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Abstract—Most 10T systems involve IoT devices, communi-
cation protocols, remote cloud, IoT applications, mobile apps,
and the physical environment. However, existing IoT security
analyses only focus on a subset of all the essential components,
such as device firmware, and ignore IoT systems’ interactive
nature, resulting in limited attack detection capabilities. In this
work, we propose I0TA, a logic programming-based framework
to perform system-level security analysis for IoT systems. I0TA
generates attack graphs for IoT systems, showing all of the system
resources that can be compromised and enumerating potential
attack traces. In building IOTA, we design novel techniques
to scan IoT systems for individual vulnerabilities and further
create generic exploit models for IoT vulnerabilities. We also
identify and model physical dependencies between different
devices as they are unique to IoT systems and are employed
by adversaries to launch complicated attacks. In addition, we
utilize NLP techniques to extract IoT app semantics based on
app descriptions. To evaluate vulnerabilities’ system-wide impact,
we propose two metrics based on the attack graph, which
provide guidance on fortifying IoT systems. Evaluation on 127
IoT CVEs (Common Vulnerabilities and Exposures) shows that
I0TA’s exploit modeling module achieves over 80% accuracy in
predicting vulnerabilities’ preconditions and effects. We apply
IOTA to 37 synthetic smart home IoT systems based on real-
world IoT apps and devices. Experimental results show that our
framework is effective and highly efficient. Among 27 shortest
attack traces revealed by the attack graphs, 62.8% are not
anticipated by the system administrator. It only takes 1.2 seconds
to generate and analyze the attack graph for an IoT system
consisting of 50 devices.

Index Terms—Internet of Things (IoT), Security and Privacy,
Attack Graph

I. INTRODUCTION

The last decade witnessed the rapid development and wide
deployment of IoT systems. According to [3], the total global
worth of IoT technology could be as much as 6.2 trillion US
dollars by 2025. Popular commodity IoT platforms, such as
Samsung SmartThings [41], Apple Homekit [8], and Google
Nest [23], etc., share similar architecture: low power end
devices running customized firmware, short-range, wireless
communication protocols, a centralized decision-maker, IoT
applications using trigger-action paradigms, and companion
mobile apps. IoT components interact with each other in so-
phisticated ways. For example, devices’ functionality depends
on secure and reliable communication with the controller, and
devices can be dependent on each other due to IoT applications

or physical channels. The distributed but interactive com-
ponents pose tremendous challenges to IoT system security
verification and analysis [12], [20], [22], [32], [47].

Existing research on IoT security only focuses on a single or
a subset of the IoT components. For instance, [16], [18], [49]
analyze IoT device firmware, [39] investigates IoT wireless
protocols, and [12], [32], [44] sanitize 10T applications. How-
ever, for interconnected systems, hardening individual com-
ponents cannot guarantee security because there are multiple
paths to compromise system resources. For example, attackers
can unlock a smart doorlock by exploiting vulnerabilities on
the lock [1], but they may also compromise an indoor camera
[2] and use it to inject voice, triggering a smart speaker to
launch the door-open command [5]. In this paper, we try to
address the following research problem — How to verify IoT
systems security and uncover threats in a systematic way?

Attack graphs [7], [35], [40] provide us an elegant approach
to the problem by enumerating all of the paths to potential
attack goals, i.e., system resources which can be compromised
by the attacker. There are two types of attack graphs: state-
based attack graph [38], [40] and exploit-dependency attack
graph [7], [35]. State-based attack graphs utilize model check-
ing as the reasoning engine. But they suffer scalability issues
in that the size of the graph grows exponentially with the
number of system state variables (The number of system state
variables is a linear function of the system device count).
In comparison, it takes polynomial time to construct exploit-
dependency attack graphs, and the generated attack graph size
is a quadratic function of the system device count [35].

However, existing exploit-dependency attack graph frame-
works cannot be readily applied to IoT systems due to multiple
design limitations. First, existing exploit-dependency attack
graphs were designed for conventional computer networks and
do not model essential IoT components such as IoT apps and
devices’ physical dependencies. Second, many IoT devices
communicate using low-power protocols such as Zigbee or
ZWave, which most of the existing vulnerability scanners
cannot scan. For example, all of the vulnerability scanners
listed on [46] only support IP-based devices. Moreover, exist-
ing frameworks do not model exploits on low-power, short-
range protocols which are ubiquitous in IoT systems. Finally,
there are no quantitative criteria for administrators to harden
the system in such a way that vulnerabilities with the largest



impacts get patched first. As today’s IoT systems may contain
hundreds of vulnerabilities, it is necessary to patch vulnera-
bilities efficiently.

Goals. In this paper, our goal is to build a system-level
security analysis framework for IoTs which, given the IoT
system configurations (i.e., device, network information, and
the IoT apps installed), (a) constructs exploit-dependency
attack graphs to uncover resources that can be compromised
and reveal potential attack traces; and, (b) computes a suite
of metrics to interpret the generated attack graph and provide
recommendations for system hardening.

As exploits and devices’ dependencies are the key building
blocks of attack graphs, to achieve (a), we extract exploit mod-
els and device dependencies from IoT system configurations
and represent them as Prolog clauses [36]. More specifically,
I0TA scans IoT system configurations for individual vulnera-
bilities and builds exploit models (consisting of precondition
and effect) based on scanned CVEs. We identify three types of
device dependencies: app-based dependency, indirect physical
dependency, and direct physical dependency. The app-based
dependencies are specified by IoT app semantics (i.e., trigger-
action rules). Since IoT apps’ source code can be unavailable
in some platforms, such as IFTTT [27], we utilize natural
language processing (NLP) techniques to extract app seman-
tics from app descriptions. The direct and indirect physical
dependencies are universal in IoT systems and thus are hard-
coded as Prolog rules. Finally, Prolog clauses are sent to
MulVAL [36] to generate attack graphs.

With regards to (b), we propose two novel metrics: shortest
attack trace to an attack goal, and blast radius of a vul-
nerability. The shortest attack trace to an attack goal node
provides the lower bound of the attack complexity in terms
of the number of exploits to launch. A vulnerability’s blast
radius tells us the potential capabilities the attacker can get on
the system by exploiting only that vulnerability. In addition,
the concept of attack evidence (defined to help us compute
blast radius) can also be used to compute the minimal set of
vulnerabilities to patch to thwart an attack goal [40]. These
metrics help administrators interpret the attack graphs, sort the
vulnerabilities based on their impacts on the system, and make
informed choices about system hardening.

