
Lightweight Coordinated Sampling for Dynamic

Flows under Budget Constraints

Mingming Chen, Thomas La Porta

Computer Science and Engineering Department

Penn State University, University Park

University Park, PA, 16802 emails: {mzc796,tfl12}@psu.edu

Trent Jaeger, Srikanth Krishnamurthy

Computer Science and Engineering Department

University of California, Riverside

Riverside, CA, 92521 emails:trentj@ucr.edu,krish@cs.ucr.edu

Abstract—As cyber-attacks on networks become more stealthy,
monitoring techniques relying on low-rate packet sampling may
prove insufficient to detect attacks. While various sampling
methods have been proposed to address capacity limitations and
enhance detection rates, achieving sampling at line speed at a sin-
gle point remains challenging due to limited CPU or bandwidth
capacity at sampling points. In this paper, we propose harnessing
coordinating sampling across switches to create a unified system
that can dynamically activate sampling points to meet sampling
rate needs. We introduce and implement a coordinated sampling
algorithm on multiple P4-programmable switches and show that
the algorithm ensures coordination among multiple sampling
points for each flow, preventing duplicate samples, with negligible
network overhead and real-time configurability. We formulate
sampling point placement as budgeted maximum multi-coverage
problems, solving them optimally in pseudo-polynomial time.
We show our system far outperforms those based on greedy
algorithms along many key dimensions.

Index Terms—P4-programmable switch, coordinated sampling,
budgeted maximum multi-coverage, balanced matrix

I. INTRODUCTION

Traffic sampling is an important technique used for net-

work monitoring for both network management and security

purposes. Due to limitations in processing capacity and band-

width, switches cannot typically forward every packet to a

monitor. As a result, sampling is implemented, where specific

packets are selected and forwarded to a monitor for analysis.

People strive to maximize the monitoring gain within limited

sampling capacity [15], [30].

Regardless of the techniques used to sample at switches,

sampling flows at line rate under heavy traffic load may not

be achievable with a single sampling point. When either entire

packets or portions of packets are sent from the sampling point

to the monitor, port capacity on switches may be violated [11]

even if programmable ASICS are used to sample the packets.

However, lowering sampling rates to accommodate switch

limitations introduces the risk of allowing low and slow attacks

This research was sponsored by the U.S. Army Combat Capabilities
Development Command Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber
Security CRA). The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Combat Capabilities Development
Command Army Research Laboratory of the U.S. government. The U.S.
government is authorized to reproduce and distribute reprints for government
purposes notwithstanding any copyright notation here on.

Fig. 1: Testbed Topology

to go undetected. For example, a low-and-slow attack initiated

by Slowloris running on a single VM can cause a 24% increase

on the Web server’s memory with less than a 40kbps increase

on the network traffic [29]. The unpredictable dynamics of

network flows require the sampling points, sampling rate, and

sampling strategy to change with it. Our system provides

coordinated sampling, smart sampling point placement, and

dynamic sampling point configuration to meet this need.

Unlike existing works which focus on single point sampling

optimization [15], [30], we develop and implement an efficient

algorithm to achieve high-rate line-speed flow-based sampling

using multiple P4-programmable switches along the paths that

are coordinated to extract samples. P4 is a domain-specific lan-

guage for programming packet processing pipelines in network

devices [9]. We chose P4-programmable switches because the

sampling can be programmed on the P4-programmable ASIC

without CPU constraints and the programs can be installed

in real-time. Consequently, the functionality of sampling and

forwarding samples can be tuned in real-time.

Given the substantial cost difference between P4-

programmable switches and OpenFlow switches (a factor of

up to 10 [1]), an objective of our work is to strategically place

a budgeted number of programmable switches as potential

sampling points in a network. The goal is to maximize the

average number of flows that can be sampled at a sufficient

rate, perhaps by activating multiple sampling points to share

the load. To address the placement problem, we formulate bud-

geted maximum (multi-) coverage problems. We show these

NP-complete Integer Linear Programming (ILP) problems are

optimally solvable in pseudo-polynomial time by leveraging

the balanced matrix property.

A. System Overview

A high-level view of our system is shown in Fig. 1. Hosts

are connected through a network containing at least some P4-

programmable switches, which can sample packets on a per-

flow basis and send them to one of many monitors for analysis.

Fig. 2: Coordinated Sampling Workflow on TNA Pipeline

If the SDN controller detects that a sampling point becomes

overloaded and can only sample some flows with a fraction

of the desired rate, it reallocates sampling responsibilities,

perhaps splitting sampling among multiple sampling points.

Our coordinated sampling algorithm executes on the sampling

points and guarantees there are no duplicate samples.

We aim to strategically deploy a budgeted number of P4-

programmable switches to maximize the number of flows that

can be sampled at the required rate considering that some flows

may be sampled at multiple points. This requires solving three

problems: (1) coordinating per-flow sampling when multiple

points are sampling the same flow, (2) placing the budgeted

number of programmable switches to maximize the number of

flows that have sufficient coverage to handle sampling load,

and (3) dynamically assigning flows to sampling points.

We operate under the assumption that we have knowledge

of potential flow paths due to traffic history, and paths can

be enumerated using standard routing policies and realistic

network topologies. This assumption holds true for enterprise

networks and SD-WANs [20], especially when employing

popular routing protocols that result in path stability [10].

In this paper, we make the following contributions:

• We introduce and implement ”coord sampling” to effi-

ciently coordinate flow-based sampling at multiple net-

work points without communication overhead. We show

it incurs negligible performance overhead and can be

activated within 0.05 seconds.

• We formulate budgeted maximum (multi-)coverage prob-

lems for sampling point placement, and show that the

optimal solutions for this NP-complete problem can be

achieved in pseudo-polynomial time in our scenario us-

ing balanced matrix properties on real topologies. The

optimal solution outperforms the greedy method by up to

90% with a comparable runtime of 10−1 to 10−2 seconds

on realistic topologies.

• We show that the set of sampling points placed in our

evaluated networks using our budgeted optimal algorithm

provides the capacity to sufficiently sample flows under

heavy loads by coordinating sampling whereas the sam-

pling points placed by the greedy algorithm under the

same budget do not.

