
26 November/December 2012 Copublished by the IEEE Computer and Reliability Societies 1540-7993/12/$31.00 © 2012 IEEE

LOST TREASURES

Steve Lipner | Microsoft
Trent Jaeger | Pennsylvania State University
Mary Ellen Zurko | Cisco Systems

!e authors take a look back at VAX/SVS, a high-assurance virtual machine monitor project, extracting
its most pertinent lessons on access control, layering, minimization, and verification of assurance.

I n May 1990, “A VMM Security Kernel for the VAX
Architecture” was lead paper and Best Paper Award

winner at the IEEE Symposium on Security and Pri-
vacy.1 “!e Auditing Facility for a VMM Security Ker-
nel” was also presented that year,2 and the year a"er,
two papers on covert channels, “An Analysis of Covert
Timing Channels”3 and “Storage Channels in Disk Arm
Optimization”4 were presented. !e team members
said the project, VAX/SVS (Secure Virtual System),
was a technical milestone in high-assurance operating
systems. However, for business reasons, the project was
o#cially cancelled as a product in February 1990.

More than 20 years later, we discuss what we con-
sider the most important results from VAX/SVS, with
an eye toward how it can inform high-assurance system
creation today.1

Background
By 1981, several government-sponsored research proj-
ects had a$empted to build high-assurance operat-
ing systems.5–7 Some had been canceled while others
continued to subsist on government research funding.
None had been deployed operationally or made their
way into a vendor’s commercial product line.

Paul Karger and Steve Lipner were associated with
the US Air Force Multics Guardian Project,5 intended
to modify Multics to incorporate a high-assurance secu-
rity kernel, and with SCOMP (Secure Communications
Processor),7 intended to build a security kernel-based
minicomputer communications front-end for the Proj-
ect Guardian version of Multics, as well as with early
and successful security penetration test projects. !us,
they were aware of both the need for high security and
the challenges of achieving it, including achieving appli-
cation compatibility and maintaining performance.
Interestingly, they felt that the market for high assur-
ance wasn’t a concern, taking an “if we build it, they
will come” perspective. Working in Digital Equipment’s
Corporate Research Group, Karger led an e%ort to pro-
totype the integration of mandatory security into VAX/
VMS. !is project was successful enough that Digital
Equipment developed an appetite for additional work
on security and hired Lipner to lead the e%ort.

A"er the 1981 IEEE Symposium on Security and
Privacy, Lipner and Karger talked over dinner and
brainstormed alternatives for achieving high assur-
ance. Lipner observed that if a project sought to make
a high-assurance system compatible with an existing

Lessons from VAX/SVS for High-Assurance
VM Systems

www.computer.org/security 27

operating system (for Digital Equipment, VAX/VMS),
it would always be a release behind the standard prod-
uct because the product’s development wouldn’t stop
to allow the new high-assurance version to achieve par-
ity. If the high-assurance version went its own way and
ignored compatibility, it would have no applications
and fail in the marketplace. !e solution to this problem
was to build a high-assurance virtual machine moni-
tor (VMM) that would layer underneath the standard
product; updates to the standard product would run on
the high-assurance version at once.

!e notion of a high-assurance VMM wasn’t new. In
the early 1970s, a team at the University of California,
Los Angeles, under Gerry Popek prototyped a VMM
security kernel for the PDP-11/45, and a team at System
Development Corporation (SDC) under Clark Weiss-
man and Marvin Schae%er built a kernelized version
of IBM’s VM/370. Neither of these systems became
a commercial product; the UCLA project was never
intended to do so, and the SDC project lacked commer-
cial vendor support. With optimism born of naivete (or
naivete born of optimism), Lipner and Karger took their
idea to the management of Digital Equality’s research
group, and VAX/SVS was born.

As they considered building a high-assurance VMM,
the Digital Equality team focused on the Anderson
Report’s reference monitor requirements,8 which speci-
&ed that a system implementing the reference monitor
requirements must

 ■ mediate all accesses by subjects to objects,
 ■ protect itself and its databases from a$ack, and
 ■ be small enough to be subject to analysis and tests to

ensure that it’s correct.

A VMM appeared to have signi&cant advantages in
simplicity and application compatibility. Karger and
Lipner believed that a high-assurance system could
mimic the well-speci&ed VAX hardware interface with
far less mechanism than it could the VAX/VMS APIs.

By 1981, Dijkstra’s THE (Technische Hogeschool
Eindhoven) Multiprogramming System and MITRE’s
Venus system had applied layering to build a reliable
system.9 SRI International’s PSOS (Provably Secure
Operating System) project had proposed (but not
implemented) a layered architecture that would sup-
port formal veri&cation of the end system,6 and the
Multics Guardian Project had intended to build a lay-
ered system before its cancellation. Several projects
under Roger Schell (the leader of the Guardian Project)
at the Naval Postgraduate School (NPS) had success-
fully implemented layered security kernel prototypes.

Given their Guardian Project experience, Lipner and
Karger believed that a layered implementation would

help VAX/SVS achieve quality, reliability, and security.
!ey also believed, referring back to the PSOS project,
that layering would facilitate the resulting system’s for-
mal veri&cation. !us, VAX/SVS made an early com-
mitment to layering. !e initial design study proposed a
layered design based heavily on the NPS work, and that
design survived with relatively few changes until the
system’s eventual cancellation.

