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!e authors take a look back at VAX/SVS, a high-assurance virtual machine monitor project, extracting 
its most pertinent lessons on access control, layering, minimization, and verification of assurance.

I n May 1990, “A VMM Security Kernel for the VAX 
Architecture” was lead paper and Best Paper Award 

winner at the IEEE Symposium on Security and Pri-
vacy.1 “!e Auditing Facility for a VMM Security Ker-
nel” was also presented that year,2 and the year a"er, 
two papers on covert channels, “An Analysis of Covert 
Timing Channels”3 and “Storage Channels in Disk Arm 
Optimization”4 were presented. !e team members 
said the project, VAX/SVS (Secure Virtual System), 
was a technical milestone in high-assurance operating 
systems. However, for business reasons, the project was 
o#cially cancelled as a product in February 1990. 

More than 20 years later, we discuss what we con-
sider the most important results from VAX/SVS, with 
an eye toward how it can inform high-assurance system 
creation today.1

Background
By 1981, several government-sponsored research proj-
ects had a$empted to build high-assurance operat-
ing systems.5–7 Some had been canceled while others 
continued to subsist on government research funding. 
None had been deployed operationally or made their 
way into a vendor’s commercial product line.

Paul Karger and Steve Lipner were associated with 
the US Air Force Multics Guardian Project,5 intended 
to modify Multics to incorporate a high-assurance secu-
rity kernel, and with SCOMP (Secure Communications 
Processor),7 intended to build a security kernel-based 
minicomputer communications front-end for the Proj-
ect Guardian version of Multics, as well as with early 
and successful security penetration test projects. !us, 
they were aware of both the need for high security and 
the challenges of achieving it, including achieving appli-
cation compatibility and maintaining performance. 
Interestingly, they felt that the market for high assur-
ance wasn’t a concern, taking an “if we build it, they 
will come” perspective. Working in Digital Equipment’s 
Corporate Research Group, Karger led an e%ort to pro-
totype the integration of mandatory security into VAX/
VMS. !is project was successful enough that Digital 
Equipment developed an appetite for additional work 
on security and hired Lipner to lead the e%ort.

A"er the 1981 IEEE Symposium on Security and 
Privacy, Lipner and Karger talked over dinner and 
brainstormed alternatives for achieving high assur-
ance. Lipner observed that if a project sought to make 
a high-assurance system compatible with an existing 
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operating system (for Digital Equipment, VAX/VMS), 
it would always be a release behind the standard prod-
uct because the product’s development wouldn’t stop 
to allow the new high-assurance version to achieve par-
ity. If the high-assurance version went its own way and 
ignored compatibility, it would have no applications 
and fail in the marketplace. !e solution to this problem 
was to build a high-assurance virtual machine moni-
tor (VMM) that would layer underneath the standard 
product; updates to the standard product would run on 
the high-assurance version at once.

!e notion of a high-assurance VMM wasn’t new. In 
the early 1970s, a team at the University of California, 
Los Angeles, under Gerry Popek prototyped a VMM 
security kernel for the PDP-11/45, and a team at System 
Development Corporation (SDC) under Clark Weiss-
man and Marvin Schae%er built a kernelized version 
of IBM’s VM/370. Neither of these systems became 
a commercial product; the UCLA project was never 
intended to do so, and the SDC project lacked commer-
cial vendor support. With optimism born of naivete (or 
naivete born of optimism), Lipner and Karger took their 
idea to the management of Digital Equality’s research 
group, and VAX/SVS was born.

As they considered building a high-assurance VMM, 
the Digital Equality team focused on the Anderson 
Report’s reference monitor requirements,8 which speci-
&ed that a system implementing the reference monitor 
requirements must

 ■ mediate all accesses by subjects to objects,
 ■ protect itself and its databases from a$ack, and
 ■ be small enough to be subject to analysis and tests to 

ensure that it’s correct.

A VMM appeared to have signi&cant advantages in 
simplicity and application compatibility. Karger and 
Lipner believed that a high-assurance system could 
mimic the well-speci&ed VAX hardware interface with 
far less mechanism than it could the VAX/VMS APIs.

By 1981, Dijkstra’s THE (Technische Hogeschool 
Eindhoven) Multiprogramming System and MITRE’s 
Venus system had applied layering to build a reliable 
system.9 SRI International’s PSOS (Provably Secure 
Operating System) project had proposed (but not 
implemented) a layered architecture that would sup-
port formal veri&cation of the end system,6 and the 
Multics Guardian Project had intended to build a lay-
ered system before its cancellation. Several projects 
under Roger Schell (the leader of the Guardian Project) 
at the Naval Postgraduate School (NPS) had success-
fully implemented layered security kernel prototypes.