II. DESIGN OF THE COORDINATED SAMPLING

The goal of the coordinated sampling algorithm is to dis-

tribute the sampling load for individual flows across multiple

sampling points, so sampling can be done at the required rate.

The coordinated sampling system aims to (1) prevent dupli-

cated samples from the same flow across different sampling

points and (2) ensure that samples from the same flow across

different sampling points can be collected and sorted by the

monitor. We introduce a method for achieving coordinated

sampling among sampling points with minimal overhead. We

begin with an overview of our coordinated sampling algorithm

and the underlying switch architecture. Subsequently, we delve

into the algorithm’s details and implementation.

A. Coordinated Sampling Overview

Our coordinated sampling algorithm operates on the Tofino

Native Architecture (TNA) shown in Fig. 2. TNA consists of

two programmable sections: the Ingress and Egress Pipelines,

each comprising a parser, match-action pipeline, and deparser.

The parser stage dissects packets into distinct fields. In the

match-action pipeline, packets are matched and actions are

executed as per the algorithm. This pipeline houses the primary

components of the coordinated sampling algorithm. Parsed

packets are reconstructed at the deparser stage. In the Ingress

deparser, packets proceed to the Egress pipeline for further

handling. In the Egress deparser, packets are either forwarded

to the next hop or discarded based on configured actions.

Our design incorporates four Match-Action tables: the Sam-

pling Table determines whether a packet should be sampled.

The Forwarding Table forwards flows’ packets normally. The

Mirroring Table determines the samples’ output port to the

monitor. The Untagging Table removes the tag from sampled

packets at the network edge.

B. Coordinated Sampling Algorithm

The coord sampling algorithm (Algorithm 1) is imple-

mented on the TNA architecture in Fig. 2. The P4 code

is available on GitHub [2]. Upon entering the pipeline, the

Sampling Table tables evaluates the packet first. If there is no

match in tables, it proceeds to the Forwarding Table tablef for

standard forwarding processing. Conversely, if a match occurs,

the packet is directed to the coord sampling algorithm.

Algorithm 1 Coord Sampling on P4-programmable Switches

Input: pkti: Recent packet of flow fi;

tables: Ingress flow table for sampling some flows;

counteri: Stateful counter of flow fi, initial value is 0;

intervali: Sampling interval for flow fi;

idrdi : Stateful round id number, initial value is 0;

mi: Mirroring session id of flow fi.

Output: is out, idrdi .

Function coord sampling:

(idsai , pkt
parsed
i) = parse(pkti);

(is hit, intervali, counteri,mi) = read(pkt
parsed
i , tables);

if is hit then

if idsai is NULL then
counteri = counteri + 1;

if counteri mod intervali==1 then
tag sampled(pkti, idrd);

idrdi = idrdi + 1;

pktmirrored
i =mirror(pkti,mi);

output(pktmirrored
i , portmonitor);

end

else
counteri = 0;

idrdi = idsai ;
end

end

To achieve Goal (1), our algorithm relies on two parameters:

counteri tracks packets of flow fi, while intervali stores the

dynamically configured sampling interval value (the reciprocal

of the sampling fraction) of flow fi. In a traditional flow-

based single-point sampling setup, a switch samples a packet

when condition (A) (counteri mod intervali == 1) is met.

However, this condition alone is insufficient for coordinating

sampling across multiple points to avoid duplication, espe-

cially considering packet dropping or swapping. To address

this, we tag sampled packets to inform downstream switches

not to sample them. Thus, a P4-programmable switch samples

a packet only when conditions (A) and (B) (the packet is not

tagged) are both met. If condition (B) is not met, we reset

counteri to prevent potential overlapped sampling.

To achieve Goal (2), switches track the number of rounds

of sampling, idsai , and report that to the monitors by putting

the idsai value in sampled packet headers, where a round

is completed when a sampling switch has seen an interval

number of packets on the flow. As shown in Algorithm 1, each

switch tracks the number of rounds performed in the variable

idrdi for flow fi. When a switch finds that it should sample

a packet pkt, it samples pkt and tags pkt’s “Options” header

field with idsai = idrdi . idrdi is then incremented on switch to

prepare for its next round. Monitors that know topology (i.e.,

the order of sampling switches for a flow) can order packets

from sampling switches in each round for each flow.

To maintain the correct round order across switches when

packet dropping/swapping happens between sampling points,

we adjust counteri and idrdi whenever a sampled packet pktsa

is seen. Specifically, the switch’s counteri is reset, and flow

fi’s round id idrdi is synchronized with upstream switch by

setting idrdi = idsai where idsai is the sampled id of pktsa.

The monitor arranges sampled packets of fi from multiple

switches by gathering packets in ascending order with the

same idsai tag along the path of fi, moving from upstream to

downstream points. The detailed steps of Algorithm 1 focus

on switch sw’s sampling decisions and tagging. When packet

pkti hits a match in tables, we verify the existence of idsai :

• If it does not exist, sw increases counteri and checks the

indicator value of counteri mod intervali:

– If equals 1, sw tags pkti’s idsai with its current idrdi ,

increases its idrdi , mirrors pkti, sends pktmirrored
i to

the monitor, and forwards pkti normally;

– Otherwise, sw forwards pkti normally.

• Otherwise (pkti has been sampled with a tag idsai), sw

resets counteri and synchronizes its round id idrdi with

the upstream switch’s round id by setting its value as

pkti’s value idsai , and forwards pkti normally.

Our coord sampling algorithm is computationally efficient

with a complexity of O(k) (where k is a constant) within

an if-else pipeline. Moreover, the mirroring process incurs no

CPU cost on the programmable ASIC but only entails memory

costs for configuration. The algorithm is also memory-efficient

for the following reasons: Each flow fi requires variables

counteri, intervali, id
rd
i , and mi to configure its sampling

task, akin to a flow entry. The bit length of mi increases

sublinearly with the number of sampled flows. 1-byte idrdi is

enough to avoid round id confusion caused by idrdi overflow
1. The bit length of intervali is inherently short to facilitate

frequent sampling. Notably, the value of counteri does not

continually increase to track the absolute number of packets;

instead, it is reset whenever counter == interval or meets a

tagged packet, keeping its bit length as short as intervali’s.