VAX/SVS Lessons
Building a high-assurance system means addressing
how the system’s security controls—and the system as
a whole—will achieve a particular level or likelihood of
correctness or proper functioning. As a high-assurance
system, the VAX/SVS project addressed architectural,
design, implementation, and other process aspects. It
was designed to meet the requirements for class A1,
the highest level of assurance de&ned in the US Depart-
ment of Defense (DoD)’s Trusted Computer Systems
Evaluation Criteria (TCSEC) or the “Orange Book.”
In addition, we &nd that the Anderson Report’s refer-
ence monitor concept runs through all our VAX/SVS
lessons; security controls are gathered in a single place,
which is always invoked, made tamperproof, and small
enough to validate. VAX/SVS required security pol-
icy, and targeting a multilevel operating system meant
using Bell-LaPadula as its core policy.10 Other aspects
of assurance the Orange Book covered included audit-
ing, design process, testing, documentation, and oper-
ational concerns. !e highest level of Orange Book
assurance required formal methods to be applied to
covert channel analysis, design, and test plans as well
as trusted distribution (which the team fondly called
“trusted trucks”). A comprehensive approach to assur-
ance includes the entity responsible for evaluating the
assurance, which in the case of the DoD’s Orange Book,
was an appropriately accredited third party.

In this article, we concentrate on four lessons from
VAX/SVS development: access control, layering, mini-
mization, and veri&cation of assurance.

Verifiable and Tamperproof Access Control
A major consideration of many systems’ security con-
trols is access control. At the time of VAX/SVS, nearly
all commercial operating systems provided only discre-
tionary access control, wherein an object’s access rights
were determined by the object’s owner. It was well
known that some security problems couldn’t be solved

!eories of security come from theories of insecurity.
 —Rick Proto

28 IEEE Security & Privacy November/December 2012

LOST TREASURES

using discretionary access control. For example, a Tro-
jan Horse in application so"ware could leak an object to
unauthorized users by changing the access rights to that
object or writing a copy of the object to another object
accessible to unauthorized users.

An alternative approach to access control, mandatory
access control, lets a system administrator constrain an
object’s access rights. A major goal for high-assurance
systems design is to develop an approach by which lat-
tice security models (such as Bell-LaPadula10) could be
veri&ably enforced, implementing the reference moni-
tor concept. By the late 1980s, no commercial operat-
ing system strictly met these requirements. Although
several high-assurance system prototypes that targeted
the reference monitor concept were built in the 1970s
and 1980s, poor design choices led to large sizes or
poor performance. For example, the KSOS (Kernelized
Secure Operating System) kernel and KSOS Unix emu-
lator were each larger than contemporary Unix systems.

!e VAX/SVS project aimed to overcome these prior
limitations by integrating la$ice security model enforce-
ment into a VMM security kernel. Unlike prior a$empts
to build VMM security kernels, the VAX/SVS system
was designed “from scratch,” which signi&cantly facili-
tated the reference monitor concept’s implementation.

Key to developing a simple, clean design for the
VAX/SVS access control system was choosing a small
number of subject and object types. VAX/SVS pro-
vided only two types of subjects: users and virtual
machines (VMs). Users accessed the security kernel via
a trusted path mechanism, and the security kernel per-
formed operations on users’ behalf given their particular
access rights (as we discuss later). VAX/SVS provided
only four types of objects: devices, volumes, virtualized
resources, and security kernel &les. It exported dedi-
cated volumes and virtual disk volumes to VMs and had
its own &les on which it controlled access, so only privi-
leged processes could use them.

Subjects and objects were both assigned access
classes consisting of a secrecy class and an integrity
class. !is approach combines the work of Bell and
LaPadula for secrecy10 and Kenneth J. Biba11 for integ-
rity to prevent information)ows that might leak objects
to unauthorized subjects or allow modi&cation by unau-
thorized subjects, respectively. !e requirements for A1
evaluation were closely tied to the Bell-LaPadula model
for mandatory access control: lower cleared users (or
processes) were forbidden to gain access to higher
classi&cation information, either by direct access or by
exploiting covert channels.

!e decision to include the Biba integrity model in
VAX/SVS was driven more by theoretical interest than
real need. Lipner had published a paper on applying the
Biba model to commercial data security problems, so

it seemed that there might be real-world requirements.
And the cost of incorporating mandatory integrity con-
trols in a system that implemented the Bell-LaPadula
model was minimal because both models require similar
la$ice access control mechanisms. In theory, common
programs and read-only databases would be created at
high integrity and thus protected from modi&cation,
but in reality, VAX/SVS didn’t use the Biba model to
protect its own code and databases, and we aren’t aware
that any of the system’s “beta test” users applied the con-
trols that enforced the Biba model.

In addition to access classes, subjects in VAX/SVS
could also be given special privileges. Such privileges
let system users (for instance, administrators) perform
security-critical actions, such as managing the assign-
ment of access classes and allowing security policy
modi&cation.

Using the Bell-LaPadula model, VAX/SVS provided
single-level VMs. If users needed to process at a higher
level while reading lower-level information, they would
connect to a higher-level VM, which could a$ach a
lower-level virtual disk as a read-only device.