To evaluate I0TA, we generate 37 synthetic smart home
IoT systems based on 532 real-world IoT apps and a list
of 59 smart home devices of 26 types. We scan the CVE
database since 2010 and find 127 IoT CVEs on those 59 smart
home devices. Our vulnerability analysis module achieves
80.56% accuracy for exploit precondition identification and
88.19% accuracy for exploit effect. We manually check 27
shortest attack traces whose depths are at least 9 and find out
62.8% of them are beyond anticipation. In particular, the graph
analyzer module reveals a shortest trace of depth 18 for an
IoT system consisting of only 7 devices, implying that attack
traces can be very deep for even a small IoT system. The case
study illustrates the effectiveness of using the shortest attack
trace and blast radius to estimate attack complexity and their
impacts on the system. IOTA is highly scalable. In practice, it

only takes around 1.2s and 120MB memory to evaluate IoT
systems of 50 devices.
In summary, we make the following contributions:

e We introduce IOTA, a novel framework to conduct au-
tomatic, system-level IoT system security analysis and
generate attack graphs showing all potential attack traces.

o We design formal models for IoT exploits and implement
automatic translation from system configuration and vul-
nerability information to Prolog clauses.

o We propose two metrics to quantitatively evaluate the at-
tack complexity (shortest attack trace) and vulnerability’s
system-level impacts (blast radius).

o We evaluate the efficiency and effectiveness of IOTA by
applying it to 37 synthetic IoT systems of different sizes
ranging from 4 to 50 and verify that our framework is
both effective and highly efficient.

II. THREAT MODEL

In this work, we consider individual attackers whose goal
is to break into the system. They can be physically adjacent
to the IoT system, enabling them to be within the radio
range of the wireless local area networks, such as WiFi or
Zigbee networks. Besides, the attacker can physically access
outside, unprotected IoT devices, such as a doorbell or outdoor
surveillance cameras. We also assume the attacker is able
to extract IoT app semantics because he can install sniffers
and infer event type from the sniffed packets [24]. We treat
the remote IoT cloud as trustworthy and do not consider
the compromise of the cloud itself. However, if there exist
vulnerabilities on the companion mobile app, the attackers can
spoof commands to the remote cloud. Below we discuss the
major threats to each of the IoT components in detail.

A. Device

We use the term “IoT devices” to refer to both end devices
and infrastructure devices such as routers and gateways. Most
of the device vulnerabilities are rooted in the firmware [16],
[17], [26]. However, some vulnerabilities are found in the
device’s physical components [42], [43]. Once a device is
compromised, it can be used to attack other components of the
IoT system in three different ways. First, if the attacker gets
root privilege on a device such as a router, he can send spoofed
commands to other devices on the same network. Second, the
attacker can utilize the compromised device to inject cyber
events, such as spoofing a motion event. Moreover, the attacker
can take advantage of the devices’ physical dependencies to
compromise other devices.

B. Network

IoT systems utilize short-range, low-power protocols to
communicate with the end devices, which allows adjacent
attackers to sniff the wireless traffic. These end devices are
first connected to a gateway (sometimes called base station,
bridge, or hub) in order to communicate with the internet.
Since generally there is no firewall or MAC address filtering
in most smart home networks, if the attackers gain access to
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Fig. 1: IOTA pipeline. The blue boxes are IOTA modules. The green, red, and gray boxes represent input, output, and intermediate
results, respectively. The Attack Goals can be set by the system administrator and is optional.

the network, they can send spoofed packets to other devices on
the same network. To make things worse, many IoT devices,
such as routers, cameras, or thermostats, expose unprotected
network services to the home network, making it possible for
the attackers to compromise these devices after they join the
home network.

C. IoT application

IoT applications are designed using the if-this-then-that
paradigm, where this represents IoT event(s) and that repre-
sents some device actions. IoT apps introduce dependencies
among devices, which expose new attack surfaces to the
adversary. Consider “If smoke is detected, sound the alarm
and open the window.” as an example. To open the victim’s
window, the attacker does not have to attack the window
opener directly; instead, he can just compromise the smoke
detector, and the IoT app will do the rest of the attack for
him. Even though the attacker must know the app has been
installed before exploiting it, people have shown this can be
done via wireless sniffing [24], [48].

D. Physical channel

One of the unique features of IoT systems compared with
other networked systems is that IoT devices can interact with
each other via the physical channels. There is a distinction
between the IoT physical channels and the physical layer of
the computer networks: The former is shared physical envi-
ronments, such as air, temperature, and humidity, whereas the
latter is electromagnetic signals transmitting raw bitstreams.
While IoT app-based device dependencies will only exist if the
app is installed by the user, physical device dependencies al-
ways exist in an [oT system as long as the relevant devices are
installed. An attacker can utilize various physical dependencies
to launch attacks. For instance, he can first compromise the
indoor camera, e.g., Nest Cam IQ Indoor, and use it to inject
human voice commands. The smart speaker will receive the
voice and issue the corresponding command to the actuator.

III. SYSTEM OVERVIEW

Figure 1 illustrates the pipeline of IOTA, which consists
of four stages. Vulnerability Scanning and Dependency
Extraction stage scans the devices and network protocols for
vulnerabilities and extracts IoT app semantics. It also extracts

direct device dependencies from the system configuration file.
Exploit Modeling stage maps vulnerabilities to exploits based
on the vulnerability description and Common Vulnerability
Scoring System (CVSS) [14] scores such as Attack Vector and
Confidentiality, Integrity, Availability (CIA) triad. Exploits,
direct dependencies, and app-based device dependencies are
then translated to Prolog clauses. Attack Graph Generation
stage reads attack goals (optional) and the translated Prolog
clauses and generates IoT attack graphs. If the user does
not provide attack goals, we enumerate all system resources
(i.e., privileges on devices or tamper of the physical features)
as potential attack goals. Then we modify the intermediate
reasoning results and send them to MulVAL [36] to generate
attack graphs. Attack Graph Analysis stage takes the gener-
ated attack graph as input and computes the following metrics:
the shortest attack traces to each attack goal node and the blast
radius of each vulnerability.

IV. 10TA DESIGN

In this section, we explain the design of the IOTA modules
as shown in Figure 1. The implementation details are explained
in Section V.