Our design is robust, with minimal communication and time

costs. It ensures sampling coordination and prevents misorder

propagation even with packet dropping or sequence swap-

ping during transmission. Importantly, it eliminates the need

for extra communications among P4-programmable switches

or between the SDN controller and switches. Additionally,

our design allows real-time, configurable, and manageable

flow-based sampling. Experimental results in Section VI re-

veal low overhead in network performance and swift activa-

tion/deactivation of sampling points.

Coordination among sampling points for the same flow is

crucial. Equally significant is strategically placing a budgeted

number of P4-programmable switches to maximize the number

of dynamic flows sampled at their required rates. We further

explore problem formulations for sampling point placement.

III. PROBLEM FORMULATION

The budgeted sampling point placement problems are

framed as Integer Linear Programming (ILP) problems con-

sidering multi-coverage. When a set of flows requires a

1No same round id in < 72 seconds even under an extreme case assuming
bandwidth is 10 Gbps, packet size is 84 bytes, and the sampling fraction is 1

higher sampling rate than a single point can provide, multiple

sampling points are necessary. With a budgeted number of P4-

programmable switches supporting coordinated sampling, the

ultimate objective is to maximize the number of flows in a

topology that can be sampled at their required rate possibly

using multiple sampling points. We define a flow as k-covered

if at least k points are chosen as sampling points on its path.

The Budgeted Maximum k-Coverage (BMkC) problem

aims to maximize the number of k-covered flows while

ensuring all flows are at least (k−1)-covered, given a budgeted

number of sampling points. When k = 1, this becomes the

Budgeted Maximum Coverage (BMC) problem [19].

Universal problem setting: Given a set of flows F =
{f1, ..., fm} on topology G(V,E), V is the set of switch

positions and E is the set of links. A flow fi ∈ F is denoted

by the switch positions it traverses as fi : vk → ... → vl. For

every vj ∈ V , if vj is part of fi, fi ∈ xj where xj is a set of

flows such that they all traverse vj . We call xj the position

set and vj is its position. X is the collection of all position

sets xj , i.e. X =
⋃n

j=1
xj . We define path matrix: Let AP

denote the path matrix AP = [ai,j], where ai,j ∈ {0, 1}. If

flow fi ∈ xj , ai,j = 1; otherwise, ai,j = 0. The formulation

notations are summarized in Table I.

A. Budgeted Maximum Coverage (BMC)

Given the universal problem setting, find a sub-collection

of X such that the number of 1-covered flows is maximized

within a budgeted number of P4-programmable switches B.

BMC Formulation:

argmax

m
∑

i=1

gi (1)

Subject to :

g −APx ≤ 0 (2)

n
∑

j=1

xj ≤ B (3)

xj ∈ {0, 1} (4)

gi ∈ {0, 1} (5)

The BMC problem is NP-hard [19]. The objective (1) is to

maximize the number of 1-covered flows gi such that gi = 1
if there is a sampling point on flow fi. This is achieved by

(2) combined with (5): For each flow fi, if APix = 0 which

means the chosen sampling points cannot cover it, then gi ≤ 0
and (5) results in gi = 0. If APix > 0 which means fi can be

covered, we have gi = 0 or gi = 1. Because (1) maximizes the

sum of gi, gi = 1 will be enforced. As a result, these ensure

that if a flow fi is covered, gi = 1. Otherwise, gi = 0. (3) is

the constraint on the budgeted number of sampling points. (4)

are the binary decision variables.

Although existing works adopt a polynomial time greedy al-

gorithm to solve this problem with a (1− 1

e
)-approximate result

[19], we achieve the optimal solution in pseudo-polynomial

time by using the MILP solver with proof in Section IV and

experiments in Section VI.

TABLE I: Parameters in the Formulations

Parameter Definition

AP m× n path matrix

APi
ith row of m× n path matrix, i ∈ {1, 2, ...,m}

xj Decision variable for switch position j, j ∈ {1, 2, ..., n}

x n× 1 binary vector of each switch position, x = {xj}
T

k Times of sufficient coverage of flow fi, i ∈ {1, 2, ...,m}
gi Gain of flow i, i ∈ {1, 2, ...,m}.

g m× 1 0-1 gain vector of gi,g = {g1, ..., gi, ..., gm}T

B Budgeted number of P4-programmable switches

B. Budgeted Maximum k-Coverage (BMkC)

Given the universal problem setting, find a sub-collection

of X such that the number of k-covered flows is maximized

while all flows are (k− 1)-covered within a budgeted number

of P4-programmable switches B.

The BMkC problem is the general version of BMC problem.

BMkC Formulation:

argmax

m
∑

i=1

gi (6)

Subject to:

∀i ∈ {1, ...,m}, gi −
1

k
APi

x ≤ 0 (7)

∀i ∈ {1, ...,m}, −APi
x ≤ −(k − 1) (8)

n
∑

j=1

xj ≤ B (9)

xj ∈ {0, 1} (10)

gi ∈ {0, 1} (11)

Constraints (6)(9)(10)(11) map to (1)(3)(4)(5). The dif-

ference between BMC and BMkC arises from (7) and (8).

Because each flow fi needs to be covered at least k times to

achieve a gain gi = 1, the 1

k
coefficient is added to the i-th

row of APx based on (2). The role of (8) is to guarantee all

flows are (k-1)-covered. The gi will be 0 if the fi cannot be

k-covered within the budget. In BMC, gi = 1 when fi can

be covered at least once within the budget. In BMkC, gi = 1
when fi can be k-covered within the budget.

IV. THE SAMPLING POINT PLACEMENT PROBLEMS

HARDNESS WALK-THROUGH

Even though the budgeted sampling point placement prob-

lems are NP-complete, it is possible to obtain optimal solutions

in polynomial time for useful realistic cases. We develop the

discussion of budgeted sampling point placement problems

from the minimum cost sampling point placement problems

(i.e., set multi-covering problems). In detail, we look at the

structure of the path matrices and show under what structures

problems can be solved optimally in polynomial time.