Given their Guardian Project experience, Lipner and 
Karger believed that a layered implementation would 

help VAX/SVS achieve quality, reliability, and security. 
!ey also believed, referring back to the PSOS project, 
that layering would facilitate the resulting system’s for-
mal veri&cation. !us, VAX/SVS made an early com-
mitment to layering. !e initial design study proposed a 
layered design based heavily on the NPS work, and that 
design survived with relatively few changes until the 
system’s eventual cancellation.

VAX/SVS Lessons 
Building a high-assurance system means addressing 
how the system’s security controls—and the system as 
a whole—will achieve a particular level or likelihood of 
correctness or proper functioning. As a high-assurance 
system, the VAX/SVS project addressed architectural, 
design, implementation, and other process aspects. It 
was designed to meet the requirements for class A1, 
the highest level of assurance de&ned in the US Depart-
ment of Defense (DoD)’s Trusted Computer Systems 
Evaluation Criteria (TCSEC) or the “Orange Book.” 
In addition, we &nd that the Anderson Report’s refer-
ence monitor concept runs through all our VAX/SVS 
lessons; security controls are gathered in a single place, 
which is always invoked, made tamperproof, and small 
enough to validate. VAX/SVS required security pol-
icy, and targeting a multilevel operating system meant 
using Bell-LaPadula as its core policy.10 Other aspects 
of assurance the Orange Book covered included audit-
ing, design process, testing, documentation, and oper-
ational concerns. !e highest level of Orange Book 
assurance required formal methods to be applied to 
covert channel analysis, design, and test plans as well 
as trusted distribution (which the team fondly called 
“trusted trucks”). A comprehensive approach to assur-
ance includes the entity responsible for evaluating the 
assurance, which in the case of the DoD’s Orange Book, 
was an appropriately accredited third party.

In this article, we concentrate on four lessons from 
VAX/SVS development: access control, layering, mini-
mization, and veri&cation of assurance.

Verifiable and Tamperproof Access Control
A major consideration of many systems’ security con-
trols is access control. At the time of VAX/SVS, nearly 
all commercial operating systems provided only discre-
tionary access control, wherein an object’s access rights 
were determined by the object’s owner. It was well 
known that some security problems couldn’t be solved 

!eories of security come from theories of insecurity.
 —Rick Proto



28 IEEE Security & Privacy November/December 2012

LOST TREASURES

using discretionary access control. For example, a Tro-
jan Horse in application so"ware could leak an object to 
unauthorized users by changing the access rights to that 
object or writing a copy of the object to another object 
accessible to unauthorized users.

An alternative approach to access control, mandatory 
access control, lets a system administrator constrain an 
object’s access rights. A major goal for high-assurance 
systems design is to develop an approach by which lat-
tice security models (such as Bell-LaPadula10) could be 
veri&ably enforced, implementing the reference moni-
tor concept. By the late 1980s, no commercial operat-
ing system strictly met these requirements. Although 
several high-assurance system prototypes that targeted 
the reference monitor concept were built in the 1970s 
and 1980s, poor design choices led to large sizes or 
poor performance. For example, the KSOS (Kernelized 
Secure Operating System) kernel and KSOS Unix emu-
lator were each larger than contemporary Unix systems.

!e VAX/SVS project aimed to overcome these prior 
limitations by integrating la$ice security model enforce-
ment into a VMM security kernel. Unlike prior a$empts 
to build VMM security kernels, the VAX/SVS system 
was designed “from scratch,” which signi&cantly facili-
tated the reference monitor concept’s implementation.

Key to developing a simple, clean design for the 
VAX/SVS access control system was choosing a small 
number of subject and object types. VAX/SVS pro-
vided only two types of subjects: users and virtual 
machines (VMs). Users accessed the security kernel via 
a trusted path mechanism, and the security kernel per-
formed operations on users’ behalf given their particular 
access rights (as we discuss later). VAX/SVS provided 
only four types of objects: devices, volumes, virtualized 
resources, and security kernel &les. It exported dedi-
cated volumes and virtual disk volumes to VMs and had 
its own &les on which it controlled access, so only privi-
leged processes could use them.

Subjects and objects were both assigned access 
classes consisting of a secrecy class and an integrity 
class. !is approach combines the work of Bell and 
LaPadula for secrecy10 and Kenneth J. Biba11 for integ-
rity to prevent information )ows that might leak objects 
to unauthorized subjects or allow modi&cation by unau-
thorized subjects, respectively. !e requirements for A1 
evaluation were closely tied to the Bell-LaPadula model 
for mandatory access control: lower cleared users (or 
processes) were forbidden to gain access to higher 
classi&cation information, either by direct access or by 
exploiting covert channels.