A. Vulnerability Scanner

To the best of our knowledge, there are no existing vulnera-
bility scanners readily available for low power communication
protocols such as Zigbee or Bluetooth Low Energy (BLE).
Therefore, we design a vulnerability scanning approach based
on CVE database searching. Our approach is practical because
of some device vendors’ ignorance of vulnerability report [33],
[37] and the slow firmware upgrade rate [18].

Given the IoT devices installed and the communication
protocols used, the Vulnerability Scanner module searches
the CVE database [13] for vulnerabilities. We fetch the
CVE JSON feeds since 2010 from the National Vulnerability
Database (NVD) [31] and parse the JSON files to get informa-
tion relevant to our exploit modeling, including impact score,
exploitability score, exploit range, exploit result (CIA triad),
and the vulnerability description. The parsing results are stored
in a local MySQL database. In total, there are 121,210 CVEs
from 2010 to April 2021. After discarding CVEs without
CVSS information, our database contains 113,180 records. For
each device instance listed in the system configuration file, we
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TABLE I: IoT device direct dependencies and examples.

Direct Dependency Example

Electrical Outlet — AC; Switch — Light bulb
Mechanical Door lock — Door opener
Utility Water valve — Sprinkler; Gas valve —

Stove

query the database for the device name using full-text search in
boolean mode to make sure it only returns CVE records when
all of the query keywords appear in the CVE description.

The scanned vulnerability on each device is then translated
to Prolog facts. For example, the following fact shown in
Listing 1 means vulnerability CVE-2020-8864 exists on
dLinkRouter.

vulExists (dLinkRouter, ’"CVE-2020-8864").

Listing 1: Prolog fact for a CVE found on a device.

B. Dependency Analyzer

The Dependency Analyzer module models how IoT devices
interact with each other via physical channels. We identify
and define two types of physical dependencies: direct de-
pendency and indirect dependency. Two devices are directly
dependent if they are both actuators. There are three types of
direct dependencies as listed in Table I. The most common
direct dependency is electrical dependency, such as the one
between smart outlet and air conditioner. The second type is
mechanical dependency. For example, the door opener cannot
open the door if the door lock is locked. We define the third
type as utility dependency. For example, gas valve and smart
stove are dependent via gas. Even though direct dependencies
can have a huge impact on IoT system security, they are
overlooked by existing IoT security analysis frameworks.

Two devices are indirectly dependent if one of them is an
actuator and the other is a sensor. We consider and model six
physical channels: temperature, humidity, illuminance, voice,
smoke, and water. We include “voice” as a physical channel
because many devices like cameras and TVs can play human
voice in the smart home, and some devices can recognize
human voice and execute the corresponding instructions.

Direct and indirect physical dependencies are hard-coded
as Prolog rules because they are universal in all IoT systems,
regardless of the installation of certain IoT apps. During the
execution of a Prolog program, a certain dependency rule will
be activated only when the corresponding device is installed.
For example, if AC is on, then the room temperature will
be low. But if there is no temperature sensor installed, the
predicate of sensor reporting low temperature will not hold
true. Listing 2 and Listing 3 are example of Prolog rules for
indirect and direct dependencies, respectively.
high (temperature) :-

on (Heater),
heater (Heater) .

temperature) :-
high (temperature),
temperatureSensor (TemperatureSensor) .

Listing 2: Indirect physical dependency.

1
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off (Device) :-
plugInto (Device,
outlet (Outlet),
off (OQutlet) .

outlet),

Listing 3: Direct physical dependency.

C. App Semantic Extractor

The App Semantic Extractor module extracts semantic
information from IoT app descriptions using NLP techniques.
Compared with program analysis, analyzing IoT app descrip-
tions in NLP is more applicable in that app descriptions are
publicly available while IoT apps’ code may be proprietary on
some platforms. In smart home platforms, developers write
a short description to explain the functionality of their IoT
apps to smart home users. Typically, these app descriptions
are written in “If this, then that” form, which makes it suitable
for NLP techniques.

We use Stanford CoreNLP framework [29] and Natural
Language Toolkit (NLTK) [10] for app description analysis.
Given an app description, we use CoreNLP parser to construct
the constituency parse tree and split the sentence into the
conditional clause and the main clause based on tree node
labeled SBAR (subordinate clause). We do a breadth-first
search on the parse tree to find the tree node with label
SBAR, which is the root of the conditional clause. Then the
conditional clause is obtained by concatenating the leaf nodes
of the subtree whose root node has label SBAR. We construct
the main clause by removing the conditional clause string from
the whole sentence.

Because the conditional clause and the main clause may
contain multiple conditions or actions, we further split each
clause into simple sentences based on tree node labeled
CC (coordinating conjunction). The coordinating conjunction
represents either logic AND or logic OR relationship between
the two simple sentences. For example, the split of SmartApp
Hall Light: Welcome Home’s description “Turn on hall light if
someone comes home and the door opens.” is shown in Listing
4. The conditional clause is split into two simple sentences
with logic AND relationship. Since the main clause contains
just one simple sentence, the relationship is set to ' NONE' .

conditional: (AND’, [’someone comes home’, ’'the
door opens’])
> main: ("NONE’, [’Turn on the hall light’])

Listing 4: Splitting clauses into simple sentences for the
SmartApp Hall Light: Welcome Home.

After splitting each clause into simple sentences, we extract
noun and verb phrases from each simple sentence and match
them to IoT device names and device action using Word2Vec
similarity. We use a regular expression chunker to extract noun
phrases and verb phrases. The regular expression patterns we
use for chunking and the extracted phrases for the SmartApp
description are shown in Listing 5 and Listing 6, respectively.

NP :
VP:

{<DT>?<JJ>*<NN.=*>+}
{<VB.*><IN|RP>?}

Listing 5: Regular expression patterns.



conditional clause: [([’'someone’], ['comes’]), ([’
the door’], ['opens’])]
> main clause: [([’the hall light’], [’Turn on’])]

Listing 6: Noun and verb phrases extracted for the SmartApp
Hall Light: Welcome Home’s description.

Finally, we use Word2Vec model [30] to match the extracted
noun phrases and verb phrases with our pre-defined list of
devices and device actions. Since Word2Vec only computes
similarities between individual words, we compare each word
in a noun phrase against each word in a device name. The
app semantic extraction result is represented as a Python
tuple shown in Listing 7. This internal representation is used
together with app configuration information in the Translator
module to generate Prolog rules.