In section IV-A, we show that when a path matrix is bal-

anced, the set multi-covering problem can be solved optimally

using an LP. From this, we show that the left-hand-side matrix

of the BMC constraints forms a (0,±1) balanced matrix if

the path matrix of its corresponding minimum cost sampling

point placement problem is a (0, 1) balanced matrix. Under the

conditions that the left-hand-side matrix is (0,±1) balanced,

we prove a theorem guaranteeing BMC an optimal solution by

LP. Finally, we discuss the runtime of the unbalanced cases

in which a pseudo-polynomial optimal solution is achieved by

LP and branch and bound.

A. Linear Programming Optimum-Balanced Matrix

1) Minimum Cost Sampling Point Placement: Intuitively,

the Set k-Covering problem minimizes the number of sam-

pling points to cover all flows k times. The formulation is:

min{x|x ∈ {0, 1};APx ≥ k}.

Theorem 1. If A is a (0, 1) balanced matrix, b and c are

integral vectors and one of them is an all-one vector, then

min{cx|x ≥ 0;Ax ≥ b} and max{cx|x ≥ 0;Ax ≤ b} have

integral optimum solutions (if the optima are finite) [25].

By Theorem 1, we conclude that if the path matrix AP is

balanced, the polynomial running time LP produces an optimal

integral solution for the set k-covering problem.

Because a (0,1) matrix is balanced if and only if it does

not contain a submatrix that is an incidence matrix of any odd

cycle [25], the structure composed by all paths is sufficient

to show the balanced property of its path matrix. Roughly

speaking, the path matrix is balanced if the structure composed

of all paths does not have an odd-cycle. Thus, it is the structure

composed of all the target paths that results in the hardness

of the min-cost objective sampling point placement problem.
2) Budgeted Sampling Point Placement: Here we prove that

when the path matrix AP is balanced, the corresponding BMC

problem also achieves optimal integral solutions by LP. We

show that the left-hand-side matrix of the constraints of the

BMC formulation forms a (0,±1) balanced matrix if its path

matrix AP is a (0, 1) balanced matrix.

We organize the constraints of BMC in the matrix form

as in Theorem 1. First, the variable vector is extended to

be {g1, ..., gm, x1, ..., xn}
T . Then, the matrix form of BMC

constraints (2) and (3) is:

[

I −AP

0 1

] [

g

x

]

≤

[

0

B

]

. We call

AE =

[

Im×m −APm×n

0 1

]

extended path matrix.

Theorem 2. If the path matrix AP is a (0, 1) balanced

matrix, its corresponding extended path matrix AE is a (0,±1)
balanced matrix.

Proof. A (0,±1) matrix is balanced if no submatrix of it is

an odd hole matrix [8]. A hole matrix is a (0,±1) matrix that

contains two nonzero entries per row and per column, and no

proper submatrix of it has this property [8].

(1) Because AP is (0, 1) balanced, it only has even-cycle

incidence matrices which are hole submatrices. The sum of

the entries in the hole submatrices of −APm×n
can only

be −2c, c = 2, 4, 6, ... which is always a multiple of 4. So

−APm×n
does not voilate (0,±1) balanced property for AE .

(2)

[

−APm×n

1

]

is also balanced because the only case such

that 1 is involved into a hole matrix is

[

−1 −1
1 1

]

and the

sum of all entries is 0 which is a multiple of 4.

(3) As a result,

[

Im×m −APm×n

0 1

]

is balanced because

involving

[

I

0

]

does not make any other hole matrix.

Next, we prove an extended version of Theorem 1 to

support that when AE is (0,±1) balanced, the LP produces

integral/optimal solutions for BMC also.

Theorem 3. If A is a (0,±1) balanced matrix, then

min{x|x ≥ 0;Ax ≥ b−n(A)} and max{x|x ≥ 0;Ax ≤ b−
n(A)} has integral optimum solutions, where b is an integral

vector, n(A) is the column vector whose ith components ni(A)
is the number of ’−1’s in the ith row of matrix A.

Proof. The strategy follows [12]. We transform (0,±1) bal-

anced matrix Am×n into a (0, 1) balanced matrix Bm×2n.

Given A is (0,±1) balanced, we have B is (0, 1) balanced

because (1) The corresponding elements in B transformed

from a hole matrix of A, which is an even hole matrix, either

still compose an even hole matrix, or cannot be a hole matrix;

(2) The other elements transformed from a non-hole matrix of

A cannot compose any hole matrix. So, no sub-matrix of B

is an incidence matrix of an odd cycle.

A vector x satisfies max{x|x ≥ 0;Ax ≤ b− n(A)} if and

only if there is a vector y = [yp, yN]T = [x, 1 − x]T that sat-

isfies max{y|y ≥ 0;By ≤ b} where B = [BP , BN] and y =
{yP

1
, ..., yPn , y

N
1
, ..., yNn }T , because: By = [BP , BN][x, 1 −

x]T = BPx−BNx+BN = Ax+ n(A) ≤ b, which implies

Ax ≤ b−n(A). Based on Theorem 1, max{y|y ≥ 0;By ≤ b}
has integral optimum solutions where B is (0, 1) balanced

and b is an integral vector. This transformation maps integral

vectors y into integral vectors x. The proof of min{x|x ≥
0;Ax ≥ b− n(A)} case is the same.

By Theorem 2 and 3, we directly conclude that if the

path matrix is balanced, the BMC problem can be solved

in polynomial time by LP because (1) AE is (0,±1) bal-

anced; (2)

[

0

B

]

is an integral vector (It is worth noting that

”b − n(A)” is no different than ”b” when the requirement

of ”b” is just to be any integral vector); (3) the solution of

objective max
∑m

i=1
gi is the same as the solution of objective

max(
∑m

i=1
gi +

∑n

j=1
xj).

However, these are not enough to deal with BMkC case be-

cause its left-hand-side matrix is not a (0,±1) matrix. We next

show how the branch and bound technique achieves pseudo-

polynomial optimal solutions in realistic network scenarios.

