
DNS Exfiltration Guided by Generative Adversarial Networks

Abdulrahman Fahim∗, Shitong Zhu∗, Zhiyun Qian∗, Chengyu Song∗, Evangelos Papalexakis∗,
Supriyo Chakraborty†, Kevin Chan‡, Paul Yu‡, Trent Jaeger∗, and Srikanth V. Krishnamurthy∗

∗ University of California Riverside
† AI Foundations, Capital One

‡ Army Research Lab

Abstract—Today, DNS exfiltration attacks are detected by
checking for anomalies present in the traffic, such as unusu-
ally high transmission rates to a single domain and/or DNS
query patterns that are very different from those in benign
queries. While such approaches are seemingly robust, we
show in this paper that our carefully designed and novel DNS
exfiltration attack, DOLOS, that uses a generative adversarial
network (GAN), can guide the encoding of sensitive data in
a manner that both evades these detectors and significantly
speeds up the exfiltration rate compared to prior methods.
At its core, DOLOS divides the exfiltration data into smaller
chunks, and projects each chunk into a representation that
is very similar to benign queries. In addition, DOLOS adap-
tively tunes its exfiltration rate to conform with benign DNS
traffic from the compromised host, and introduces proper
levels of spurious traffic to reduce entropy. Importantly,
DOLOS evades machine learning (ML) based detectors with
no prior knowledge of their architectures or training sets
(i.e., it is a blackbox exfiltration). We perform extensive
evaluations using multiple datasets and also have a real im-
plementation of DOLOS. Our evaluations show that DOLOS
has a 12% detection probability even if 6 out of the 9
state-of-the-art defenses that we consider, are jointly used
to detect exfiltration; if any of today’s baseline exfiltration
techniques try to achieve the same rate as DOLOS in this
setting, they are almost surely detected. If we reduce the
rates of the baselines to achieve even a low albeit slightly
higher detection probability than DOLOS (0.15), we see
that they take 25× longer to achieve the exfiltration. With
the other three defenses, we find that baselines are almost
surely detected while DOLOS remains relatively unaffected
regardless of the rate of exfiltration.

1. Introduction

Attempts to steal sensitive information of interest (e.g.,
credit card details) from compromised hosts is an ongoing
goal of attackers [44], [83]. One technique for stealing
sensitive information is DNS exfiltration [7], wherein ad-
versaries hide and thereby exfiltrate data in DNS queries.
Untill a decade ago, DNS exfiltration was not seen as a
major threat and thus, enterprises had overlooked inspect-
ing DNS traffic in their intrusion detection systems and
firewalls [38]. This seemingly has resulted in an increase
in DNS exfiltration incidents [23] and thus, in stolen
sensitive data from private networks [44]. In light of this,
many enterprises have begun to monitor DNS traffic and
have deployed many recent DNS exfiltration defenses [3],

[64], [74], bringing about the belief that DNS exfiltration
has been effectively curbed. Such defenses mainly rely
on recognizing distinctive patterns in existing/previoius
exfiltration traffic compared to benign DNS queries (e.g.,
entropy of the query, number of capital letters) [3]. In ad-
dition, exfiltration detectors monitor traffic to unexpected
domains and (1) measure the volume of DNS traffic or/and
(2) apply sophisticated information-theoretical approaches
to estimate the amount of exfiltrated data that might be
potentially embedded in the observed stream [73], [74].
Thus, in the absence of a careful tuning of the exfil-
tration rate or when simplistic encoding schemes (e.g.,
Iodine [15]) are used to represent the exfiltration data,
these detectors can easily catch exfiltration attempts. In
this work we ask: is DNS exfiltration viable in spite of
these defenses?
Today’s exfiltration methods. Existing DNS exfiltration
attacks leverage general-purpose encoders (e.g., Base-
32/Base-64) to create DNS queries from sensitive data.
These methods (agnostic to the type of exfiltration data)
transform any arbitrary input data into a specific represen-
tation space to comply with DNS rules (e.g., the limited
character set allowed in DNS queries) [63]. While they
have shown success in the past [44], recently proposed
machine learning (ML)-based defenses can differentiate
these exfiltration attacks from benign queries with high
accuracy [3], [64].
Challenges in the presence of today’s defenses. Even
if an attacker manages to compromise a host (e.g., in an
enterprise via a phishing attack), accomplishing a success-
ful DNS exfiltration attack is not easy. First, an attacker
has no knowledge of the defenses deployed by the victim;
DNS exfiltration detectors can range from signature-based
scanners to much more sophisticated ML-based detectors
[3], [11]. Second, the encoding of the exfiltration data
must allow exfiltration to occur at reasonably high rates
to exploit the data in a timely way. To do so, the encod-
ing must be compact. Beyond this, since detectors often
consider host-specific volumes to detect anomalies, the
attacker’s malware must determine the proper exfiltration
rate that is as high as possible and yet evades detection,
with low runtime complexity.
Our approach. In this paper, we design DOLOS (named
after the Greek spirit of trickery), a stealthy and ef-
ficient black-box DNS exfiltration attack. At its core,
DOLOS has an encoding-decoding framework, which is
built atop a generative adversarial network (GAN). In
brief, by iteratively trying to fool a discriminator neural
network (that continuously learns to distinguish between