("AND’,
motion’,

['motion sensor’,
"open’], ’'NONE’,

"door contact sensor’], [’
["bulb’], ["on’])

Listing 7: Internal representation of the IoT app semantic.

D. Vulnerability Analyzer

The Vulnerability Analyzer module maps vulnerabilities to
exploit models. Exploit modeling is essential for attack graph
construction because attack traces are composed of individual
exploits. To the best of our knowledge, our work is the first
to attempt to automatically generate exploit models based on
CVESs’ natural language description and CVSS scores. Though
MulVAL [36] formally represents exploits as Prolog rules,
it only considers privilege-escalation in computer networks.
Our exploit models are designed for generic IoT systems and
consist of exploit precondition and effect. A precondition is
the privilege the attacker should have in order to launch an
exploit. An effect is the direct result of an exploit.

Precondition. For IoT systems, we define five types of
preconditions listed in Table II. Because IoT systems typically
involve low-power, short-range, wireless protocols such as
Wifi or ZigBee, the physically or logically adjacent precondi-
tion should be defined for each network type specifically, such
as Wifi adjacent logically, Zigbee adjacent
physically, etc. We cannot just use the “attack vector”
value as the precondition of each CVE in the NVD database
because that field can be ambiguous or sometimes incorrect:
According to [19], it assigns “network™ as the precondition
whenever there is a lack of information to decide the exploit
range. Besides, the value does not differentiate “physically
adjacent” and “logically adjacent”.

We predict the exploit precondition based on protocol type,
CVE description, and the CVSS attack vector. If an exploit’s
attack vector is local or physical, we keep its value. If
the attack vector is adjacent, we check its CVE descrip-
tion. If the description contains keywords such as “sniff”,
“decrypt” or their synonyms, we will assign the precon-
dition as adjacent physically, otherwise adjacent
logically. If the original attack vector is network,
we will first check the protocol. If the protocol is a low-
power protocol, then we invoke the approach of determining
adjacent; otherwise, we set the precondition to network.

TABLE II: Types of exploit preconditions on IoT devices.

Precondition Explanation

Network An attacker can exploit the vulnerability
from the internet. There’s no prior privi-

lege required on the IoT system.

The attacker needs to be within the radio
range of a wireless network, but he/she
does not need to be on the network.

Adjacent physically

The attacker should be both within the
radio range and on the wireless network,
in order to launch the exploit.

Adjacent logically

Local The exploit requires access to the device
with at least user privilege, such as estab-
lishing Telnet or SSH connection to the
device.

Physical The attacker needs physical access to the

vulnerable device to commit exploits.

TABLE III: Types of exploit effects on IoT devices.

Effect Explanation

Root Attackers have root privilege on a device,
which can be used to send spoofed com-
mands to other IoT devices on the same

network.

Device control The attacker can run any command the
device supports, and sniff and inject any
device event. But the device cannot be
used to send spoofed messages to other

devices.

Command injection | The attacker can inject any commands to
the device, but does not have access to the

10T events on that device.

Event access The attacker is able to sniff and spoof
events on an IoT device, but he/she cannot

inject commands to that device.

Wifi access The attacker obtains the Wifi credentials
and is able to join the Wifi network.
DoS The IoT device becomes denial-of-service.

Effect. From an attacker’s perspective, exploit effects in-
clude gaining privileges on IoT devices, accessing wireless
traffic, or making devices denial-of-service. We categorize
exploit effects into six types as listed in Table III. If attackers
get root privilege on a device, they can use it to attack other
devices by sniffing or spoofing wireless traffic. The device
control privilege implies both command injection
and event access privilege, but not the capability of
attacking other devices on the same system.

For each vulnerability, we decide its exploit effect based
on the CVE description and confidentiality, integrity, and
availability (CIA) subscores of CVSS. We first seek to extract
the effect from the CVE description by matching the keywords
for each effect type. If the description does not contain any
keywords, we try to identify the exploit mechanism defined in
[15] and communication protocol from the description using
the same keyword matching approach. In combination with
the CVSS’ CIA subscores, we can infer the exploit effect. For
example, suppose the exploit mechanism is buffer overflow.
Then we check the CIA subscores to set the effect to denial
of service (if only the availability score is greater than the
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Fig. 2: ToT attack graph example. The meaning and type of
each node is shown on the right.

threshold), or root privilege (if confidentiality, integrity,
and availability are all greater than the threshold).

The exploit models are also translated to Prolog facts. For
example, the vulProperty fact in Listing 8 is the exploit
model for CVE-2020-8864. The precondition is the attacker
being on the same Wifi network as dLinkRouter; the effect
is that the attacker gets root privilege on this device.

vulExists (dLinkRouter, 'CVE-2020-8864").

> vulProperty (' CVE-2020-8864", wifiAdjacentLogically,

rootPrivilege) .

Listing 8: Prolog fact for an exploit model.

E. Attack Graph Generator

The Attack Graph Generator module takes the Prolog rule
and fact file as input and verifies whether the attack goals
(either provided by the administrator or automatically gener-
ated by 10TA) can be achieved. If a goal can be achieved, it
will generate the attack graph showing all the attack traces;
otherwise, the IoT system is protected from that attack goal.
When the administrator knows his security objectives, he can
set the attack goal by taking the logic NOT of the objectives.
For example, if the objective is to protect the camera from
being rooted, then the attack goal is the attacker’s gaining root
privilege on the camera. When there are no security objectives
specified, we enumerate all the potential privileges attackers
may get on all the devices as attack goals.

Figure 2 shows a small attack graph, where node 38 repre-
sents the attack goal — to unlock the doorlock. The meaning
of each node is annotated on the right of the figure. In total,
there are four attack traces (formally defined in Section IV-F)
in the attack graph, and two of them are highlighted in red
and blue. The attacker can reach node 7 (i.e., controlling Sonos
speaker) by exploiting Hue bridge or August Wifi bridge. And
from node 7, there are two ways to get to node 38: via the
Alexa skill [9] (node 41) or by starting the oven to trigger
smoke and using IoT app “IoTCOM B4” [6] (node 39).