B. Branch and Bound Enabled Pseudo-Polynomial Optimum

While the path matrix may not always be balanced, ILP

solvers using LP-based branch and bound algorithms [6]

quickly find optimal solutions for both BMC and BMkC.

Because the practical network topology tends to be planar

and the odd cycle length is constant, we show that the branch

and bound technique returns the optimal solution in pseudo-

polynomial time in such cases. We consistently achieve opti-

mal solutions for budgeted sampling point placement problems

Algorithm 2 Greedily Allocating Flows to Sampling Points

Input: {p}: Set of sampling points; {f}: Dynamic flows;

{c}: Sampling capacity on points {p}; {fs}: Sampled flows;

lj : Sampling load on point pj ;

Output: {fu}: Unsampled flows.

Function greedy alloc:

{fu} = {f}; {fs} = ∅
while {fu}! = ∅ do
{f} = {f} − {fs}
{p} = {p} − {pj | cj = 0}
(pj , lj , {fj}) = select max({f}, {p})

if lj > cj then
{fj} = sort({fj})

{fu} = update unsampled({fj}, lj , cj)

{fs} = sample({fj} − {fu})

cj = 0
else

{fs} = sample({fj})

cj = cj − lj
end

end

using the Gurobi solver [3] in reasonable runtimes across

20,000 experiments on real topologies in Section VI-C.

The branch and bound technique systematically explores

all possible integral solutions for optimal selection [13]. De-

spite its exhaustive nature, the running time is not always

exponential since only non-integral decision variables need

consideration. Some variables remain integral (0 or 1) even

under LP due to certain properties (e.g., balanced). The

conditions in Theorem 1 and Theorem 3 are sufficient, though

not necessary, for this conclusion. As the LP is solvable in

polynomial time L [18], the running time of BMC is mainly

influenced by the number K of branch and bound nodes for all

odd-cycles. The running time O(LK) is pseudo-polynomial,

treating K as a constant (independent of input size) [16], and

can be further reduced using parallel branch and bound [5].

Fortunately, our problem is constrained, as practical topolo-

gies typically have a limited number of nodes, forming planar

graphs. A planar graph with a constant length of odd cycles

has a polynomial number of odd cycles [17, Theorem 4],

aligning with our real topology cases. Additionally, flows on

a topology do not create more odd cycles than those present

in the topology. Thus, the pseudo-polynomial optimum case

represents the general scenario of the BMC problem, reflecting

its weak NP-complete property [16].

V. SAMPLING TASKS ALLOCATION

We provide a concise overview of the algorithm (Algorithm

2) which allocates flows to sampling points to maximize

the number of flows sampled at their required rate. This

allocation continuously runs on the controller unless all flows

are sampled at a desired rate or all points are fully utilized.

Each sampling point pj has a traffic load lj which it attempts

to sample at the required rate, and a residual sampling capacity

cj which is the capacity it has left to sample more flows.

Sampling points that are not currently overloaded from a

sampling perspective are in the serving pool. The controller

greedily selects the sampling point pj from the serving pool

with the maximum current traffic load lj . If lj > cj , indicating

the switch is susceptible to sampling overload, some flows or

fractions of flows may not be sufficiently sampled at pj .

To decide which (fractional) flows are sampled at pj and

which must be removed from sampling at pj and placed in a

sampling request pool, we prioritize sampling tasks based on

two criteria: (1) flows uniquely covered at pj take precedence

over multi-covered flows, and (2) mice flows take precedence

over elephant flows. Consequently, an elephant flow with

multiple available sampling points is more likely to have its

sampling rate reduced at pj and potentially be sampled at a

second sampling point. The controller removes flows from

being sampled at this point until the sampling point is not

overloaded and places them in the sampling request pool.

The controller assigns flows in the request pool to a sampling

point on their path if one exists that has a sampling capacity.

This process recurs until all flows are sampled or all sampling

points are fully loaded.

The controller continuously monitors dynamic flows. When

new flows arrive, it routes them and allocates sampling tasks

based on the sampling points they traverse and their residual

capacity. When flows depart, sampling capacity is regained.

VI. EVALUATION

In this section, we quantify the overhead and performance

of the coord sampling algorithm on actual P4-programmable

switches. We then evaluate the effectiveness of the placement

algorithms in terms of how many flows they can cover k-

times within a given budget, their computation time, and their

effectiveness at providing sufficient sampling capacity to meet

sampling demand using real network flows.

A. Coordinated Sampling Overhead Evaluation

We assess the coordinated sampling algorithm’s impact

by comparing round-trip time (RTT) and throughput across

multiple coordinated sampling settings including port-based

sampling using sFlow [23]. sFlow is an industry-standard

technology for sampling packets at layer 2.

The testbed topology aligns with Fig. 1, utilizing Arista

7170-32CD switches for P4 SW 1 and P4 SW 2. Host 1,

Host 2, and Monitor are Intel NUC 10 mini PCs. We present

RTT and throughput evaluation results for 6 sampling fraction

(sf) settings below on P4 SW 1 and P4 SW 2.

• s1:sf1 = 0, sf2 = 0
• s2:sf1 = 0, sf2 = 0.25
• s3:sf1 = 0, sf2 = 0.5

• s4:sf1 = 0, sf2 = 1
• s5:sf1 = 0.5, sf2 = 0.5
• s6: sF low.sf2 = 1

To eliminate factors like switch queuing, we conduct RTT

and throughput tests without introducing background traffic.