1

benign and fake queries), the generator learns to map
ex�ltrated data to a latent space representation which is
almost indistinguishable from that of benign DNS queries
(and hence, can elude strong state-of-the-art detectors).
Because the discriminator is arguably the best detector,
re�ning queries towards evading the discriminator makes
the generated encoding extremely effective in blackbox
settings (can fool several of today's ML based detectors).
Note that formally, a latent space is de�ned as an ab-
stract, possibly multi-dimensional space that encodes a
meaningful internal representation of externally observed
inputs. To aid fast ex�ltration, the mapping (encoding)
is kept as compact as possible, while ensuring that it
is decodable with high accuracy at the attacker's exter-
nal site. Although DOLOS's training uses benign traf�c
different from that at a compromised host, it learns the
intrinsic patterns of benign DNS queries; thus, its outputs
online are very similar to such queries even when it is
applied to previously unseen ex�ltration data. Note that
training a deep-learning-based generator on the host itself
encumbers high computation cost and requires a lot of
training data which is hard to obtain online in a timely
way. DOLOS circumvents this issue by training its models
of�ine and porting them onto the victim (this approach is
very effective as shown later).

We account for multiple practical constraints, such
as composing the ex�ltrated data into small chunks that
adhere to the speci�cations of DNS queries [63]. DOLOS
also includes a novel rate-tuning module that adjusts the
ex�ltration rate, guarantees decodability at the remote the
site (the encoding itself only provides decodability with
high accuracy but no guarantees on its own) and injects
appropriate spurious queries based on observed benign
traf�c from the victim; this prevents the attack from being
detected and maximizes the ex�ltration ef�ciency to the
extent possible. Put together, DOLOS achieves stealthy,
ef�cient, reliable and stable DNS ex�ltration in the wild.
Contributions. A summary of our contributions are:

� We design and prototype a novel generative encoding-
decoding framework for stealthy encoding of arbitrary
data, ef�ciently into DNS queries.

� We include a novel ex�ltration-rate-tuning module, that
includes online mechanisms to ensure proper spurious
query injection and reliability in data extraction in con-
junction with the above framework, to design DOLOS, a
stealthy and ef�cient DNS ex�ltration tool for secretly
collecting data from compromised hosts evading several
of today's defenses.

� We evaluate DOLOS (with datasets and to a limited
extent with a prototype implementation) against 9 state-
of-the-art defenses [3], [9], [11], [34], [39], [53], [64],
[73], [74] and compare its performance with traditional
ex�ltration attack baselines. We �nd that DOLOS expe-
riences a 12 % detection rate even if 6 of the 9 defenses
we consider are jointly used; if the baselines try to
achieve the same rate of ex�ltration as DOLOS, they are
almost surely detected by at least one of the defenses.
If their rates are reduced to achieve a 0.15 detection
probability (still slightly higher than that with DOLOS),
we see that they are 25� slower than DOLOS. With
the other three defenses that require to be trained with
malicious examples of the attack method, the baselines

Figure 1: An example of DNS ex�ltration. An attacker embeds
credit card information (in red) in a DNS query destined for
its remote domain, “attacker.com”. The query is routed to “at-
tacker.com” to resolve the IP address of CreditCardInfo, which
enables the attacker to acquire the information.

are almost always detected while DOLOS is almost
never detected regardless of the rate of ex�ltration.