Essentially, there are three kinds of nodes. The rectangle
nodes represent primitive facts about the system state or the

Algorithm 1: Shortest Attack Trace Algorithm
Input: (1) Attack graph G, (2) Attack goal node n
Output: Shortest attack trace to n on G

1 Algorithm shortest_trace (G,n)

2 res_node = TraceNode(n)
3 if n is leaf node then
4 | return (0, res_node)
/+ If current node is OR node, take the
minimum of the parent nodes */
5 if n is OR node then
6 Let [ be the list of parent nodes of n
7 min_depth = oo
8 for each node m in [ do
9 (cur_len, cur_pred) =
shortest_trace (G,m)
10 if min_depth > cur_len then
11 Set res_node.preds to m
12 Update min_depth
13 return (min_depth + 1,res_node)
/+ If current node is AND node, take the
maximum of the parent nodes */
14 if n is AND node then
15 Let [ be the list of parent nodes of n
16 min_depth = —oo
17 Set res_node.preds to |
18 for each node m in [ do
19 (cur_len, cur_pred) =
shortest_trace (G,m)
20 if min_depth < cur_len then
21 ‘ Update min_depth
22 return (min_depth + 1,res_node)

attacker state that are true before the exploit happens. The
ellipse nodes represent Prolog rules, such as exploits or apps’
execution. The diamond nodes stand for derivation, viz., new
states about the system or the attacker after launching an
exploit or executing an app. A derivation node can also be a
precondition of another rule node. The logic meaning of each
node is also annotated on the right of the figure. A detailed
explanation of attack graph structure can be found in [35].

F. Attack Graph Analyzer

Because the generated attack graph can be gigantic, con-
taining thousands of nodes, it is impractical to visualize the
graph. Therefore, we propose two metrics to extract critical
attack traces and quantify the impact of vulnerabilities.

Shortest Attack Trace. Among all of the attack traces
to a specific attack goal, the shortest attack trace takes the
minimum number of exploits and provides a lower bound
of the attack complexity to that goal node. For instance, the
shortest attack trace to the goal node (node 5) in Figure 2
is highlighted in red whose depth is 12. Below we formally
define the shortest attack trace and relevant concepts.

Definition. (Attack Trace) Given an attack graph G, an attack
trace to a derivation node n is a subgraph G’ satisfying the
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Fig. 3: Example attack graph and the corresponding attack
evidence for node 1 and node 4. Node 3, 7, and 9 are primitive
fact nodes describing different vulnerabilities represented as
vl, v2, and v3.

following conditions: (1) Any OR node of G’ has only one
incoming edge; (2) Any AND nodes of G’ has incoming edges
from all its parent nodes; (3) All the source nodes of G’ are
primitive fact nodes; and (4) The sink node of G’ is node n.

Definition. (Depth of an Attack Trace) The depth of an
attack trace is the longest path from any primitive fact node
to the sink node of the attack trace.

Definition. (Shortest Attack Trace) For a given attack graph
and a derivation node n, the shortest attack trace is the attack
trace to n with the smallest depth.

We cannot apply Dijkstra’s algorithm to the shortest attack
trace problem because our definition of shortest attack trace is
different from the shortest path in graph theory: (1) There can
be multiple source nodes; (2) The attack trace is a subgraph,
not a path. Hence, we design a recursive algorithm, i.e.,
Algorithm 1, to compute the shortest attack trace to a specified
attack goal node. The depth of a leaf node is defined as O.

Blast Radius. The blast radius measures each vulnerabil-
ity’s impacts on the IoT system and can be used for system
hardening. For example, if vulnerability A’s blast radius is a
superset of that of vulnerability B, we conclude that A’s impact
is bigger than B’s, and therefore we should fix A first.

Definition. (Blast Radius (BR)) Given an attack graph,
the blast radius of vulnerability v is the set of all of the
privileges (represented as derivation nodes) the attacker gets
after exploiting only v.

As there can be more than one trace to a certain node, and
a vulnerability can be used in multiple attacks, we must keep
track of vulnerabilities involved for each trace to a certain node
in the attack graph. We come up with the following concepts
to help us compute the blast radius of each vulnerability.

Definition. (Condensed Attack Trace (CAT)) Given an
attack graph G, the condensed attack trace of a node n is
the map from all of the vulnerabilities on G to 0 (when the
vulnerability is not used) or 1 (when used) along some attack
trace to n.

Definition. (Attack Evidence) The attack evidence of a node
n is the set of its condensed attack traces.

Algorithm 2: Attack Evidence Merge — OR
Input: Attack Evidence of two nodes: a, b
Output: Attack Evidence of the child node ¢, an OR
node
1 Algorithm merge_ae_OR (a, b)
2 Let merged_ae be a copy of a.ae
3 for cat in b.attack_evidence do
4 if cat not in a.attack_evidence then
5
6

‘ merged_ae.append(cat)
return merged_ae

Algorithm 3: Attack Evidence Merge — AND

Input: (1) Attack evidence of two nodes: a, b, (2)
Vuls: The set of all the CVEs on the attack

graph
Output: Attack evidence of the child node ¢, an AND
node
1 Algorithm merge_ae_AND (a, b, Vuls)
2 merged_ae = []
3 for catl in a.attack_evidence do
4 for cat2 in b.attack_evidence do
/* Initialize merged, suppose
[Vuls| =p */
5 merged = {v1:0,...,v,: 0}
6 for vul in Vuls do merged[vul] =
max(catl[vul], cat2[vul])
7 if merged not in merged_ae then
8 | 'merged_ae.append(merged)
9 return merged_ae

Figure 3 illustrates an example attack graph and the cor-
responding attack evidences for node 1 and node 4. Since
there are two attack traces to node 4 involving different
vulnerabilities, the attack evidence for node 4 contains two
elements, so is node 1. We compute the vulnerability evidence
for each node in a forward fashion from leaf nodes to the goal
nodes. Our merging algorithms are explained in Algorithm
2 and Algorithm 3 for OR and AND nodes, respectively.
After getting the vulnerability evidence for each node, we
can determine whether a derivation node should be included
in some vulnerability’s blast radius using Algorithm 4. The
complete blast radius algorithm is given in Algorithm 5.