!e VAX/SVS security kernel is the reference moni-
tor that enforces this la$ice policy model (extended
with privileges), so a key question is how well did the
VAX/SVS achieve the aims of the reference monitor
concept? Complete mediation bene&ts from the small,
&xed number of object types in the VMM security ker-
nel, making it much easier to ensure that all the relevant
security-sensitive operations are mediated. A chal-
lenge that resulted from the choice of a small, simple
VMM system was that the granularity of object access
control and sharing was the VM and virtual disk drive.
!e VAX/SVS development team felt it had plausible
approaches to implementing a usable system despite
the coarse object granularity.

!e VAX/SVS security kernel provided tamperproof
execution by cleanly separating the security kernel and
the subjects (users and VMs). All the trusted code in
the VAX/SVS system ran in the security kernel, so the
designers could focus on protecting the entry points.
!e only trusted entities in the VAX/SVS system were
devices and subjects with privileges. Devices were privi-
leged if they had the ability to perform direct memory
access (DMA), which permi$ed them to write to any
physical memory address. As a result, devices and their
drivers were part of the trusted computing base, so the
VAX/SVS team had to develop and maintain the device
drivers. Subjects with privileges could modify the la$ice
security policy and other con&gurations, which obvi-
ously had profound implications. To prevent vulner-
abilities, privileges with potential impact on a system’s
security policy were only accessible via a trusted path,
so the security kernel could authenticate that a real user

www.computer.org/security 29

was behind the action. Two privileges were reserved for
VMs, so these VMs needed to be privileged. !e VAX/
SVS designers were primarily concerned with ensur-
ing that mandatory security could be enforced. Because
performing these two privileged operations outside the
kernel didn’t violate that goal, the designers preferred
limiting these abilities rather than creating a larger and
more complex kernel.

In addition to mandatory access control and user
privileges, VAX/SVS implemented discretionary access
control (access control lists) on objects. !e discretion-
ary access control’s e%ectiveness was the only major
area of disagreement between the development team
and TCSEC evaluators. !e design was optimized
around multiuser VMs—if each user required his or
her own VM, the physical memory requirement for
a commercially viable VAX/SVS system would have
grown beyond what was available, and the team would
have had to modify the design to demand page VMs’
memories. In the chosen design, a VM would operate
at a speci&c mandatory access class (level and category
set) with read-write access to objects at that access class
and read access to objects at lower con&dentiality access
classes (that is, lower security level and lesser category
set). All users who needed to access objects at that VM’s
access class would share the machine.

With multiuser VMs, VAX/SVS couldn’t determine
with high assurance which individual user took a spe-
ci&c action for the purpose of enforcing discretionary
access control or collecting an audit trail. !e VAX/SVS
team argued that, given the reality of Trojan horses, the
security gain wasn’t worth the impact on the system.
!e evaluators argued that the TCSEC required “A1
discretionary access controls.” In the end, the team
documented a way to con&gure a VAX/SVS system for
single-user VMs, with the expectation that user orga-
nizations would con&gure their VAX/SVS systems for
more e#cient and adequately secure multiuser VMs.
We note that the tradition of documenting an evaluated
con&guration with speci&c security a$ributes, knowing
full well it will be largely impractical, continues today.

Layered Design
!e VAX/SVS layered design approach proved to be key
to a number of areas. !e Orange Book called for sig-
ni&cant use of layering, abstraction, and data hiding. A
levels-of-abstraction approach in security kernel design
was recommended as a means to reduce complexity
and an aid in precise and understandable speci&cations.
Reduced complexity was a core principle of VAX/SVS;
the team lived by the “keep it simple, stupid” mo$o. !e
team followed other classic layered design principles,
including a separation of concerns between the layers,
low coupling between layers and high cohesion within them, and limited exposure to layer internals.

Figure 1. VAX/SVS layers (from “A VMM Security Kernel for
the VAX Architecture”1). Each layer implemented a well-
defined abstraction in the system. Higher layers could call
on the services of lower layers whereas lower layers were
forbidden from calling on higher layers.

Kernel interface

Security perimeter

KI

Secure
server

SSVR

Visual printers

VPrint
Virtual terminals

VTerm
Volumes

VOL
Files-11 files

F11F
Audit trail

AUD
Higher-level scheduler

HLS
VM-virtual

space manager

VMV
VM-physical

space manager

VMP
I/O services

IOS
Lower-level scheduler

LLS

Modified microcode
for virtualization

VAX hardware

Hardware
interrupt handlers

HIH

Virtual
VAX

Virtual machine
operating system

VVAX

Users

30 IEEE Security & Privacy November/December 2012

LOST TREASURES

Each level of abstraction was a layer that could call
any of the lower layers; lower layers were never allowed
to call higher layers. !e total number of (potential)
interactions in the system was conceptually bounded
and restricted; because each layer de&ned its external
API, a layer could call a lower layer only through one
of the de&ned entry points. For performance reasons,
the team didn’t enforce making calls through interven-
ing layers that merely passed the call on to a yet lower
layer, though we did brie)y consider it. Today, discus-
sions of layered design tend to introduce additional
complexity by allowing a rich tree of objects. VAX/SVS
was an almost pure sequence of single layers (see Figure
1). !e absolute simplicity of the system’s layering gave
the VAX/SVS design some of its power as a structure
for both call)ow and overall system organization. A lay-
er’s cohesion was based on functionality that naturally
needed a great deal of shared code or concepts.