The results are presented in Fig. 3. RTT evaluation in-

volves generating 10,000 pings between Host 1 and Host 2
under the six different sampling settings. Notably, the co-

ord sampling program has negligible influence on the RTT

compared to both no sampling and sFlow.

s1 s2 s3 s4 s5 s6

Setting Index

0

0.5

1

1.5

2

2.5
p

in
g

 R
T

T
 (

u
n

it
 m

s
)

1 2 3

File Index

0

50

100

150

200

250

s
c
p

 T
h

ro
u

g
h

p
u

t(
u

n
it
 M

B
/s

)

s1

s2

s3

s4

s5

s6

Fig. 3: Algorithm Performance Evaluation on Real Testbed

Fig. 4: (De)activation Latency

on Arista 7170-32CD

Fig. 5: Real World Topolo-

gies

The throughput evaluation utilizes the secure copy protocol

(scp) to transfer three different-sized files under the six sam-

pling settings. Each file is transferred 1,000 times, with sizes

of 7.5MB, 4.2MB, and 214KB for File 1, File 2, and File 3,

respectively. Across all six settings, throughput remains nearly

identical to no sampling, exhibiting minimal fluctuations.

B. Coordinated Sampling (De-)activating Latency Evaluation

We evaluate the latency of activating and deactivating co-

ord sampling algorithm on the real P4-programmable switches

in Fig. 1. We use “tcpreplay” to send 100,000 sequenced ICMP

packets from Host 1 to Host 2 at a rate of 1,000 packets per

second to test the activation and deactivation time 1000 times.

The procedure is as follows: We activate the coord sampling

of P4 SW 1 from the Monitor. The activation time ta is

therefore captured on Monitor. At the same time, Monitor

keeps listening for any incoming ICMP packets, and the time

tf of the first arrival packet is recorded. We use the value

of tf − ta as the activation time. We then deactivate the

coord sampling of P4 SW 1 on Monitor remotely. The

deactivation time td, the time tl of the last captured ICMP

packet, and the last interval time k between two received

ICMP packets are captured on Monitor. We use the value

of td + k − tl as the deactivation time. Notably, the actual

(de)activation time is less than the experimental result because

there is a round trip time from the Monitor to the P4 SW 1.

The activation and deactivation latencies are around 0.05

and 0.01 seconds shown in Fig. 4. Combined with the through-

put and RTT results, this indicates our implementation is

suitable for scaleable dynamic coordinated sampling. Next,

we show the coverage and runtime of the optimal budgeted

placement algorithm and its advantage to sample sufficiently

in realistic settings.

C. Budgeted Placement Calculation Evaluation

We evaluate the sampling point placement solutions of

BMK and BMkC produced by: (1) the ILP solver Gurobi [3]

denoted as optimal algorithm; (2) a greedy algorithm that

Budgeted Number of Sampling Switches

P
e

rc
e

n
ta

g
e

 o
f

C
o

v
e

re
d

 P
a

th
s

0 10 20 30
0.4

0.6

0.8

1
Germany

Optimal

Greedy

0 10 20 30 40
0.6

0.7

0.8

0.9

1
US Carrier

Optimal

Greedy

Fig. 6: Coverage Percentage Comparision of BMC

Budgeted Number of Sampling Switches

R
u

n
ti
m

e
(s

e
c
)

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25
Germany

Optimal

Greedy

0 10 20 30 40
0

0.1

0.2

0.3

US Carrier

Optimal

Greedy

Fig. 7: Runtime Comparision of BMC

greedily selects the placement points using the maximum

number of uncovered flows in each iteration until the number

of chosen points reaches the budget. We also evaluate the

runtime of the two algorithms. We run our experiments based

on two real-world topologies [4], [22] shown in Fig 5.

On the US carrier topology, we select nodes with degrees

of 2 to construct a pool from which we randomly select the

sources and destinations. On the Germany topology, all nodes

are eligible to be selected as a source or destination. Based on

the Germany and US Carrier topologies, we randomly select

1,000 and 1,500 different pairs of sources and destinations 100

times. We show the max, min, and average of the result based

on the 100 experiments for each setting on each case.

1) BMC: Given a budgeted number of sampling points, the

goal is to determine the sampling point placement to maximize

the number of 1-covered flows.

In 4800 experiments on two real topologies, the result

of the optimal algorithm is a little better than the greedy

algorithm, as shown in Figs. 6 and 7. Over 90% of the flows

are covered with only half the number of the sampling points

required to cover all flows which reflects the necessity to find

a balance between the path coverage and cost. The runtime of

the optimal algorithm is comparable with the greedy algorithm

in 10−2 ∼ 10−1 seconds.

2) BMkC: Given k = 2 and a budgeted number of sampling

points, the goal is to determine the sampling point locations

that maximize the number of 2-covered flows while ensuring

all flows are 1-covered.

In 4,500 experiments, shown in Fig. 8 and 9, the opti-

mal algorithm consistently outperforms the greedy algorithm

and its runtime is comparable with the greedy algorithm in

10−2 ∼ 10−1 second level. Notably, when the budgeted

number of sampling points is at or slightly above the min-

imum required to cover all flows once, the optimal algorithm

achieves a significantly higher number of 2-covered flows

than the greedy algorithm. For example, with a budget of

26 for the Germany topology, the optimal algorithm achieves

Budgeted Number of Sampling SwitchesP
e

rc
e

n
ta

g
e

 o
f

2
-C

o
v
e

re
d

 P
a

th
s

25 30 35
0

0.2

0.4

0.6

0.8

1
Germany

Optimal

Greedy

40 45 50 55 60
0

0.2

0.4

0.6

0.8

1
US Carrier

Optimal

Greedy

Fig. 8: Coverage Percentage Comparision of BMkC

Budgeted Number of Sampling Switches

R
u

n
ti
m

e
 (

s
e

c
)

25 30 35

0.05

0.1

0.15
Germany

Optimal

Greedy

40 45 50 55 60
0.1

0.2

0.3

0.4

0.5
US Carrier

Optimal

Greedy

Fig. 9: Runtime Comparision of BMkC

around 90% 2-covered flows in 68 out of 100 randomized

flow set instances (60.43% 2-coverage on average), while

the greedy algorithm fails to achieve any 2-covering in 98

out of 100 instances (1.76% 2-coverage on average). This

highlights the potential risk of substantial sampling loss when

using the greedy algorithm in such scenarios, which becomes

critical when required sampling rates are high and multiple

sampling points are needed to sample flows at sufficient rates,

as evaluated in the next subsection.