2. Background and Threat model

2.1. Background

Malware on a compromised host can ex�ltrate stolen
data by embedding the same in DNS queries. Since
DNS resolvers are recursive, such ex�ltration queries
are delivered to a primary domain of the attacker (e.g.,
attacker.com). An example of DNS ex�ltration is
shown in Fig. 1, where credit card information is extracted
from a victim. DNS ex�ltration allows opportunistically
accessed data to be streamed over a long period with-
out interruption or detection. Importantly, being a critical
service, DNS cannot be completely blocked by admin-
istrators [4]. In contrast, protocols like ftp and HTTP
may be blocked/restricted [13], [19]. For example, Frame-
Pos, a malware targeting networked Point of Sale (POS)
machines, ex�ltrated 56M credit card records over six
months via DNS queries, after capturing information when
cards were processed by the victim POS host [25], [44].
However, state-of-the-art detection methods are effective
in detecting and thwarting such attacks [64].
Today's DNS ex�ltration attacks . Next, we discuss mea-
sures attackers currently take towards successful ex�ltra-
tion using DNS, while remaining stealthy.

Acquiring aged domains.If there is a large traf�c
volume to anewdomain, many defenses (e.g., a popular
one from Palo Alto Networks [66]) trigger an alarm sus-
pecting that the domain was created for DNS ex�ltration.
To counter, attackers either purchase or compromise aged
domains [72].

Choosing common DNS lookup types.DNS supports
multiple lookup types [63], the most common ones being
A and AAAA, to resolve IP domains. Other DNS lookup
types includeTXT, used for domain ownership veri�cation
and email spam prevention; such lookups carry larger
volumes of data [63] and are uncommon. Ex�ltration
using these latter types is faster, but these types often
trigger alerts due to their rarity [33], [64]. Thus, attackers
typically useA and AAAA, which limit the rate of ex�l-
tration, but cannot be easily detected.

Bypass caching by choosing small TTLs.Most DNS
resolvers cache previously resolved DNS queries to avoid
repeated resolutions. DNS responses carry Time-To-Live
(TTL) values [63] that dictate how long the resolved query
stays valid (in the cache). Attackers' domains typically
respond with very small TTL values to force the DNS

2

resolver to repeatedly resolve the malware's requests to
increase the volume of ex�ltrated data. Since benign do-
mains also commonly use small TTL values (� 60s as
per a previous study [74]), detecting ex�ltration based on
small TTL values is error prone. We point out that in [3],
38% of requests in the studied dataset have TTL values of
0s (no caching). Thus, any method that relies on TTL for
classi�cation will cause high false positives. To the best
of our knowledge, there is no detection method that uses
TTL values to make inferences.

Managing transmission rates.Aggressive transmis-
sion of ex�ltration queries (at high rates) can be detected
even by defenses that simply count requests to a remote
domain within short time windows [73]. Hence, attackers
use grace periods (e.g.,� minutes) between queries. One
detection method counts the number of cache misses to
�ag attacks; this implicitly limits the number of ex�ltra-
tion queries that can be sent in the time window [39].
To compensate for this rate reduction, ex�ltration queries
can be made longer; however, there are limits on the
lengths of DNS queries [63]. Moreover, other defenses
can more accurately detect long queries than short ones
[42], [64], [73]. Thus a challenge in fast ex�ltration is
how to generate long queries without being detected.

Encoding ex�ltration data.Attackers typically encode
ex�ltration data for two reasons. First, encoding ensures
that the generated query complies with standard DNS pro-
tocols. For instance, common DNS request types (i.e.,A
andAAAA[63]) only accept 64 characters as the alphabet
for body text (i.e., alphanumerical letters, hyphen and dot).
Second, it offers some obfuscation aiding stealth. Sending
raw data, even if viable, may trigger defenses that compare
embedded DNS traf�c with sensitive data (i.e., potential
ex�ltrated data) from the compromised machine.