!e decision to include the Biba integrity model in 
VAX/SVS was driven more by theoretical interest than 
real need. Lipner had published a paper on applying the 
Biba model to commercial data security problems, so 

it seemed that there might be real-world requirements. 
And the cost of incorporating mandatory integrity con-
trols in a system that implemented the Bell-LaPadula 
model was minimal because both models require similar 
la$ice access control mechanisms. In theory, common 
programs and read-only databases would be created at 
high integrity and thus protected from modi&cation, 
but in reality, VAX/SVS didn’t use the Biba model to 
protect its own code and databases, and we aren’t aware 
that any of the system’s “beta test” users applied the con-
trols that enforced the Biba model. 

In addition to access classes, subjects in VAX/SVS 
could also be given special privileges. Such privileges 
let system users (for instance, administrators) perform 
security-critical actions, such as managing the assign-
ment of access classes and allowing security policy 
modi&cation.

Using the Bell-LaPadula model, VAX/SVS provided 
single-level VMs. If users needed to process at a higher 
level while reading lower-level information, they would 
connect to a higher-level VM, which could a$ach a 
lower-level virtual disk as a read-only device.

!e VAX/SVS security kernel is the reference moni-
tor that enforces this la$ice policy model (extended 
with privileges), so a key question is how well did the 
VAX/SVS achieve the aims of the reference monitor 
concept? Complete mediation bene&ts from the small, 
&xed number of object types in the VMM security ker-
nel, making it much easier to ensure that all the relevant 
security-sensitive operations are mediated. A chal-
lenge that resulted from the choice of a small, simple 
VMM system was that the granularity of object access 
control and sharing was the VM and virtual disk drive. 
!e VAX/SVS development team felt it had plausible 
approaches to implementing a usable system despite 
the coarse object granularity.

!e VAX/SVS security kernel provided tamperproof 
execution by cleanly separating the security kernel and 
the subjects (users and VMs). All the trusted code in 
the VAX/SVS system ran in the security kernel, so the 
designers could focus on protecting the entry points. 
!e only trusted entities in the VAX/SVS system were 
devices and subjects with privileges. Devices were privi-
leged if they had the ability to perform direct memory 
access (DMA), which permi$ed them to write to any 
physical memory address. As a result, devices and their 
drivers were part of the trusted computing base, so the 
VAX/SVS team had to develop and maintain the device 
drivers. Subjects with privileges could modify the la$ice 
security policy and other con&gurations, which obvi-
ously had profound implications. To prevent vulner-
abilities, privileges with potential impact on a system’s 
security policy were only accessible via a trusted path, 
so the security kernel could authenticate that a real user 
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was behind the action. Two privileges were reserved for 
VMs, so these VMs needed to be privileged. !e VAX/
SVS designers were primarily concerned with ensur-
ing that mandatory security could be enforced. Because 
performing these two privileged operations outside the 
kernel didn’t violate that goal, the designers preferred 
limiting these abilities rather than creating a larger and 
more complex kernel.

In addition to mandatory access control and user 
privileges, VAX/SVS implemented discretionary access 
control (access control lists) on objects. !e discretion-
ary access control’s e%ectiveness was the only major 
area of disagreement between the development team 
and TCSEC evaluators. !e design was optimized 
around multiuser VMs—if each user required his or 
her own VM, the physical memory requirement for 
a commercially viable VAX/SVS system would have 
grown beyond what was available, and the team would 
have had to modify the design to demand page VMs’ 
memories. In the chosen design, a VM would operate 
at a speci&c mandatory access class (level and category 
set) with read-write access to objects at that access class 
and read access to objects at lower con&dentiality access 
classes (that is, lower security level and lesser category 
set). All users who needed to access objects at that VM’s 
access class would share the machine.

With multiuser VMs, VAX/SVS couldn’t determine 
with high assurance which individual user took a spe-
ci&c action for the purpose of enforcing discretionary 
access control or collecting an audit trail. !e VAX/SVS 
team argued that, given the reality of Trojan horses, the 
security gain wasn’t worth the impact on the system. 
!e evaluators argued that the TCSEC required “A1 
discretionary access controls.” In the end, the team 
documented a way to con&gure a VAX/SVS system for 
single-user VMs, with the expectation that user orga-
nizations would con&gure their VAX/SVS systems for 
more e#cient and adequately secure multiuser VMs. 
We note that the tradition of documenting an evaluated 
con&guration with speci&c security a$ributes, knowing 
full well it will be largely impractical, continues today.

Layered Design
!e VAX/SVS layered design approach proved to be key 
to a number of areas. !e Orange Book called for sig-
ni&cant use of layering, abstraction, and data hiding. A 
levels-of-abstraction approach in security kernel design 
was recommended as a means to reduce complexity 
and an aid in precise and understandable speci&cations. 
Reduced complexity was a core principle of VAX/SVS; 
the team lived by the “keep it simple, stupid” mo$o. !e 
team followed other classic layered design principles, 
including a separation of concerns between the layers, 
low coupling between layers and high cohesion within them, and limited exposure to layer internals.