D. Budgeted Placement Effectiveness on Dynamic Flows

To evaluate the budgeted placement effectiveness of the

optimal and greedy methods for the coordinated sampling

in practice, we use the Germany topology with a real-world

dataset [22] of flows on that topology.

In detail, we use both methods to produce the budgeted sam-

pling point placement of BMkC with k = 2 on the Germany

topology, feed 24-hour dynamic flows to the network, and

allocate dynamic flow sampling tasks to the placed sampling

points for best-effort sufficient sampling introduced in Section

V. We capture the number of unsampled/insufficientlysampled

flows for both placement results to quantify the budgeted

placement effectiveness.

The dynamic flows on the Germany Topology, illustrated in

Fig. 10, are recorded every 5 minutes, providing information

on (src, dst) pairs and corresponding demand values, l, which

we use as the flow sampling load. Each sampling point pi
is set with a maximum demand capacity of c = 50. When

a sampling point pi is selected, and the total demand value

of flows on pi exceeds 50, only a subset or fractional flows

are sampled. Consequently, unsampled or fractional sampled

flows await the next opportunity for sufficient sampling.

1) Optimal vs Greedy Placement with Input of All Flows:

Here we consider all 1225 possible paths on the Germany

topology as input paths for budgeted placement calculation.

To maximize cost savings, we set the budget to 28 sampling

points, which under the optimal algorithm is enough to cover

00:00:00 06:00:00 12:00:00 18:00:00 00:00:00

Time

400

600

800

1000

1200

1400

1600

1800

N
u
m

b
e
r

o
f
F

lo
w

s

1000

2000

3000

4000

5000

6000

7000

8000

D
e
m

a
n
d
 V

o
lu

m
e
 o

f
F

lo
w

s

Number of Flows

Demand Volume of Flows

Fig. 10: Dynamic Flows on

Germany Topo

00:00:00 06:00:00 12:00:00 18:00:00 00:00:00

Time

0

5

10

15

20

25

N
o
.
o
f
U

n
s
a
m

p
le

d
 F

lo
w

s

Optimal Placement

Greedy Placement

Fig. 11: Placement Effective-

ness Comparision

00:00:00 06:00:00 12:00:00 18:00:00 00:00:00

Time of Input Flows

16

18

20

22

24

26

B
u

d
g

e
te

d
 N

o
.

o
f

P
o

in
ts

0

500

1000

1500

N
o

.
o

f
T

w
ic

e
 C

o
v
e

re
d

 F
lo

w
s

Budget

Optimal Placement

Greedy Placement

Fig. 12: No. of 2-coverage by

Optimal and Greedy with Dif-

ferent Budget and Input Flows

00:00:00 06:00:00 12:00:00 18:00:00 00:00:00

Time of Input Flows

12

14

16

18

20

22

N
o

.
o

f
U

n
s
a

m
p

le
d

 F
lo

w
s

Optimal Placement

Greedy Placement

Fig. 13: Placement Effective-

ness Comparison with Differ-

ent Input Flows

all flows at least once. The optimal placement achieves 1117

2-covered flows, while the greedy placement does not yield

any 2-covered flows. In this case, if a sampling point becomes

overloaded, with the greedy placement, there is no alternative

sampling point and thus flows are un- or under-sampled.

We greedily allocate 24-hour flows on the sampling points

calculated by optimal and greedy placement algorithms. The

results are shown in Fig. 11. The optimal placement takes

advantage of the multiple sampling points on many of the

paths and enables on average 5 more flows to be sufficiently

sampled per minute than with greedy placement, showcasing

its robustness and superiority for coordinated sampling.

2) Optimal vs Greedy Placement with Input of Different

Flows: To illustrate the impact of input flows on optimal

and greedy placement strategies, we execute the placement

algorithms using flows from different times (x-axis) of the

day as input, with a budget that allows for the lowest cost

solution to cover at least 90% of the flows twice using optimal

placement, the required budgets range mostly between 24-26

switches shown in Fig. 12. Note with these budgets, the greedy

algorithm is incapable of achieving any 2-covered flows.

Within a budget range of approximately 25, the optimal

algorithm achieves 1,000-1,500 2-covered flows, while the

greedy algorithm does not achieve 2-coverage but only 1-

coverage. Employing these sampling point placement settings,

we introduce 24-hour flows to the network and employ the

greedy allocation algorithm for sufficient sampling. The results

are shown in Fig.13. The optimal placement surpasses the

greedy placement when the input flows are from 6:00:00 to

18:00:00 and is especially stable from 8:00:00 to 11:00:00.

As shown in Fig. 10, the number of flows is high from

8:00:00 to 18:00:00. We conclude that an increase in the

number of input paths for optimal placement calculation is

associated with a decrease in the average number of unsampled

flows in dynamic scenarios. However, this phenomenon is

not obvious for the greedy placement algorithm because the

greedy algorithm tends to select nodes with high betweenness

centrality regardless of the total number of flows.

VII. RELATED WORK

Recent works on network monitoring adopt external moni-

tors building on an SDN architecture to avoid degrading switch

performance, as do we. Those based on OpenFlow [7] forward

entire packets to the monitor, wasting network bandwidth if

only portions of a packet are required. Among P4-enabled

monitor systems, Ding, et al. [14] focus on a greedy incre-

mental P4-programmable switch deployment strategy, while

Jonatas, et al. [21] select locations for in-band telemetry (INT)

to append statistics without degrading performance. These are

different from our problem setting and purpose.

Among the works that consider sampling scalability, So-

gand, et al [24] separate sampling decisions on short and

long flows to enhance sampling efficiency. Du, et al [15]

adapts sampling rate for different flows with non-duplicate

sampling [28]. Reuven, et al [11] aim at a best-effort single

point per-flow sampling allocation regardless of sampling

rate demand. Conversely, we study and coordinate flow-based

sampling at multiple points. Another coordinated sampling

work [26] uses a hash-based method to guarantee each flow

is only sampled at one router to avoid duplicated sampled

packets. Therefore, it does not support sampling flows at

multiple points, as we do.

Furthermore, existing sampling point placement meth-

ods [27], [30] typically use heuristic greedy algorithms without

examining the characteristics of practical network flows on the

ability to obtain optimal solutions, as we do.