To the best of our knowledge, current DNS ex�ltration
attacks only use general-purpose data encoders (e.g., Base-
32/64 and Hex) to map data into a representation space
of the characters used in DNS queries [15], [25]. Such
encodings however, may differ from benign DNS queries
and expose the attack (discussed earlier and in § 6.2).

Defensive efforts to detect ex�ltration. Previous works
assume full knowledge of DNS traf�c content (in plain-
text) by the detector/defender [3], [64], [73], [74]. We
follow the same assumption. While there is increasing
encrypted DNS traf�c on the public Internet [56], in en-
terprise environments where DNS ex�ltration attacks con-
stitute a major threat, DNS encryption is uncommon [56];
this is because network operators are motivated to monitor
DNS traf�c and deploy existing defenses to protect the
enterprise network [2], [37] .

DNS ex�ltration detection. Many legitimate domain
names appear to be randomly generated (e.g., “vwdfus-
dgdkshjdsd.aws.amazon.com”) and have become popular
[64], [74]. Thus, naive defenses relying on the readabil-
ity of domain names are ineffective. This has motivated
smarter defenses that check either the rates at which
queries are sent to individual domains or apply machine
learning to determine if the features in DNS queries are
suspicious. While these defenses are effective in thwarting
today's ex�ltration attacks, as shown in § 6.2, they are
ineffective against DOLOS.

Figure 2: Threat Model: employed policies by the defense.

2.2. Threat model

Attack scenario and assumptions. In this work, we
consider targeted attacks [88] where the malware acquires
and ex�ltrates a speci�c type of data (e.g., credit card
numbers as in the FramePos attack [25]). We assume the
attacker has already controlled one or more victim hosts,
e.g., via insiders or compromises (this is how ex�ltrations
happen in the real world) [47], [48]. Similar to the
“solarwinds” attack [22], [83], the initial malware �le is
very small. Subsequently, the DOLOS malware downloads
the ML model and necessary �les (each of small size)
that are used later for ex�ltration. Downloading a set
of small �les to avoid easy detection is commonly used
by many advanced malware [22], [83] (users can easily
notice large unexplainable �les). The malware is assumed
to acquire the data either from that machine or from
the private network to which the machine is connected
(e.g., accessing sensitive infrastructure logs in the private
network). The malware can spread to multiple hosts in
an enterprise network and all infected hosts engage in
ex�ltration; this was seen in previous DNS ex�ltration
attacks (e.g., [48], where roughly 6K devices belonging
to the same company were infected).

Similar to FramePos [25], data is assumed to be ac-
quired opportunistically, and the attacker seeks to ex�ltrate
the data as soon as viable (i.e., timeliness is considered
critical for effective use of the data) while evading detec-
tion. Fast ex�ltration allows quick remuneration. In other
words, we assume that the goal of the attacker is fast but
stealthy ex�ltration.
Defender. Even though the attacker has in�ltrated the
network, it does not mean that it can ex�ltrate the data
undetected, as many industrial [4], [37], [77] and research
solutions (e.g., [42], [64]) are targeted to stop ex�ltra-
tion1. In practice, such ex�ltration detection mechanisms
are unknown to the attacker. Upon detecting suspicious
primary domains or queries, operators can choose one
of two strategies to handle them (shown in Fig. 2): (1)
quarantine, which pauses traf�c to the suspected domain
for a preset period. This strategy suits scenarios that expect
higher positive rates from detectors, since it is impracti-
cal to manually inspect and verify all suspicious traf�c;
(2) termination, which completely disallows ongoing and
future DNS queries to the suspected domain.
Attacker . The malware seeks to steal sensitive data via
DNS ex�ltration, bypassing an unknown defense using
DOLOS. Ex�ltration can take place to a single or multiple
domains, the later acheiving the full potency of the attack.
If the defense uses aquarantine strategy, and this is known

1. Note that ex�ltration detection is deployed to catch outbound traf�c
instead of inbound i.e., our downloaded ML models can still be obtained,
hidden as benign HTTP traf�c (e.g., with a Trojan Downloader [67]).