Attack evidence provides a summary of vulnerabilities in-
volved along each attack trace to a certain node and is useful
for other important problems. For example, we can use it to
compute the minimal set of vulnerabilities to patch to thwart
an attack goal defined in [40]. We can count the occurrence
of each vulnerability in the attack evidence and iteratively
choose the vulnerabilities in descent order of occurrence; if the
current vulnerability is in the same condensed attack trace of
some chosen vulnerability, then we consider the next one. The
iteration stops when all of the condensed attack traces contain
at least one vulnerability chosen. For another application,
if the administrators have assigned numerical values as the
complexity of each exploit, they can calculate the complexity
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Algorithm 4: Determine Blast Radius

Algorithm 5: Blast Radius Algorithm

Input: (1) att_ev: attack evidences for all of the
attack graph nodes, (2) Vuls: the map from
node_tid to the node’s vulnerability evidence
for all of the nodes

Output: The BR of each vulnerability in the attack

graph

Algorithm determine_br (att_ev, Vuls)

/* initialize br

Let br be an empty map

for vul in Vuls do

| brlvul] =0
for n in att_ev do
if n.type is OR then
for cat in att_ev[n] do
if sum(cat.values()) == 1 then
Find the key s.t. cat[key] ==
brlkey] = brlkey]l U {n}

[

*/

e ® 9N S U oA W

—
=]

return br

—
-

of each attack trace by summing the exploit complexity for
each condensed attack trace.

V. IMPLEMENTATION

The IOTA modules are implemented in Python using 2475
LoC. Physical dependencies and exploit rules are implemented
in Prolog using 1179 LoC. The framework utilizes MySQL
Connector Python library ! for database operations and Mul-
VAL [36] for attack graph generation.

Translator. The Translator module converts IoT system
configuration and vulnerabilities to Prolog clauses. The initial
system configuration (specified in JSON format) is sent to
the Translator module to generate Prolog facts. The example
system configuration and the translated results are shown in
Listing 9 and 10, respectively.

{

"devices": [

{"name": "D-Link Router",
"type": "router",
"network": ["wifil"]

}!

{"name": "Smartthings Hub",
"type": “gateway",
"network": ["wifil", "zigbeel"]

}

1,
"networks": [

{"name": "wifil",
"type": "Wifi"

}!

{"name": "zigbeel",
"type": "Zigbee"

}

Listing 9: Example IoT system configuration JSON file.

The above JSON file lists the device and network settings of
an IoT system. The device and network names are specified by

Thttps://github.com/mysql/mysgl-connector-python

=

Input: Attack graph G
Output: Blast radius of each vulnerability in G
1 Algorithm blast_radius (G)

/% Generate the list of unique
vulnerabilities */
2 Vuls =[]
3 for node in G do
4 if node is a primitive fact node and node
describes a vulnerability v then
5 | Vuls.append(v)
/+ Initialize attack evidence for primitive
fact nodes, suppose H/uh\::p */
6 queue = []
7 for node in G do
8 node.cat = [{vy : 0,...,v, : 0}]
9 if node is a primitive fact node and node
describes a vulnerability v then
10 find the index ¢ such that Vuls[i] = v
11 node.cat = [{v1 : 0,...,v; : 1,...,vp : 0}]
12 for child in node.children do
13 if child not in queue then
14 | queue.enqueue(child)
/* Iteratively build attack evidence for all
the nodes */
15 while queue.length != 0 do
16 node = queue.dequeue()
17 cur_ae = node.parents[0].cat
18 for ¢ in 1 to length(node.parents) do
19 next_ae = node.parents[i].cat
20 if node.type is AND then
21 cur_ae = merge_ae_AND(cur_ae,
next_ae)
22 else
23 cur_ae = merge_ae_OR(cur_ae,
next_ae)
24 node.cat = cur_ae
25 Let att_ev be the attack evidences for all nodes
26 return determine_br (att_ev, Vuls)

the user, while device and network types use standard names
predefined.

router (dLinkRouter) .
inNetwork (dLinkRouter, wifil) .

gateway (smartthingsHub) .
inNetwork (smartthingsHub, wifil).
inNetwork (smartthingsHub, zigbeel) .

wifi(wifil) .
zigbee (zigbeel) .

Listing 10: Translated Prolog facts on system configuration.

IoT apps are first sent to the App Semantic Extractor
and then translated to Prolog rules. Listing 11 is an example
configuration of the SmartApp Hall Light explained in Section
IV-C. The Translator combines parsed app semantic tuple



(Listing 7) and app configuration (Listing 11) to generate
Prolog rules shown in Listing 12.

1

" apps nw 9 [
{"App name": "Light on when I come home",
4 "description": "Turn on the hall light if
there is motion and the door opens.",
"device map": {
6 "bulb": "Hue Wifi Bulb",
7 "contact sensor": "Ring Contact Sensor",
8 "motion sensor": "Mijia Motion Sensor"

Listing 11: Example IoT app configuration JSON file.

1 on (Bulb) :-—
2 bulb (Bulb),
reportsMotion (MotionSensor),
4 motionSensor (MotionSensor),
open (DoorContactSensor),
6 doorContactSensor (DoorContactSensor) .

Listing 12: Prolog rule for IoT app Hall Light: Welcome Home.

Attack Graph Generator. The Attack Graph Generator
concatenates exploit rules, indirect physical dependency rules,
and the translated IoT app rules into a Prolog rule file. It
also combines all the translated Prolog facts (including facts
about device and network configuration and direct physical
dependencies) and vulnerabilities (i.e., vulnerability existence
facts and exploit model facts) into a Prolog fact file. The attack
goals are also inserted into the Prolog fact file. After that, the
rule and fact file are then sent to MulVAL [36] library to
generate the Prolog reasoning log file and the attack graph.

VI. EVALUATION
A. Dataset

To generate attack graphs and conduct analysis, we need to
obtain IoT system configurations, including device instances
and IoT apps installed. Though thousands of IoT apps are
available, how users choose apps and device instances to install
is still unknown. To the best of our knowledge, currently, there
is no public dataset of IoT systems configured by different
users. Such information gap has long been a challenge to
IoT system security research [6], [32]. To evaluate 10TA,
we generate synthetic IoT systems based on real-world IoT
apps and device instances. We use a top-down approach to
generate [oT systems by choosing the IoT app bundles first,
as they determine the whole system’s functionality. Once we
have determined the IoT app bundle for the system, we create
system instances by selecting device instances. To emulate the
scenario where a user installs IoT devices but does not connect
them to any IoT apps, we add individual IoT devices in one-
third of the system instances created.