Another bene&t of layering is the ability to more
easily test a layer in isolation, because the entry points
are well de&ned and, at most, a test environment need
only stub out all lower layer entry points. Layering
dampens the overall e%ect of a system’s code changes
and enhances the interfaces’ stability. !e grouping and
structure that aids understandability could therefore
help maintainability (a potential bene&t the team didn’t
get a chance to see). Reuse—another potential bene&t
of layering—wasn’t a concern; the layers were designed
for the single system.

Testing emphasized layer entry points—what they
would do and what assumptions they made. !e lay-
ered design de&ned the API’s assumptions and explic-
itly checked those assumptions “&rst thing” if they
were security relevant. !is meant each layer’s interface
design required an understanding of both functional-
ity and security requirements. !e defensive posture at
each layer created classic “defense in depth” at speci&c
points in the architecture and call paths. !e develop-
ers’ test environment was such that a layering violation

would cause a basic smoke test for a new build of the
system to fail. !e team agonized over ways to make a
rigorously layered system perform well, but they stuck
to the layering paradigm.

!e full system structure and rigor imposed by the
choice of a layered design and its subsequent bene&ts
can be contrasted with the Agile approach to so"ware
development, which is currently ge$ing a good deal of
a$ention.12 Although Agile’s emphasis on test-driven
design is consonant with the testability of each layer’s
boundaries, there seems to be no aspect of Agile that
addresses overall system structure and simplicity. VAX/
SVS’s layered design let the team share a common
understanding of the code base’s structure, function-
ality, and goals, providing a foundation for the discus-
sions on code placement and call paths.

Conway’s law states, “Organizations which design
systems … are constrained to produce designs which are
copies of the communication structures of these organi-
zations.”13 !is indicates that a so"ware system’s interface
structure will re)ect the social structure of the organiza-
tion that produced it. In VAX/SVS, each layer had an
owner, and design conversations o"en involved layer
owners. Team members were partitioned throughout the
layers and would move between them as the functional-
ity built up over time. As Conway’s law suggests, the sys-
tem layers re)ected the team members’ groups. Potential
stakeholders and reviewers for design and code changes
were at the layers above the one changing (or team mem-
bers at the changing layer if the change didn’t a%ect the
interface)—another way our communication structure
re)ected our system design. !is seemed unremarkable
at the time. Conversely, if Conway’s law is true, the com-
munication structure of a system produced today through
the Agile methodology is likely to be diverse and unstruc-
tured, and thus more complex and harder to understand,
reason about, and predict.

!e counterarguments to layered design include lack
of engineering)exibility, performance impact, the di#-
cult requirement of de&ning the layers up front, time to
market, and the ability to make rapid changes. In their
limited experience of a version 0 project, the VAX/SVS
team didn’t experience any severe constraints on engi-
neering)exibility. In this article, we touch on perfor-
mance and time to market in general.

Minimization
Of the three reference monitor requirements, the
requirement that the system be small enough to be
subject to analysis and tests to ensure that it’s correct is
probably the most challenging for secure system devel-
opers. VAX/VMS purported to mediate every access
by a subject (process or user) to an object (&le, device,
or interprocess communication [IPC] channel) but its
size and complexity were great enough that the pres-
ence of exploitable vulnerabilities was a certainty. !e
choice of a VMM architecture was intended to support
minimization of the trusted code base.

 [A] mathematical model of the growing embryo will be described. !is
model will be a simplification and an idealization, and consequently a
falsification. It is to be hoped that the features retained for discussion are
those of greatest importance in the present state of knowledge.
 —Alan Turing

www.computer.org/security 31

However, choosing to build a VMM was only the
beginning of the quest for minimization. From the
development project’s beginning, the team intended to
minimize the amount of trusted mechanism in the sys-
tem. !ree examples—memory management, I/O, and
user interface—illustrate this point. !e &rst two date
back to the 1981 design study that set the overall direc-
tion of the project, and the third was a result of the quest
to provide the system with a degree of usability.

Memory management. Karger, Lipner, and Andrew
Mason were three key participants in VAX/SVS’s ini-
tial design study, and all were veterans of the Multics
Guardian Project. Multics required both segmentation
and demand paging to provide each process with a rich
application environment while operating on hardware
with limited physical memory. !e planned Guard-
ian Project architecture included kernel support for
demand paging with fully trusted kernel processes (vir-
tual processors) moving page frames between disk and
main memory. !e resulting system would have been
relatively complex.

!e Guardian Project veterans’ initial memory man-
agement design for VAX/SVS included support for
demand paging of VMs’ physical memory spaces, simi-
lar to IBM’s VM/370. Peter Conklin, one of the original
VAX/VMS architects, participated as a guest in the ini-
tial design study. When he saw the plan to include pag-
ing in the VAX/SVS kernel, he pointed out that VAX/
VMS (which would be running in each VM) imple-
mented paging and that having two independent pag-
ing systems was likely to result in poor performance. A
VAX/SVS design that did away with paging would be
much simpler. He also observed that providing com-
munication between VAX/VMS and VAX/SVS to
optimize performance would result in an even more
complicated kernel design. Finally, he pointed out that
physical memories were ge$ing larger as hardware costs
dropped and that it would eventually be feasible to just
give each VM a static allocation of physical memory.

!e VAX/SVS design adopted Conklin’s recom-
mendation, which was referred to internally as “mem-
ory is cheap.” As a result, the VM physical memory
management and virtual memory management layers
were signi&cantly simpli&ed. As Conklin predicted,
physical memory sizes continued to increase and prices
to decrease during the life of the project, and the project
team never regre$ed the decision to abandon demand
paging in the kernel.

