and the actual operation.

Figure 4 shows a simplified automaton model for check-
ing data race induced tocttou attacks in the Linux ker-
nel. In the kernel space, tocttou are generally caused by
a thread’s control data being modified while the thread is
in a blocked state. Modeling the intricate interactions be-
tween threads is infeasible and not necessary for tocttou
detection, thus we make a conservative assumption that any
blocking event might modify the states of the thread in arbi-
trary way, and thus any authorized checks should be inval-
idated. Based on this assumption, the tocttou detection
problem becomes checking for the simple property that there
should not be a blocking event between a check and a use
event.



The specific typestate checker we use for the experiment
is called safe. safe employs several novel techniques [20,
48] that tailor the verification to the specific property being
checked, leading to improved precision and scalability.

Using fictoj, we translated the Linux kernel to Java and
then applied the safe tool on the translated code. We used
Linux kernel version 2.2.14, because this version contains a
known tocttou bug. We applied the analysis on two sub-
systems, the file system and the kernel system. The two
subsystems cover 127 system calls, which is about half of
the total number of system calls, and 683 methods. The
verification processing time was about 30 seconds, which
demonstrates the efficiency of the safe tool. We found 10
warnings, one of which is the famous ptrace/execve toct-
tou vulnerability [1] 2.

Because safe provides a pattern specification language for
specifying high-level properties, applying safe to the Linux
code base does not take much effort at all after the trans-
lation is done. Thus, this exercise serves as a convincing
example of how aplt enables us to take immediate advan-
tage of advanced features of tools that were not originally
designed for the specific language of interest to us.

5. RELATED WORK
This section describes previous work in the areas of mul-

tilingual analysis frameworks and program translation.

5.1 Multilingual Analysis Frameworks
There are now a number of compilers and compiler frame-

works that support multiple source languages [2, 25, 3].
The Vortex compiler, for example, has front-ends for several
Object-Oriented languages including Java and C++. These
Vortex front-ends translate code in each language into the
common Vortex rtl intermediate representation, which can
then be further processed.

As these compilers are able to process multiple languages,
and implement the data and control flow analyses that are
expected of modern compilers, it is natural to ask whether it
is possible for powerful multilingual analysis tools to be built
using this same approach. In other words, could code writ-
ten in multiple languages be represented using the same in-
termediate representation, to be used by deep analysis tools?

Indeed, many such compilers provide support for such
analysis tools: Vortex, and Suif among them. Other analy-
sis frameworks that use this technique but are not primarily
compilers include bane [4] and llvm [32].

Unfortunately, when attempting to use these systems for
deep analysis of multiple languages (which, to be fair, is
beyond what they were designed for), the same issue seems
to re-occur.

As an example, in Fortran 77 [5], if two formal parameters
alias each other, then neither parameter can be written to
in a legal program. Clearly, this restriction makes verifying
many properties much easier. The problem with common
multi-lingual program representations is that in order to en-
code multiple languages they essentially represent a super-
language encompassing all the features of all the supported
languages, and thus lose language-specific restrictions. We
know of no multi-lingual framework which is able to repre-
sent Fortran 77’s alias restriction.

2A more refined automaton model will potentially reduce
the false positive rate. This is ongoing work.

Sadly, any non-trivial program property in any Turing-
complete language is incomputable. Furthermore, in prac-
tice only computations that can be performed in low-order
polynomial time and space are feasible. Useful tools can still
be built, despite these facts, because actual programs often
are well-behaved, and because languages are often designed
with restrictions, like Fortran 77’s, that can help analy-
ses. Losing language-specific restrictions makes the analysis
problem more difficult, which can tip the balance towards in-
feasibility. For example, even though bane is multi-lingual,
Rountev, Milanova and Ryder’s points-to analysis [39] using
it is Java-specific, because it relies on Java method and field
semantics in order to get useful results.

Our approach reduces the impact of this problem by iso-
lating the impact in the language-specific translator. For
example, to handle Fortran’s alias reastriction, the transla-
tor can make explicit copies of function parameters, ensuring
the non-existence of aliases. Since we are not executing the
resulting program, the obvious inefficiency of this transla-
tion is irrelevant.

Another possible way to surmount the common-
representation problem is to allow language-specific rep-
resentations to be used by a common infrastructure.
genoa [15] was early work that took this approach, by sup-
porting a query language which can be executed on arbi-
trary parse trees. Although useful, the information which
can be thus extracted is much less than needed by modern
analyses. More recently, the OpenAnalysis toolkit [45] can
use multiple representations by use of an abstraction layer
between the representations and the analysis engines. How-
ever, this work is currently limited to imperative languages
(not object-oriented), and, as they note, cannot utilize con-
straints such as the above-mentioned Fortran alias restric-
tion.

Cousot [13] observed that abstract interpretation could
be defined as taking a programming language semantics as
a parameter. In this way multi-language analysis tools could
be built by supplying both the program to be inspected and
the semantics of the language it is written in. However,
to our knowledge no implementations of this have been at-
tempted, likely because formalizing programming language
semantics is usually considered to be prohibitively difficult.

5.2 Program Translation
Source-to-Source programming transformation is a stan-

dard technology for software maintenance and evolution [8,
9]. The goal is to automatically generate source code in
the language of choice from a higher-level design specifica-
tion, such that by modifying the specification one can evolve
and/or port the software to a different language in an auto-
matic way. The transformation is thus between a high-level
specification language and a low-level implementation lan-
guage.