Figure 1. VAX/SVS layers (from “A VMM Security Kernel for 
the VAX Architecture”1). Each layer implemented a well-
defined abstraction in the system. Higher layers could call 
on the services of lower layers whereas lower layers were 
forbidden from calling on higher layers.
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Each level of abstraction was a layer that could call 
any of the lower layers; lower layers were never allowed 
to call higher layers. !e total number of (potential) 
interactions in the system was conceptually bounded 
and restricted; because each layer de&ned its external 
API, a layer could call a lower layer only through one 
of the de&ned entry points. For performance reasons, 
the team didn’t enforce making calls through interven-
ing layers that merely passed the call on to a yet lower 
layer, though we did brie)y consider it. Today, discus-
sions of layered design tend to introduce additional 
complexity by allowing a rich tree of objects. VAX/SVS 
was an almost pure sequence of single layers (see Figure 
1). !e absolute simplicity of the system’s layering gave 
the VAX/SVS design some of its power as a structure 
for both call )ow and overall system organization. A lay-
er’s cohesion was based on functionality that naturally 
needed a great deal of shared code or concepts.

Another bene&t of layering is the ability to more 
easily test a layer in isolation, because the entry points 
are well de&ned and, at most, a test environment need 
only stub out all lower layer entry points. Layering 
dampens the overall e%ect of a system’s code changes 
and enhances the interfaces’ stability. !e grouping and 
structure that aids understandability could therefore 
help maintainability (a potential bene&t the team didn’t 
get a chance to see). Reuse—another potential bene&t 
of layering—wasn’t a concern; the layers were designed 
for the single system.

Testing emphasized layer entry points—what they 
would do and what assumptions they made. !e lay-
ered design de&ned the API’s assumptions and explic-
itly checked those assumptions “&rst thing” if they 
were security relevant. !is meant each layer’s interface 
design required an understanding of both functional-
ity and security requirements. !e defensive posture at 
each layer created classic “defense in depth” at speci&c 
points in the architecture and call paths. !e develop-
ers’ test environment was such that a layering violation 

would cause a basic smoke test for a new build of the 
system to fail. !e team agonized over ways to make a 
rigorously layered system perform well, but they stuck 
to the layering paradigm.

!e full system structure and rigor imposed by the 
choice of a layered design and its subsequent bene&ts 
can be contrasted with the Agile approach to so"ware 
development, which is currently ge$ing a good deal of 
a$ention.12 Although Agile’s emphasis on test-driven 
design is consonant with the testability of each layer’s 
boundaries, there seems to be no aspect of Agile that 
addresses overall system structure and simplicity. VAX/
SVS’s layered design let the team share a common 
understanding of the code base’s structure, function-
ality, and goals, providing a foundation for the discus-
sions on code placement and call paths.

Conway’s law states, “Organizations which design 
systems … are constrained to produce designs which are 
copies of the communication structures of these organi-
zations.”13 !is indicates that a so"ware system’s interface 
structure will re)ect the social structure of the organiza-
tion that produced it. In VAX/SVS, each layer had an 
owner, and design conversations o"en involved layer 
owners. Team members were partitioned throughout the 
layers and would move between them as the functional-
ity built up over time. As Conway’s law suggests, the sys-
tem layers re)ected the team members’ groups. Potential 
stakeholders and reviewers for design and code changes 
were at the layers above the one changing (or team mem-
bers at the changing layer if the change didn’t a%ect the 
interface)—another way our communication structure 
re)ected our system design. !is seemed unremarkable 
at the time. Conversely, if Conway’s law is true, the com-
munication structure of a system produced today through 
the Agile methodology is likely to be diverse and unstruc-
tured, and thus more complex and harder to understand, 
reason about, and predict.

!e counterarguments to layered design include lack 
of engineering )exibility, performance impact, the di#-
cult requirement of de&ning the layers up front, time to 
market, and the ability to make rapid changes. In their 
limited experience of a version 0 project, the VAX/SVS 
team didn’t experience any severe constraints on engi-
neering )exibility. In this article, we touch on perfor-
mance and time to market in general.

Minimization
Of the three reference monitor requirements, the 
requirement that the system be small enough to be 
subject to analysis and tests to ensure that it’s correct is 
probably the most challenging for secure system devel-
opers. VAX/VMS purported to mediate every access 
by a subject (process or user) to an object (&le, device, 
or interprocess communication [IPC] channel) but its 
size and complexity were great enough that the pres-
ence of exploitable vulnerabilities was a certainty. !e 
choice of a VMM architecture was intended to support 
minimization of the trusted code base.