Input/Output. From the earliest days of VMMs (IBM’s
CP-67), I/O management has presented challenging
problems. I/O is a “sensitive” function on any VMM
system, so the VMM must be able to intercept and

interpret each I/O operation. Whereas IBM mainframes
implement discrete privileged I/O instructions (that
can be made to trap to the VMM), Digital Equipment
computers’ (PDP-11s and VAXs) I/O is controlled by
using ordinary (unprivileged) instructions to read and
write speci&c physical addresses that correspond to I/O
control registers rather than memory. !us, the VMM
developer for a Digital Equipment computer needed
to intercept every read or write to an I/O register loca-
tion and interpret the intended operation. !e resulting
code is both slow and complex.

VAX/SVS’s initial design anticipated virtualizing
I/O operations that VAX/VMS would direct toward
standard VAX devices. Karger sketched an adapter that
would map VMs’ I/O operations and minimize so"-
ware intervention. When Conklin saw that design and
considered the problem of I/O from a VM, his reaction
was, “Don’t do that—just create a special call from the
virtual machine to the VMM that will request an I/O
operation and provide the necessary parameters. !e
VMM can interpret the request in one operation and it
will be much more e#cient.” In today’s jargon of VMs,
this would be referred to as “enlightening” the VM’s
operating system to rely explicitly on the VMM for I/O.

Because VAX/VMS was designed to be highly adapt-
able to new kinds of I/O devices, Conklin’s suggestion
was both feasible and easy to implement. !e resulting
I/O architecture was vastly simpler and performed bet-
ter than an alternative that would have required inter-
pretation of individual I/O register operations. When
Ultrix (Digital Equipment’s version of Unix) was even-
tually ported to VAX/SVS, the wisdom of this design
choice was demonstrated again—the entire port
required only a few weeks’ e%ort by a small subset of the
Ultrix development team.

User interface. As the VAX/SVS team made the transi-
tion from demonstrating that it was possible for VAX/
VMS to run in a prototype VMM to building a usable
A1 system, they realized that a large number of system
administration operations would be required and that
the path from administrator to system state would need
to be trusted. It seemed likely that the resulting com-
mand parsers would be large and complex: command
parsing might require as much code as the rest of the
security kernel, even with a relatively primitive user
interface (the technology of the day was command line
rather than GUI).

A"er some discussion, the team came up with the
idea of parsing administrator commands in an untrusted
application running on a VM, and having that applica-
tion pass the parsed commands to the kernel in a simple
and standardized format. !e kernel would then display
the command to the administrator for con&rmation,

32 IEEE Security & Privacy November/December 2012

LOST TREASURES

and the only administrator command the kernel would
have to parse would be a “con&rm” or “cancel.” A secure
server a$ention key and associated protocol allowed the
administrator to be certain that he or she was interact-
ing with the kernel rather than an untrusted program
spoo&ng the kernel.

!e VAX/SVS team was aware that the system
needed to be usable, so the actual user interface
included kernel parsing (without need for con&rma-
tion) of commands that ordinary users would use
frequently, such as “connect me to another VM” and
“logout.” !e system presented ordinary users with a
very natural interface—as though they were using a
terminal concentrator and switching from a machine at
one security level to one at another.

Verification of Assurance
Only one or two systems completed evaluation at
TCSEC class A1, providing few success stories to emu-
late. VAX/SVS’s design was extremely simple, even for
its day. !e team was inculcated with the importance of
adhering to the Bell-LaPadula model and a layered sys-
tem architecture, both seen as key to veri&cation. Lay-
ering played an important part in the required system
speci&cations. !e formal model required a descriptive
top-level speci&cation (DTLS), a complete natural-lan-
guage description of the system. !e per-layer design
(and API) descriptions formed a substantial part of the
required DTLS.

Originally, the VAX/SVS team anticipated that the
layered design would support formal veri&cation. !e
assumption, based on the concepts articulated in the
PSOS research,6 was that each layer would be veri&ed
to correctly implement a speci&cation using code in its
own layer that invoked services provided by lower lay-
ers. Veri&cation of each layer would lead to veri&cation
of the entire system. Unfortunately, veri&cation tech-
nology of the 1980s didn’t follow up on the promises
of the 1970s, and no formal veri&cation tool available to
the VAX/SVS team was capable of taking advantage of
the system’s layered structure. As a result, formal veri&-
cation was con&ned to analysis of the system’s external
interfaces against the Bell-LaPadula model require-
ments. !is level of formal veri&cation was typical for
high-assurance systems of the era.

!e VAX/SVS security kernel was designed and
implemented with the goal of comprehensive veri&-
cation. Extensive testing was deployed for regression
and various use cases. !e system was formally speci-
&ed as part of the A1 assurance process using InaJo. !e
VAX/SVS security kernel implementation consisted
of approximately 48,000 source lines of code (SLOC),
which were wri$en in PL/1, Pascal, and Macro-32
assembly language. Because there were more than

11,000 source lines of assembly code, evaluating assur-
ance was a signi&cant undertaking. !e recent formal
assurance of the seL4 system shows that the expense
per line of code is still high for formal assurance (9,300
SLOC at US$10,000 per LOC).14 !e seL4 system is
a microkernel rather than a VMM, so it provides less
functionality.