VIII. CONCLUSION

Our coordinated sampling solution enhances the scalability

of flow sampling across networks. The placement algorithm

maximizes the number of multi-covered flows within a budget,

enabling an increased count of sufficiently sampled flows.

These lightweight and fast algorithms are well-suited for

dynamic sampling activation.

REFERENCES

[1] Arista price list 2024. https://itprice.com/arista-price-list/7170.html.
Accessed on 2024-03-11.

[2] Coordinated sampling on p4-programmable switches. https://github.com/
mzc796/coord sampling. Accessed on 2023-11-10.

[3] Gurobi mixed-integer programming (mip) – a primer on the basics. https:
//www.gurobi.com/resource/mip-basics/. Accessed on 2023-11-10.

[4] Topology zoo. http://www.topology-zoo.org/dataset.html, 2012. Ac-
cessed on 2023-10-31.

[5] David A Bader, William E Hart, and Cynthia A Phillips. Paral-
lel algorithm design for branch and bound. Tutorials on Emerging

Methodologies and Applications in Operations Research: Presented at

INFORMS 2004, Denver, CO, pages 5–1, 2005.
[6] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges,

Gerard Ribière, and Olivier Vincent. Experiments in mixed-integer linear
programming. Mathematical Programming, 1:76–94, 1971.

[7] Samaresh Bera, Sudip Misra, and Abbas Jamalipour. Flowstat: Adaptive
flow-rule placement for per-flow statistics in sdn. IEEE Journal on

Selected Areas in Communications, 37(3):530–539, 2019.
[8] Claude Berge. Balanced matrices. Mathematical Programming, 2:19–

31, 1972.

[9] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM Computer Communication Review, 44(3):87–95,
2014.

[10] Kevin Butler, Patrick McDaniel, and William Aiello. Optimizing bgp
security by exploiting path stability. In Proceedings of the 13th ACM

conference on Computer and communications security, pages 298–310,
2006.

[11] Reuven Cohen and Evgeny Moroshko. Sampling-on-demand in sdn.
IEEE/ACM Transactions on Networking, 26(6):2612–2622, 2018.

[12] Michele Conforti, Gérard Cornuéjols, and Kristina Vušković. Balanced
matrices. Discrete Mathematics, 306(19-20):2411–2437, 2006.

[13] Koen MJ De Bontridder, BJ Lageweg, Jan K Lenstra, James B Orlin, and
Leen Stougie. Branch-and-bound algorithms for the test cover problem.
In Algorithms—ESA 2002: 10th Annual European Symposium Rome,

Italy, September 17–21, 2002 Proceedings 10, pages 223–233. Springer,
2002.

[14] Damu Ding, Marco Savi, Gianni Antichi, and Domenico Siracusa.
An incrementally-deployable p4-enabled architecture for network-wide
heavy-hitter detection. IEEE Transactions on Network and Service

Management, 17(1):75–88, 2020.
[15] Yang Du, He Huang, Yu-E Sun, Shigang Chen, and Guoju Gao. Self-

adaptive sampling for network traffic measurement. In IEEE INFOCOM

2021-IEEE Conference on Computer Communications, pages 1–10.
IEEE, 2021.

[16] Michael R Garey and David S Johnson. Computers and intractability.
A Guide to the, 1979.

[17] Seifollah Louis Hakimi and Edward F Schmeichel. On the number of
cycles of length k in a maximal planar graph. Journal of Graph Theory,
3(1):69–86, 1979.

[18] Narendra Karmarkar. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual ACM symposium

on Theory of computing, pages 302–311, 1984.
[19] Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted

maximum coverage problem. Information processing letters, 70(1):39–
45, 1999.

[20] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. One sketch to rule them all: Rethinking network
flow monitoring with univmon. In Proceedings of the 2016 ACM

SIGCOMM Conference, pages 101–114, 2016.
[21] Jonatas Adilson Marques, Marcelo Caggiani Luizelli, Roberto Irajá

Tavares da Costa Filho, and Luciano Paschoal Gaspary. An optimization-
based approach for efficient network monitoring using in-band network
telemetry. Journal of Internet Services and Applications, 10:1–20, 2019.

[22] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur
Tomaszewski. Sndlib 1.0—survivable network design library. Networks:

An International Journal, 55(3):276–286, 2010.
[23] Peter Phaal. sflow version 5. https://sflow.org/sflow version 5.txt.

Accessed on 2023-11-10.
[24] Sogand Sadrhaghighi, Mahdi Dolati, Majid Ghaderi, and Ahmad Khon-

sari. Flowshark: Sampling for high flow visibility in sdns. In IEEE IN-

FOCOM 2022-IEEE Conference on Computer Communications, pages
160–169. IEEE, 2022.

[25] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, 1998.

[26] Vyas Sekar, Michael K Reiter, Walter Willinger, Hui Zhang, Ra-
mana Rao Kompella, and David G Andersen. csamp: A system for
network-wide flow monitoring. 2008.

[27] Kyoungwon Suh, Yang Guo, Jim Kurose, and Don Towsley. Locating
network monitors: complexity, heuristics, and coverage. Computer

Communications, 29(10):1564–1577, 2006.
[28] Yu-E Sun, He Huang, Chaoyi Ma, Shigang Chen, Yang Du, and Qingjun

Xiao. Online spread estimation with non-duplicate sampling. In
IEEE INFOCOM 2020-IEEE Conference on Computer Communications,
pages 2440–2448. IEEE, 2020.

[29] Oksana Yevsieieva and Seyed Milad Helalat. Analysis of the impact
of the slow http dos and ddos attacks on the cloud environment.
In 2017 4th International Scientific-Practical Conference Problems of

Infocommunications. Science and Technology (PIC S&T), pages 519–
523. IEEE, 2017.

[30] Seunghyun Yoon, Taejin Ha, Sunghwan Kim, and Hyuk Lim. Scalable
traffic sampling using centrality measure on software-defined networks.
IEEE Communications Magazine, 55(7):43–49, 2017.