 [A] mathematical model of the growing embryo will be described. !is 
model will be a simplification and an idealization, and consequently a 
falsification. It is to be hoped that the features retained for discussion are 
those of greatest importance in the present state of knowledge.
 —Alan Turing
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However, choosing to build a VMM was only the 
beginning of the quest for minimization. From the 
development project’s beginning, the team intended to 
minimize the amount of trusted mechanism in the sys-
tem. !ree examples—memory management, I/O, and 
user interface—illustrate this point. !e &rst two date 
back to the 1981 design study that set the overall direc-
tion of the project, and the third was a result of the quest 
to provide the system with a degree of usability.

Memory management. Karger, Lipner, and Andrew 
Mason were three key participants in VAX/SVS’s ini-
tial design study, and all were veterans of the Multics 
Guardian Project. Multics required both segmentation 
and demand paging to provide each process with a rich 
application environment while operating on hardware 
with limited physical memory. !e planned Guard-
ian Project architecture included kernel support for 
demand paging with fully trusted kernel processes (vir-
tual processors) moving page frames between disk and 
main memory. !e resulting system would have been 
relatively complex.

!e Guardian Project veterans’ initial memory man-
agement design for VAX/SVS included support for 
demand paging of VMs’ physical memory spaces, simi-
lar to IBM’s VM/370. Peter Conklin, one of the original 
VAX/VMS architects, participated as a guest in the ini-
tial design study. When he saw the plan to include pag-
ing in the VAX/SVS kernel, he pointed out that VAX/
VMS (which would be running in each VM) imple-
mented paging and that having two independent pag-
ing systems was likely to result in poor performance. A 
VAX/SVS design that did away with paging would be 
much simpler. He also observed that providing com-
munication between VAX/VMS and VAX/SVS to 
optimize performance would result in an even more 
complicated kernel design. Finally, he pointed out that 
physical memories were ge$ing larger as hardware costs 
dropped and that it would eventually be feasible to just 
give each VM a static allocation of physical memory.

!e VAX/SVS design adopted Conklin’s recom-
mendation, which was referred to internally as “mem-
ory is cheap.” As a result, the VM physical memory 
management and virtual memory management layers 
were signi&cantly simpli&ed. As Conklin predicted, 
physical memory sizes continued to increase and prices 
to decrease during the life of the project, and the project 
team never regre$ed the decision to abandon demand 
paging in the kernel.

Input/Output. From the earliest days of VMMs (IBM’s 
CP-67), I/O management has presented challenging 
problems. I/O is a “sensitive” function on any VMM 
system, so the VMM must be able to intercept and 

interpret each I/O operation. Whereas IBM mainframes 
implement discrete privileged I/O instructions (that 
can be made to trap to the VMM), Digital Equipment 
computers’ (PDP-11s and VAXs) I/O is controlled by 
using ordinary (unprivileged) instructions to read and 
write speci&c physical addresses that correspond to I/O 
control registers rather than memory. !us, the VMM 
developer for a Digital Equipment computer needed 
to intercept every read or write to an I/O register loca-
tion and interpret the intended operation. !e resulting 
code is both slow and complex.

VAX/SVS’s initial design anticipated virtualizing 
I/O operations that VAX/VMS would direct toward 
standard VAX devices. Karger sketched an adapter that 
would map VMs’ I/O operations and minimize so"-
ware intervention. When Conklin saw that design and 
considered the problem of I/O from a VM, his reaction 
was, “Don’t do that—just create a special call from the 
virtual machine to the VMM that will request an I/O 
operation and provide the necessary parameters. !e 
VMM can interpret the request in one operation and it 
will be much more e#cient.” In today’s jargon of VMs, 
this would be referred to as “enlightening” the VM’s 
operating system to rely explicitly on the VMM for I/O.

Because VAX/VMS was designed to be highly adapt-
able to new kinds of I/O devices, Conklin’s suggestion 
was both feasible and easy to implement. !e resulting 
I/O architecture was vastly simpler and performed bet-
ter than an alternative that would have required inter-
pretation of individual I/O register operations. When 
Ultrix (Digital Equipment’s version of Unix) was even-
tually ported to VAX/SVS, the wisdom of this design 
choice was demonstrated again—the entire port 
required only a few weeks’ e%ort by a small subset of the 
Ultrix development team. 

User interface. As the VAX/SVS team made the transi-
tion from demonstrating that it was possible for VAX/
VMS to run in a prototype VMM to building a usable 
A1 system, they realized that a large number of system 
administration operations would be required and that 
the path from administrator to system state would need 
to be trusted. It seemed likely that the resulting com-
mand parsers would be large and complex: command 
parsing might require as much code as the rest of the 
security kernel, even with a relatively primitive user 
interface (the technology of the day was command line 
rather than GUI).

A"er some discussion, the team came up with the 
idea of parsing administrator commands in an untrusted 
application running on a VM, and having that applica-
tion pass the parsed commands to the kernel in a simple 
and standardized format. !e kernel would then display 
the command to the administrator for con&rmation, 
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and the only administrator command the kernel would 
have to parse would be a “con&rm” or “cancel.” A secure 
server a$ention key and associated protocol allowed the 
administrator to be certain that he or she was interact-
ing with the kernel rather than an untrusted program 
spoo&ng the kernel.