!e formal assurance process was further compli-
cated by the need to evaluate new code when a new
device was added to the system. !e availability of
device support has been a critical factor for the adop-
tion of operating systems over the years, so this would
have been a major challenge for maintaining assurance
of the VAX/SVS security kernel. Now, the introduction
of IOMMU (input/output memory management unit)
hardware to commercial processors means that device
drivers and their inherent challenges (for example, con-
trolling DMA) can be moved to the user space (even to
unprivileged VMs). However, if a device is needed by
trusted code, it will still need to be in the trusted com-
puting base.

!e TCSEC required that an A1 system limit covert
channels’ bandwidth, so the team undertook a signi&-
cant e%ort to eliminate all covert storage channels and
mitigate covert timing channels in VAX/SVS.3 !e
VAX/SVS interface’s simplicity and the team’s strict
a$ention to adhering to the Bell-LaPadula model
resulted in a system that was relatively free from classic
storage channels. (Many of VAX/SVS’s resource allo-
cation mechanisms were either static or implemented
by human administrators—a set of choices that aided
both simplicity and freedom from storage channels.)
Whereas storage channels were only a limited prob-
lem, timing channels proved to be a source of surprises,
frustration, performance challenges, and project delays.
!e formal veri&cation work, led by consultant Rich-
ard Kemmerer of the University of California at Santa
Barbara, applied the Shared Resource Matrix method
of identifying covert channels, giving the team a rough
sense of what channels might be present. !e team
collaborated with Robert Morris (of the US National
Security Agency) to identify an approach to mitigat-
ing timing channels—called “fuzzing clocks” or “fuzzy
time.” Implementing this approach required signi&cant
changes late in the development cycle, which degraded
the system’s (already marginal) performance. What’s
worse is that a year a"er the team published the “fuzzy
time” approach, a researcher published an approach to
defeating it.15

Although the VAX/SVS team met the formal veri&-
cation requirements for TCSEC class A1, they believed
that the actual assurance came from adherence to the
layered design principle, thorough documentation, and
careful coding. Designs were documented before they

www.computer.org/security 33

were implemented (unlike the practice at lower levels of
the TCSEC or Common Criteria). !e team reviewed
all the security kernel design decisions and code at all
stages of the project and before it was checked in. !e
coding languages for the system precluded bu%er over-
runs, and the style guides to which the team adhered
constrained implementation to conservative and safe
practices.

Cancellation
!e VAX/SVS development project was intended to
produce a commercially viable system that could com-
plete evaluation at TCSEC class A1 and be sold to
customers in su#cient quantity to recover its develop-
ment costs. By 1989, the system was on track to com-
plete evaluation and su#ciently polished to enter a &eld
(beta) test with customers. !e &eld test was reasonably
successful: customers were able to use the system, and
there was even a rumor that one of the test customers
had deployed VAX/SVS in a “multilevel secure” opera-
tional con&guration.

Despite this level of accomplishment, VAX/SVS
was canceled because the business case for the system
wasn’t su#cient.16 Even though a great deal of money
was spent bringing the system to the point at which cus-
tomers could use it, sales projections weren’t encourag-
ing. Some customers were willing to buy copies of the
system, but neither the number of customers nor the
number of copies was su#cient to make a pro&table
business case. At the time, US export restrictions on
high-assurance products received much of the blame for
cancellation, but the reality was that US and other cus-
tomers who were eligible to buy VAX/SVS weren’t all
that interested. Had a decision been made to release the
system commercially, that decision would have implied
a commitment to maintain and enhance it over period
of years. With inadequate sales, the system would’ve
continuously lost money.

To understand why customers didn’t want to buy
VAX/SVS, we must consider the time in which the
system would have come to market. In the late 1980s,
customers were beginning to demand personal comput-
ers or workstations, networking, and GUIs. VAX/SVS
was designed as an isolated time-sharing system that
supported users at alphanumeric terminals. A “hack”
allowed networking of individual virtual machines
through dedicated asynchronous terminal lines, but the
system itself wasn’t networked.

Modifying VAX/SVS to support workstations, net-
works, or GUIs would’ve been a signi&cant develop-
ment task. Although workstation support would have
been the simplest task, it would have required develop-
ing and manufacturing a VAX microprocessor with the
SVS-speci&c virtualization features. And workstation

support wouldn’t have been viable without adding
GUI support. !e experience of building and evaluat-
ing VAX/SVS made it clear that adding networking and

GUI support would have required signi&cant research
projects—the team would have had to develop con-
cepts, implement them, and “sell” them to the evalua-
tors. It seemed probable that the process would have
taken so long that by the time the features could be
shipped, user expectations would have moved beyond
what VAX/SVS could provide. Of course, this was the
very trap that the VMM approach was intended to
avoid, but in the end, it seemed unavoidable. We leave it
to the reader to judge whether this trap is a fundamental
)aw of high-assurance systems.

Should We Build Virtualization Kernels
Today?
VAX/SVS served two roles: host security kernel and vir-
tualization manager. One question we should consider
in hindsight is whether requiring both roles in a security
kernel is practical. !e VAX/SVS design resulted in a
code base of less than 50 KLOC. Modern, fully func-
tional virtualization kernels are much larger still. For
example, the Xen hypervisor had approximately 300
KLOC in 2008. Given the greater size and functional-
ity of modern virtualization kernels and the current cost
and complexity of formal assurance, it seems unlikely
that a fully assured security kernel with fully functional
virtualization could be built today.