We consider SmartApps in the SmartThings Repository 2,
and IFTTT applets * for SmartThings platform and create a

Zhttps://github.com/SmartThingsCommunity/SmartThingsPublic
3https://ifttt.com/search/query/smart%20home?tab=applets
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Fig. 4: The number of CVEs scanned on IoT devices.

pool of 532 IoT apps. We build a list of 59 smart home
devices of 26 types, covering all of the device types listed
on SmartThings Products List 4. from motion sensors, outlets
to home appliances like TV, smart oven, etc. The devices are
from 16 different platforms, all of which, except Roku, HP, and
Aqara, are listed on Smartthing Partners’. In total, we create 37
IoT system instances. The first 18 instances are created based
on the 6 app bundles used in [6] (which contains malicious
apps), while the next 12 instances are generated based on 4 app
bundles chosen from our app pool (which are treated as benign
apps). The last 7 systems are of bigger size, with at most 50
devices, to further evaluate the scalability of our framework.

B. Results

Vulnerability Scanning. The vulnerability scanner queries
CVE database with the full name of a given IoT device
instance. The scanning result is shown in Figure 4, where
the devices with the largest number of CVEs are illustrated.
On average, there are 7.2 CVEs per device. Figure 4 shows
that device types with the largest number of detected vul-
nerabilities are routers, cameras, and gateways. The reason
could be that due to their pivotal position in IoT systems,
security researchers tend to analyze these types of devices.
We manually checked all CVE records and found out that
94.2% of them are relevant to the queried device. The typical
devices and their CVEs identified are listed in Table IV.

We further verified the scanned CVEs with 12 real-world
IoT devices and found out 5 of them still contain vulnera-
bilities: we obtained the exploit scripts for Philips Wifi Bulb,
D-Link DCS-5009L Camera, and Eques EIf Smart Plug and
successfully launched attacks against these devices. For Wemo
Insight Smart Plug and Radio Thermostat, we confirmed the
existence of the vulnerabilities by matching the firmware
version of devices with the one in the vulnerability reports.

Vulnerability Analysis. We ran our vulnerability analyzer
on 127 CVE records of smart home IoT devices collected
by the Vulnerability Scanner module and manually checked
the accuracy of the predicted exploit precondition and effects.

“https://www.smartthings.com/products-list
Shttps://www.smartthings.com/partners



TABLE IV: CVEs on typical IoT devices.

Device Instance
Hue Wifi Bulb
Hue Bridge

Nest Cam 1Q Indoor

D-Link DCS Camera
Ring Doorbell
Yale Lock
August Bridge

Typical CVE(s) Scanned
CVE-2019-18980
CVE-2020-6007

CVE-2019-5035, CVE-2019-5036,
CVE-2019-5037
CVE-2019-10999
CVE-2019-9483
CVE-2019-17627
CVE-2019-17098

CVE-2018-3904, CVE-2018-3917,

CVE-2018-3919, CVE-2018-3925

CVE-2019-15913, CVE-2019-15914
CVE-2020-6007

CVE-2019-3949, CVE-2019-3950
CVE-2018-11316
CVE-2019-15913

Smartthings Hub

Xiaomi Gateway
Hue Bridge
Arlo Basestation
Sonos Speaker
Xiaomi Motion Sensor

Accuracy: 80.56 %
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Fig. 5: (a) Confusion matrix for exploit precondition identifi-
cation. Label 1 to 5 denote preconditions listed in Table II. (b)
Confusion matrix for exploit effects. Label A to F represent
exploit effects listed in Table III.

The results are shown in Figure 5. Overall, our Vulnerability
Analyzer achieves 80% and 88% prediction accuracy for
precondition and effect, respectively. From Figure 5(a), we can
see that the class local and physical have the highest
accuracy, because the CVSS attack vectors for physical
type is almost 100% accurate. And for low-power protocols,
most of the time, the exploit range is local; hence, we can
decide the local type with the help of protocol type. The
precondition types with the lowest prediction accuracy are
Adjacent physically and Adjacent logically.
This is because some CVEs’ descriptions provide vague in-
formation for these two types.

According to Figure 5(b), the most accurate class is root.
This is because there are multiple effective indicators, such
as keywords like “root”, “arbitrary”, etc., the CVSS subscores
(confidentiality, integrity, and availability subscore all being
high), and the exploit mechanism like buffer overflow, or
integer overflow, etc. With these indicators combined, our pre-
diction is accurate. The high accuracy for both the precondition
and effect prediction shows our module is highly effective.

Attack Graph Generation and Analysis. Table V illus-
trates analysis results for 10 IoT system instances from the 37
instances we built. The first column is the ID of the system.
The first four rows are the analysis results for systems built
based on app bundles used in [6], and the rest of the rows
are results for systems built from our own app bundles. The

# CVEs column is the number of vulnerabilities found on
the given system. We enumerate all of the system resource
compromises as potential attack goals, and the # Goals column
denotes the number of attack goals shown on the attack graph,
which can be achieved by the attacker for a given system.

Table VI shows the distribution of the shortest depths of
the attack traces to different goal nodes for 10 attack graphs
in Table V. From the figure, the largest portion (43.9%) of
the attack traces have the shortest depths among 5 ~ 8. To
evaluate the effectiveness of the attack graphs, we manually
check 27 shortest attack traces whose depths are at least 9. As
a result, 62.8% of the attack traces revealed by IOTA are not
anticipated by the system designers.

Case study. System 37 in Table V consists of 50 dif-
ferent devices, including all of the device types in Figure
4, and Wifi printer, smart TV, humidifier and toaster, etc.
The vulnerability CVE-2018-11314 identified on the Roku
TV has the largest blast radius, whose cardinality is 32. By
exploiting CVE-2018-11314, the attacker on the internet
can control the smart TV and play arbitrary video. System 37
has multiple voice-related IoT apps installed, such as turning
on/off the light, turning on/off the humidifier, opening the
window, and locking/unlocking the door if the smart speaker
receives the corresponding voice command. As a result, after
compromising the TV, the attacker can control those end
devices by playing videos containing the voice commands.
The attacker can further compromise physical environment
features such as illuminance and humidity. The blast radius of
CVE-2018-11314 directly tells system administrators about
all these compromises caused by this vulnerability.