!e VAX/SVS team was aware that the system 
needed to be usable, so the actual user interface 
included kernel parsing (without need for con&rma-
tion) of commands that ordinary users would use 
frequently, such as “connect me to another VM” and 
“logout.” !e system presented ordinary users with a 
very natural interface—as though they were using a 
terminal concentrator and switching from a machine at 
one security level to one at another.

Verification of Assurance
Only one or two systems completed evaluation at 
TCSEC class A1, providing few success stories to emu-
late. VAX/SVS’s design was extremely simple, even for 
its day. !e team was inculcated with the importance of 
adhering to the Bell-LaPadula model and a layered sys-
tem architecture, both seen as key to veri&cation. Lay-
ering played an important part in the required system 
speci&cations. !e formal model required a descriptive 
top-level speci&cation (DTLS), a complete natural-lan-
guage description of the system. !e per-layer design 
(and API) descriptions formed a substantial part of the 
required DTLS.

Originally, the VAX/SVS team anticipated that the 
layered design would support formal veri&cation. !e 
assumption, based on the concepts articulated in the 
PSOS research,6 was that each layer would be veri&ed 
to correctly implement a speci&cation using code in its 
own layer that invoked services provided by lower lay-
ers. Veri&cation of each layer would lead to veri&cation 
of the entire system. Unfortunately, veri&cation tech-
nology of the 1980s didn’t follow up on the promises 
of the 1970s, and no formal veri&cation tool available to 
the VAX/SVS team was capable of taking advantage of 
the system’s layered structure. As a result, formal veri&-
cation was con&ned to analysis of the system’s external 
interfaces against the Bell-LaPadula model require-
ments. !is level of formal veri&cation was typical for 
high-assurance systems of the era.

!e VAX/SVS security kernel was designed and 
implemented with the goal of comprehensive veri&-
cation. Extensive testing was deployed for regression 
and various use cases. !e system was formally speci-
&ed as part of the A1 assurance process using InaJo. !e 
VAX/SVS security kernel implementation consisted 
of approximately 48,000 source lines of code (SLOC), 
which were wri$en in PL/1, Pascal, and Macro-32 
assembly language. Because there were more than 

11,000 source lines of assembly code, evaluating assur-
ance was a signi&cant undertaking. !e recent formal 
assurance of the seL4 system shows that the expense 
per line of code is still high for formal assurance (9,300 
SLOC at US$10,000 per LOC).14 !e seL4 system is 
a microkernel rather than a VMM, so it provides less 
functionality.

!e formal assurance process was further compli-
cated by the need to evaluate new code when a new 
device was added to the system. !e availability of 
device support has been a critical factor for the adop-
tion of operating systems over the years, so this would 
have been a major challenge for maintaining assurance 
of the VAX/SVS security kernel. Now, the introduction 
of IOMMU (input/output memory management unit) 
hardware to commercial processors means that device 
drivers and their inherent challenges (for example, con-
trolling DMA) can be moved to the user space (even to 
unprivileged VMs). However, if a device is needed by 
trusted code, it will still need to be in the trusted com-
puting base.

!e TCSEC required that an A1 system limit covert 
channels’ bandwidth, so the team undertook a signi&-
cant e%ort to eliminate all covert storage channels and 
mitigate covert timing channels in VAX/SVS.3 !e 
VAX/SVS interface’s simplicity and the team’s strict 
a$ention to adhering to the Bell-LaPadula model 
resulted in a system that was relatively free from classic 
storage channels. (Many of VAX/SVS’s resource allo-
cation mechanisms were either static or implemented 
by human administrators—a set of choices that aided 
both simplicity and freedom from storage channels.) 
Whereas storage channels were only a limited prob-
lem, timing channels proved to be a source of surprises, 
frustration, performance challenges, and project delays. 
!e formal veri&cation work, led by consultant Rich-
ard Kemmerer of the University of California at Santa 
Barbara, applied the Shared Resource Matrix method 
of identifying covert channels, giving the team a rough 
sense of what channels might be present. !e team 
collaborated with Robert Morris (of the US National 
Security Agency) to identify an approach to mitigat-
ing timing channels—called “fuzzing clocks” or “fuzzy 
time.” Implementing this approach required signi&cant 
changes late in the development cycle, which degraded 
the system’s (already marginal) performance. What’s 
worse is that a year a"er the team published the “fuzzy 
time” approach, a researcher published an approach to 
defeating it.15

Although the VAX/SVS team met the formal veri&-
cation requirements for TCSEC class A1, they believed 
that the actual assurance came from adherence to the 
layered design principle, thorough documentation, and 
careful coding. Designs were documented before they 



www.computer.org/security 33

were implemented (unlike the practice at lower levels of 
the TCSEC or Common Criteria). !e team reviewed 
all the security kernel design decisions and code at all 
stages of the project and before it was checked in. !e 
coding languages for the system precluded bu%er over-
runs, and the style guides to which the team adhered 
constrained implementation to conservative and safe 
practices.