In contrast, our goal is to transform the code in a way
that preserves sufficiently precise data and control flow in-
formation (with regard to the analysis), so that results from
different analyses are comparable. We thus perform direct
source to source translation between two languages of com-
parable levels.

A large number of direct C-to-Java translators exist, in-
cluding Jazillian [27], Ephedra [33], and C2J [36]. As with
most source-to-source transformation systems, these trans-
lators aim to produce target code that execute the same



way as the source code. As such the translation occurs at
a higher semantic level, but the resulting Java file does not
necessarily have the exact same data/control flow, which
makes them unsuitable for our purpose.

In addition, because these tools lack a high-level design
specification, they need to do some guess work in order to
produce functionally equivalent code. As a result there are
cases that the heuristics employed in these tools might not
cover, and consequently they are not guaranteed to work all
the time. For example, none of these tools can deal with
programs the scale of the Linux kernel. In contrast, since
our goal is slightly less ambitious, our translation covers a
much larger set of cases, and scales to large programs with
hundreds of thousands of lines of code. The resulting Java
file, however, is, in general, not intended to run unmodified.

Another major difference between these mainstream C-to-
Java translators and our translator lies in the goto statement
elimination algorithm, which is described in detail in Sec-
tion 3.5. To summarize, conventional execution-preserving
translators either use goto removal algorithms that alter the
control and data flow of the source program, or they do not
support goto statements at all.

6. DISCUSSION
In this section, we describe the limitations of our transla-

tor and discuss the generality of aplt.

6.1 Limitations
Our translator has a few limitations, as summarized be-

low.

• Pointer Arithmetic. We do not support arbitrary
pointer arithmetic.

• Collapsing of array references. We collapse array
references to the reference of the 0th element.

• Body of variable argument functions. As we
mentioned, we do not currently translate the body of
function with a variable number of arguments.

• setjmp/longjmp. We do not handle setjmp/longjmp.

• In-line assembly code. We do not translate the con-
tent of embedded assembly code. Each such instance
becomes calls to abstract methods, which can then be
overridden.

• Cast between pointers and integers. The Java
bytecode specification does not allow cast between in-
teger and floating point types, and object types. As
opposed to the first three limitations, which are imple-
mentation issues, this problem is harder to avoid and
remains an open issue.

These limitations can potentially affect the precision of
the translation and restrict the range of analyses for which
the translation is sound. Fortunately, our experiences indi-
cate that occurrences of most of these special cases are rare
in production-quality code. For cases that occur relatively
more frequently, such as pointer arithmetic, array references
and assembly code, the types of analyses that depend on
precise translation of these cases are rare. Thus, these lim-
itations are not prohibitively restrictive. In the case where
soundness must be guaranteed, our translator can detect

occurrences of these special cases, and either reject the pro-
gram or prompt for a manual fix.

For system-level applications, in particular, device drivers,
assembly code can comprise a large portion of the code.
Thus, it is important to be able to translate assembly code to
data and flow equivalent high-level language. Theoretically,
translating assembly code using our technique is no differ-
ent from translating Java native methods: in both cases one
has to model the interaction between the two languages, so
as to capture the data flow correctly, and then model the
control and data flow of the lower-level language. It would
be interesting future work to attempt this. We speculate
that this work would encounter no intrinsic limitations, but
rather pragmatic ones: a translator’s implementation diffi-
culty increases as the source language becomes lower-level
and the control flow becomes less structured, while the num-
ber of code bases that require such constructs decreases.
There will be a point of diminishing returns reached, at
which it is no longer cost effective to support additional
constructs. This is the same reason that caused us not to
support setjmp/longjmp: we actually had no examples of
these statements in any of our target code.

6.2 Generality of APLT
We set out to investigate security-related technology,

hence this paper’s focus on applications in this domain.
However, the techniques we describe are generally applica-
ble to generic bug finding and performance diagnosis which,
like our applications, base the analyses on modeling and tra-
versing control and data flow of the program. Generic bug
finding and performance diagnosis cover a large range of
software engineering applications, such as analysis of unini-
tialized pointers and variables, deadlock detection, matching
function call pairs such as open and close, race conditions,
and analysis of unwanted synchronizations.

7. CONCLUSION
In this paper we propose a new program analysis method-

ology based upon analysis preserving language transforma-
tion. We claim that by making use of such translations
we can correctly handle applications written in multiple
languages, such as Java programs, which use native meth-
ods. Furthermore, this approach allows the reuse of existing
analysis tools on code bases written in different languages.

We have validated this methodology by first implementing
an analysis-preserving translator from C to Java. We then
conducted three extensive experiments:

Linux LSM validation The Linux kernel mandates that
LSM hooks mediate all sensitive operations. We used a
C analysis engine to solve this problem and compared
the results thus obtained with those produced by a
state-of-the-art Java analysis engine on our translated
code. The two analyses found the same set of vio-
lations, but the Java analysis resulted in fewer false
positives.

Java native code analysis In order to correctly deter-
mine whether a Java application correctly checks per-
missions before executing sensitive operations, both
the application’s Java code and native code must be
inspected. Using our technique we were able to cor-
rectly inspect Eclipse, a large, widely used application.
To our knowledge, this is a novel result.



TOCTTOU detection An existing Java analysis engine,
SAFE, is able to validate properties specified in type-
state format for Java code. Using our technique, we
were able to apply safe to detect a tocttou violation
in the Linux kernel, despite the fact that the kernel is
written in C, not Java.

For these reasons, we believe that our aplt technique will
prove to be valuable both as a testbed for examining dif-
ferent language analysis techniques, and as a unified toolset
for broad program analysis.
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