As another example, we describe the shortest attack trace
to the attack goal node “opening the window” in System 28,
whose depth is 18. In this example, a physically adjacent
attacker first exploits CVE-2019-17098 on the smart lock
gateway to sniff the home Wifi credentials. Then he exploits
CVE-2019-3949 on the camera basestation to control the
indoor camera. After that, he utilizes the rooted camera to
inject the voice command “preheat the oven” into the smart
home, which is sensed by the smart speaker. The speaker
triggers the IoT app to start the oven. The oven may trigger
smoke, which is sensed by a smoke detector. Finally, another
IoT app opens the window when smoke is detected.

C. Scalability

The time and memory complexity of our framework are
shown in Figure 6. From the figure we can see that, in reality,
it only takes around 1.2 seconds and 120MB of memory to
generate the attack graph and perform attack graph analysis
for an IoT system with 50 devices. The CPU time and
memory consumption grow almost linearly with the number of
devices. Our graph analysis algorithms will not asymptotically
increase time complexity on top of the attack graph generation
algorithm because the shortest attack trace algorithm only
traverses the graph once. Though the time complexity of the
blast radius algorithm is bounded by the sum of the number



TABLE V: Attack graph analysis results on IoT system instances.

System ID | # Devices # CVEs # Nodes # Edges # Goals Shortest depth* CVE (|BR|)Jr
1 4 3 12 15 1 6 CVE-2019-18980 (4)
4 6 4 37 39 5 2, 8) CVE-2020-6007 (5)
8 7 4 35 44 4 4, 10) CVE-2019-18980 (4)
i1 7 3 25 26 9 (6, 16) CVE-2018-3904 (9)
19 10 6 36 35 4 2, 8) CVE-2020-6007 (4)
26 12 7 117 173 19 4, 10) CVE-2020-6007 (5)
28 15 9 130 182 20 4, 18) CVE-2019-3949 (29)
32 23 11 131 186 23 2, 8) CVE-2018-3904 (12)
33 31 16 209 310 23 2, 10) CVE-2018-3904 (19)
37 50 28 338 577 43 2, 14) CVE-2018-11314 (32)

*: When there are multiple attack goals in attack graph, (x,y) means the min and max depth of the shortest attack traces to different goals.
fs |BR| is the cardinality of blast radius of the CVE. This column shows the CVE with the largest blast radius cardinality.

TABLE VI: Distribution of the shortest depths for different
attack goals. d means the depth of the shortest attack trace to
an attack goal node.

Shortest Trace Depth Trace Count Percentage
d<4 51 36.7%
5<d<8 61 43.9%
9<d<12 24 17.3%
13 <d <16 2 1.4%
d>17 1 0.7%
12 120
@ 1 gloﬂ
“E:os E‘ 80
2 g
0.6 E 60
04 40
0 10 20 30 40 50 0 10 20 30 40 50
# devices # devices
(@ (b)

Fig. 6: (a): CPU time vs IoT system size. (b): Memory usage
vs IoT system size.

of traces to each node, in practice, this number is at the scale
of O(n?) where n is the number of devices.

VII. LIMITATIONS AND FUTURE WORK

Our framework uses hard-coded Prolog rules to represent
direct and indirect physical dependencies between different
devices. Since these rules are universal in all IoT systems,
they only need to be written once and can then be copied to
the Prolog rule files of all the IoT systems. And our identified
six physical channels (i.e., temperature, humidity, illuminance,
voice, smoke, and water) are common in IoT systems [20].
Even if new physical quantities, such as magnetic field mag-
nitude, might be used by some special IoT systems, we can
create new Prolog rules for it and insert them into all IoT
systems involving such physical quantity. In the future, we
plan to use machine learning to automatically extract physical
channels affected/sensed by different IoT devices. We also
plan to develop a vulnerability scanner for low-power IoT
devices and integrate it into our IOTA framework.

VIII. RELATED WORK

IoT security. Existing research works on IoT security focus
on different parts of IoT systems. Ding et al. [20] proposed
an approach to discover potential physical interactions across
applications and generate interaction chains in an [oT system.
Costin et al. [16] conducted a large-scale static analysis of
IoT device firmware and discovered 38 previously unknown
vulnerabilities. Sugawara et al. [43] explored device sensor
vulnerability and presented a new class of audio injection
attacks on IoT devices’ microphones by converting the audio
signal to laser beams. [39], [45] explored wireless commu-
nication protocol vulnerabilities. Gu et al. [25] presented an
approach to sniff users’ privacy by analyzing the wireless
traffic. [12], [32] focused on uncovering application-level
vulnerabilities using model checking techniques. Though some
of the works claim to perform system-level analysis, they still
just consider a subset of the core IoT components identified by
our work, thus having limited capability in detecting system-
level vulnerabilities.

Attack graph. Automatic attack graph construction tech-
niques are critical for system security analysis of networked
systems. There has been extensive study on attack graphs for
conventional computer networks. Sheyner et al. [40] proposed
automated generation of attack graphs based on symbolic
model checking. But their framework suffers from the state
space explosion issue, making it difficult to model systems
with hundreds of hosts. [7], [35] utilized the monotonicity
assumption to design attack graphs that can be generated in
polynomial time. Besides, [4], [21] present methods to harden
computer networks using attack graphs. Attack graphs are also
applied to intrusion detection systems [11], [34].

Attack graph analyses. Ou et al. [36] introduce hypothet-
ical analysis which answers the question of “what if there
are some vulnerabilities in the system?”. Sheyner et al. [40]
propose two analyses, i.e., the minimal set of exploits to
prevent so that the attackers fail to achieve their goals and
the likelihood that the attacker will succeed. Ingols et al.
[28] present automatic recommendations to improve system
security by identifying a bottleneck device and patching vul-
nerabilities to prevent attackers from accessing the bottleneck.



Nguyen et al. [32] propose a method to attribute safety
violations to either bad apps or misconfigurations.

IX. CONCLUSION

In this work, we design and prototype a novel framework
I0TA for automatic, system-level IoT system security analysis.
IoTA takes system configuration and CVE database as input
and generates attack graphs showing all of the potential attack
traces. Our framework further analyzes the attack graph by
computing metrics, viz. the shortest attack trace and blast
radius, to help system administrators evaluate vulnerabilities’
impacts. Evaluation results show that IOTA is both effective
(62.8% of the attack traces revealed are beyond system de-
signers’ anticipation) and highly efficient (it takes less than
1.2 seconds to analyze IoT systems of 50 devices).
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