Cancellation
!e VAX/SVS development project was intended to 
produce a commercially viable system that could com-
plete evaluation at TCSEC class A1 and be sold to 
customers in su#cient quantity to recover its develop-
ment costs. By 1989, the system was on track to com-
plete evaluation and su#ciently polished to enter a &eld 
(beta) test with customers. !e &eld test was reasonably 
successful: customers were able to use the system, and 
there was even a rumor that one of the test customers 
had deployed VAX/SVS in a “multilevel secure” opera-
tional con&guration.

Despite this level of accomplishment, VAX/SVS 
was canceled because the business case for the system 
wasn’t su#cient.16 Even though a great deal of money 
was spent bringing the system to the point at which cus-
tomers could use it, sales projections weren’t encourag-
ing. Some customers were willing to buy copies of the 
system, but neither the number of customers nor the 
number of copies was su#cient to make a pro&table 
business case. At the time, US export restrictions on 
high-assurance products received much of the blame for 
cancellation, but the reality was that US and other cus-
tomers who were eligible to buy VAX/SVS weren’t all 
that interested. Had a decision been made to release the 
system commercially, that decision would have implied 
a commitment to maintain and enhance it over period 
of years. With inadequate sales, the system would’ve 
continuously lost money.

To understand why customers didn’t want to buy 
VAX/SVS, we must consider the time in which the 
system would have come to market. In the late 1980s, 
customers were beginning to demand personal comput-
ers or workstations, networking, and GUIs. VAX/SVS 
was designed as an isolated time-sharing system that 
supported users at alphanumeric terminals. A “hack” 
allowed networking of individual virtual machines 
through dedicated asynchronous terminal lines, but the 
system itself wasn’t networked.

Modifying VAX/SVS to support workstations, net-
works, or GUIs would’ve been a signi&cant develop-
ment task. Although workstation support would have 
been the simplest task, it would have required develop-
ing and manufacturing a VAX microprocessor with the 
SVS-speci&c virtualization features. And workstation 

support wouldn’t have been viable without adding 
GUI support. !e experience of building and evaluat-
ing VAX/SVS made it clear that adding networking and 

GUI support would have required signi&cant research 
projects—the team would have had to develop con-
cepts, implement them, and “sell” them to the evalua-
tors. It seemed probable that the process would have 
taken so long that by the time the features could be 
shipped, user expectations would have moved beyond 
what VAX/SVS could provide. Of course, this was the 
very trap that the VMM approach was intended to 
avoid, but in the end, it seemed unavoidable. We leave it 
to the reader to judge whether this trap is a fundamental 
)aw of high-assurance systems.

Should We Build Virtualization Kernels 
Today?
VAX/SVS served two roles: host security kernel and vir-
tualization manager. One question we should consider 
in hindsight is whether requiring both roles in a security 
kernel is practical. !e VAX/SVS design resulted in a 
code base of less than 50 KLOC. Modern, fully func-
tional virtualization kernels are much larger still. For 
example, the Xen hypervisor had approximately 300 
KLOC in 2008. Given the greater size and functional-
ity of modern virtualization kernels and the current cost 
and complexity of formal assurance, it seems unlikely 
that a fully assured security kernel with fully functional 
virtualization could be built today.

Recent hardware advances in security and virtualiza-
tion might signi&cantly aid the task of separating kernel 
and virtualization functionality. By adding virtualiza-
tion support, hardware architects ensure that all sensi-
tive instructions are now privileged, removing the need 
for I/O emulation. Finally, and perhaps most impor-
tant, IOMMUs enable DMA devices to be securely 
removed from the trusted computing base. With the 
broadly available support for trusted computing mecha-
nisms, it’s now possible to measure each so"ware layer 
independently, le$ing remote parties verify the system 
boot process consisting of multiple layers.