Recent hardware advances in security and virtualiza-
tion might signi&cantly aid the task of separating kernel
and virtualization functionality. By adding virtualiza-
tion support, hardware architects ensure that all sensi-
tive instructions are now privileged, removing the need
for I/O emulation. Finally, and perhaps most impor-
tant, IOMMUs enable DMA devices to be securely
removed from the trusted computing base. With the
broadly available support for trusted computing mecha-
nisms, it’s now possible to measure each so"ware layer
independently, le$ing remote parties verify the system
boot process consisting of multiple layers.

!e dependency graph, which Dave Parnas called the “Uses” hierarchy, be-
comes a powerful tool for evaluating the robustness of a system. Module
A depends on module B if the correctness of A requires that B performs
correctly. In verification terms, B becomes a lemma for the theorem that A
performs correctly. A dependency graph with circularities reduces system
robustness, just as circularities in reasoning produce politicians.
 —Earl Boebert

34 IEEE Security & Privacy November/December 2012

LOST TREASURES

So, do such advances make it practical to separate
the kernel and virtualization functionalities into two
distinct so"ware layers? In the 1990s, second-gener-
ation microkernel designs, such as L4 (predecessor of
seL4) and Exokernel, focused explicitly on minimizing
kernel code. In such kernels, physical resources were
partitioned among isolated domains that could com-
municate through fast IPC primitives. Researchers
found such systems e%ective for constructing optimized
mechanisms for hardware use, particularly for network
devices. On the other hand, deploying general-purpose
systems on such kernels introduced additional perfor-
mance overhead and development complexity that
didn’t seem to warrant the bene&ts, particularly because
these kernels were still prone to DMA a$acks. How-
ever, hosted operating environments, such as L4Linux,
showed that the performance overhead of systems with
a single physical resource manager was modest (less
than 10 percent in 1997). Further hardware advances
have ameliorated the e%ects of these performance
costs, reduced vulnerability to DMA a$acks, and made
it easier to layer so"ware. As a result, it’s still an open
question as to when security kernel and virtualization
functionality should be combined into a single VMM
security kernel.

How Do We Obtain Systemwide Access
Control?
To implement the reference monitor concept in the
security kernel, VAX/SVS provides a rich access con-
trol model enforced by a reference validation mecha-
nism. Modern systems aren’t designed with a rich access
control model at inception, but instead access control
is incrementally added to systems as they mature (and
adversaries show developers where authorization is
necessary). Is it possible to add a reference validation
mechanism later in the system development life cycle
and still achieve the reference monitor concept? !e
emergence of program analysis for security might help
answer this question.

Once a proper reference validation mechanism is in
place, a challenge is managing privilege delegation from
the security kernel up to VMs. In the VAX/SVS design,
the team tried to limit the trust in user-space code, but
modern systems o"en have a privileged VM, which is
tantamount to a complete operating environment run-
ning with privilege outside the VMM. Although we have

mechanisms to enforce security decisions in privileged
VMs, we don’t know which so"ware is capable and wor-
thy of being trusted with those decisions. Furthermore,
this so"ware is far too complex for formal assurance.
Finally, although reference validation mechanisms are
being added to a variety of so"ware in VMMs, operat-
ing systems, middleware, and applications, these indi-
vidual access control mechanisms aren’t yet integrated
into a systemwide mechanism for managing privilege.

How Do We Assure System Security?
Fundamental to the VAX/SVS development process
was the task of formal assurance. Unfortunately, this
task has not evolved much since the early 1990s. A great
deal of manual e%ort is necessary to convert a system
into a format suitable for assurance. In practice, systems
can’t be formally assured unless they’re built with that
assurance from the outset. !e result is a slow, laborious
process whose results might be obsolete on delivery.

In developing secure systems, not all so"ware is
equal, and that might make a di%erence. Gernot Heiser
of the seL4 project conjectured that much of the user-
space so"ware would be e#cient if it was developed in
the language used for formal analysis in the seL4 evalu-
ation (Haskell), then compiled into C.14 However, the
performance-critical so"ware, such as the microker-
nel, would have to be handcra"ed code. !e implica-
tion is that labor-intensive formal assurance might only
be necessary to a small subset of performance-critical
code; the remaining code could be developed using
compilation tools that would check for security proper-
ties. !is optimistic view misses at least two key limita-
tions. First, someone still has to articulate the security
properties that must be achieved for the so"ware and
the data that it processes. Second, people tend to prefer
programming in languages that are less constrained, but
this leads to more security problems. Researchers have
long advocated using more structured programming
languages to improve code security, or at least enable
automated veri&cation, without success. Some recent
research focuses on making low-level languages ame-
nable to various security analyses, such as C Interme-
diate Language (CIL) and Low-Level Virtual Machine
(LLVM). Ideally, such techniques will further extend
to improve our ability to limit the amount of code that
requires manual formal veri&cation.