!e dependency graph, which Dave Parnas called the “Uses” hierarchy, be-
comes a powerful tool for evaluating the robustness of a system. Module 
A depends on module B if the correctness of A requires that B performs 
correctly. In verification terms, B becomes a lemma for the theorem that A 
performs correctly. A dependency graph with circularities reduces system 
robustness, just as circularities in reasoning produce politicians. 
 —Earl Boebert
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So, do such advances make it practical to separate 
the kernel and virtualization functionalities into two 
distinct so"ware layers? In the 1990s, second-gener-
ation microkernel designs, such as L4 (predecessor of 
seL4) and Exokernel, focused explicitly on minimizing 
kernel code. In such kernels, physical resources were 
partitioned among isolated domains that could com-
municate through fast IPC primitives. Researchers 
found such systems e%ective for constructing optimized 
mechanisms for hardware use, particularly for network 
devices. On the other hand, deploying general-purpose 
systems on such kernels introduced additional perfor-
mance overhead and development complexity that 
didn’t seem to warrant the bene&ts, particularly because 
these kernels were still prone to DMA a$acks. How-
ever, hosted operating environments, such as L4Linux, 
showed that the performance overhead of systems with 
a single physical resource manager was modest (less 
than 10 percent in 1997). Further hardware advances 
have ameliorated the e%ects of these performance 
costs, reduced vulnerability to DMA a$acks, and made 
it easier to layer so"ware. As a result, it’s still an open 
question as to when security kernel and virtualization 
functionality should be combined into a single VMM 
security kernel.

How Do We Obtain Systemwide Access 
Control?
To implement the reference monitor concept in the 
security kernel, VAX/SVS provides a rich access con-
trol model enforced by a reference validation mecha-
nism. Modern systems aren’t designed with a rich access 
control model at inception, but instead access control 
is incrementally added to systems as they mature (and 
adversaries show developers where authorization is 
necessary). Is it possible to add a reference validation 
mechanism later in the system development life cycle 
and still achieve the reference monitor concept? !e 
emergence of program analysis for security might help 
answer this question.

Once a proper reference validation mechanism is in 
place, a challenge is managing privilege delegation from 
the security kernel up to VMs. In the VAX/SVS design, 
the team tried to limit the trust in user-space code, but 
modern systems o"en have a privileged VM, which is 
tantamount to a complete operating environment run-
ning with privilege outside the VMM. Although we have 

mechanisms to enforce security decisions in privileged 
VMs, we don’t know which so"ware is capable and wor-
thy of being trusted with those decisions. Furthermore, 
this so"ware is far too complex for formal assurance. 
Finally, although reference validation mechanisms are 
being added to a variety of so"ware in VMMs, operat-
ing systems, middleware, and applications, these indi-
vidual access control mechanisms aren’t yet integrated 
into a systemwide mechanism for managing privilege.

How Do We Assure System Security?
Fundamental to the VAX/SVS development process 
was the task of formal assurance. Unfortunately, this 
task has not evolved much since the early 1990s. A great 
deal of manual e%ort is necessary to convert a system 
into a format suitable for assurance. In practice, systems 
can’t be formally assured unless they’re built with that 
assurance from the outset. !e result is a slow, laborious 
process whose results might be obsolete on delivery.

In developing secure systems, not all so"ware is 
equal, and that might make a di%erence. Gernot Heiser 
of the seL4 project conjectured that much of the user-
space so"ware would be e#cient if it was developed in 
the language used for formal analysis in the seL4 evalu-
ation (Haskell), then compiled into C.14 However, the 
performance-critical so"ware, such as the microker-
nel, would have to be handcra"ed code. !e implica-
tion is that labor-intensive formal assurance might only 
be necessary to a small subset of performance-critical 
code; the remaining code could be developed using 
compilation tools that would check for security proper-
ties. !is optimistic view misses at least two key limita-
tions. First, someone still has to articulate the security 
properties that must be achieved for the so"ware and 
the data that it processes. Second, people tend to prefer 
programming in languages that are less constrained, but 
this leads to more security problems. Researchers have 
long advocated using more structured programming 
languages to improve code security, or at least enable 
automated veri&cation, without success. Some recent 
research focuses on making low-level languages ame-
nable to various security analyses, such as C Interme-
diate Language (CIL) and Low-Level Virtual Machine 
(LLVM). Ideally, such techniques will further extend 
to improve our ability to limit the amount of code that 
requires manual formal veri&cation.

W e &nd several lessons from VAX/SVS are worth 
emphasizing and sharing with the broader 

community today. !e reference monitor concept from 
the Anderson Report provides useful architectural prin-
ciples for high-assurance systems. Veri&able and tamper-
proof access control was and remains challenging, in part 

Perfection is finally attained, not when there is no longer anything to add, 
but when there is no longer anything to be taken away.
 —Saint Exupery
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because of the diversity of operational requirements. 
Layering provides many critical bene&ts that seem to 
be otherwise lost, such as reducing the number of entry 
points to defend and test. Minimization requires whole 
system thinking as well as accurate powers of prognosti-
cation. Veri&cation of assurance remains a complex and 
multifaceted challenge. And business realities interact 
with all of these considerations: if it takes so long to build 
a highly assured system that it is no longer competitive 
with less assured alternatives, customers will refuse to 
buy or use it. We believe there are many useful lessons 
from the VAX/SVS work, and we hope and expect they 
will inform future successful e%orts. 
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