W e &nd several lessons from VAX/SVS are worth
emphasizing and sharing with the broader

community today. !e reference monitor concept from
the Anderson Report provides useful architectural prin-
ciples for high-assurance systems. Veri&able and tamper-
proof access control was and remains challenging, in part

Perfection is finally attained, not when there is no longer anything to add,
but when there is no longer anything to be taken away.
 —Saint Exupery

www.computer.org/security 35

because of the diversity of operational requirements.
Layering provides many critical bene&ts that seem to
be otherwise lost, such as reducing the number of entry
points to defend and test. Minimization requires whole
system thinking as well as accurate powers of prognosti-
cation. Veri&cation of assurance remains a complex and
multifaceted challenge. And business realities interact
with all of these considerations: if it takes so long to build
a highly assured system that it is no longer competitive
with less assured alternatives, customers will refuse to
buy or use it. We believe there are many useful lessons
from the VAX/SVS work, and we hope and expect they
will inform future successful e%orts.

Acknowledgments
Each of the authors has fond memories of Paul Karger. With-
out him, this article would not have been wri$en. Peter Conk-
lin, whose contributions to VAX/VMS from Star to Alpha are
relatively well known, was an unsung hero of the SVS project.
His early insights had a tremendous impact on the system.

References
1. P.A. Karger et al., “A VMM Security Kernel for the VAX

Architecture,” Proc. IEEE Symp. Research in Security and
Privacy, IEEE CS, 1990, pp. 2–19.

2. K.F. Seiden and J.P. Melanson, “!e Auditing Facility for
a VMM Security Kernel,” IEEE Symp. Research in Security
and Privacy, IEEE CS, 1990, pp. 262–277.

3. J.C. Wray, “An Analysis of Covert Timing Channels,” Proc.
IEEE Symp. Security and Privacy, IEEE CS, 1991, pp. 2–7.

4. P.A. Karger and J.C. Wray, “Storage Channels in Disk Arm
Optimization,” Proc. IEEE Symp. Security and Privacy,
IEEE CS, 1991, pp. 52–61.

5. N. Adleman et al., Security Kernel Evaluation for Multics
and Secure Multics Design, Development and Certi!cation,
Semi-annual Progress Rept. 1 Jan-30 June 76, report NTIS
AD-A038 261/4, Honeywell Information Systems, Aug.
1976.

6. R.J. Feiertag and P.G. Neumann, “!e Foundations of a
Provably Secure Operating System (PSOS),” Proc. Nat’l
Computer Conf., AFIPS, 1979, pp. 329–334.

7. L.J. Fraim, “Scomp: A Solution to the Multilevel Security
Problem,” Computer, vol. 16, no. 7, 1983, pp. 26–34.

8. J.P. Anderson, Computer Security Technology Planning
Study, report ESD-TR-73-51, MITRE, Air Force Elec-
tronic Systems Division, Hanscom, 1972.

9. E.W. Dijkstra, “!e Structure of the ‘THE’-Multipro-
gramming System,” Comm. ACM, vol. 11, no. 5, 1968, pp.
341–346.

10. D.E. Bell and L.J. LaPadula, Secure Computer System: {Uni-
!ed} Exposition and {Multics} Interpretation, report ESD-
TR-75-306, Deputy for Command and Management
Systems, HQ Electronic Systems Division, Mar. 1976.

11. K.J. Biba, Integrity Considerations for Secure Computer

Systems, report ESD-TR-76-372, MITRE, Apr. 1977.
12. C. Larman, Agile and Iterative Development: A Manager’s

Guide, Addison-Wesley, 2004, p. 27.
13. M.E. Conway, “How Do Commi$ees Invent?” Datama-

tion, vol. 14, no. 5, 1968, pp. 28–31.
14. G. Klein et al., “seL4: Formal Veri&cation of an OS Ker-

nel,” Symp. Operating Systems Principles, ACM, 2009, pp.
207–220.

15. I.S. Moskowitz and A.R. Miller, “!e In)uence of Delay
upon an Idealized Channel’s Bandwidth,” Proc. IEEE
Symp. Research in Security and Privacy, IEEE CS, 1992, pp.
62–67.

16. P.A. Karger et al., “A Retrospective on the VAX VMM
Security Kernel,” IEEE Trans. So"ware Engineering, vol.
17, no. 11, 1991, pp. 1147–1165.

Steve Lipner is partner director of program management
in trustworthy computing security at Microso". He’s
responsible for Microso"’s Security Development
Lifecycle, which is used to achieve security assurance
of Microso" products, and government security eval-
uations of Microso" products. Lipner has an SM from
the Massachuse$s Institute of Technology. He coau-
thored !e Security Development Lifecycle (Micro-
so" Press, 2006) with Michael Howard. Contact him
at slipner@microso".com.

Trent Jaeger is an associate professor in Pennsylvania
State University’s Computer Science and Engineering
Department and codirector of the Systems and Inter-
net Infrastructure Security (SIIS) Lab. His research
interests include operating systems security and the
application of programming language techniques to
security. Jaeger has a PhD in computer science and
engineering from the University of Michigan, Ann
Arbor. He’s the author of the book, Operating Sys-
tems Security. Contact him at tjaeger@cse.psu.edu.

Mary Ellen Zurko is a security architect and strategist at
Cisco Systems. Her research interests include secu-
rity standards and usable security. Zurko has an MS
in computer science from the Massachuse$s Institute
of Technology. She is chair of the IW3C2, the steering
commi$ee for the International WWW Conference
series, and is an active steering commi$ee member
and organizer of New Security Paradigms Workshop
and the Symposium on Usable Privacy and Security.
Contact her at mez@alum.mit.edu.

Obesity kills, even in the virtual domain.
 —Earl Boebert