3

to DOLOS, it can probe and estimate the best transmis-
sion rate that can maximize ex�ltration ef�ciency while
avoiding quarantine. Otherwise, DOLOS observes benign
traf�c on the compromised host, using a sniffer tool (e.g.,
[80]) to capture the rate of benign DNS requests; DOLOS
then tunes the ex�ltration rate to be consistent with this
rate to avoid detection. We assume that the attacker can
attain high privileges on the hosts and mimic benign DNS
traf�c rates. This is possible via local privilege escalation
exploits, which are common [10], [30], [89].

DOLOS is trained with samples of ex�ltration data
of�ine before infecting the victim. These samples are
assumed to be similar to data ex�ltrated online. Such sam-
ples, for example, for credit card records or computer logs,
have well-known formats and can be obtained/synthesized.
Similarly, a model trained with an English text dataset can
be used for e-mails or other text data, or a model trained
with speci�ic classes of images (e.g., medical images) can
ex�ltrate similar images in the wild.

We assume that the attacker has pur-
chased/compromised old domain(s), and uses common
DNS query types. Thus, defenses cannot use these to
discern ex�ltration traf�c and must detect the attack
based on its encoding and rate only.

3. System Overview

We design DOLOS to generate embedded DNS queries
akin benign traf�c; in addition, DOLOS includes mecha-
nisms that boost ex�ltration rate, while ensuring that the
aggregationof ex�ltration queries remains undetected.

DOLOS is based on an ef�cient encoding method,
customized to the data of interest (e.g., credit card records
or emails). While prior encoding methods (e.g., Base-64)
are generic (no prior knowledge of data is necessary), we
argue that using customized encoders for different data
types trades off generality (see §7) for stealth and speed.
An overview of DOLOS's encoder-decoder framework.
DOLOS's encoder and decoder are trained of�ine with be-
nign DNS and ex�ltration datasets. The encoding ensures
that the ex�ltrated data representation has high similarity
to benign data. It is relatively straightforward to categorize
the broad type of networks where ex�ltration occurs,
e.g., enterprises (Windows environments, user-facing ap-
plications) and data centers (Linux environments, server
applications). We can then feed the corresponding types
of benign DNS datasets in the of�ine training phase. We
leave the possibility of leveraging a victim's DNS traf�c
as `supplemental online training data' as future work. Note
that the full training cannot be done on the victim host
since it may require a long time, large amounts of training
data, and high computational power.

After training, both the encoder and decoder are inte-
grated with the malware which infects the compromised
host (reasons for including the decoder are discussed
below). The decoder is also used at the attacker's remote
site, to which the encoded data is ex�ltrated.
An overview of DOLOS's online functions. At this
point, assume that the malware (equipped with the trained
encoder) infects a victim host. Blindly performing ex�l-
tration can still expose the attack because the volume of
the aggregated ex�ltration queries may not conform with
benign volumes generated by the victim. Thus, DOLOS's

malware includes a module to sniff the host's benign
traf�c and tune the ex�ltration rate and inject some nec-
essary spurious requests (that are also seen in benign
DNS streams), accordingly. A bank of spurious queries
is generated of�ine (consistent with benign traf�c) and
is shipped with the DOLOS malware, and used during
ex�ltration. We choose this of�ine approach since the
malware does not have a method to craft spurious queries
that are stealthy online; thus online generation may result
in anomalies that trigger the detector. In addition, it helps
that these of�ine generated spurious queries can be easily
compared with the bank at the external site and discarded.
During online operation, the host chooses those queries
from the bank that are similar to the ex�ltration queries
(details in § 5).

Finally, note that the encoding generated by DOLOS is
lossy (although we ensure that the loss rates are very small
during training). To �x this issue, DOLOS validates the
decodability of each ex�ltration query with the decoder
shipped with the malware. If it is decodable, it is sent as
is. If not, DOLOS uses an error recovery module (using
a traditional lossless compression method in an exterme
case) to ensure its decodability. Upon the receipt of a
chunk, the remote site uses a simple method (discussed
in § 3) to apply the proper decoding and recover data.
Since such cases are rare, DOLOS is still able to evade all
considered defenses with very high probability.

4. GAN based encoder-decoder design

Next, we describe DOLOS's encoder/decoder, trained
of�ine.

4.1. Properties of DOLOS's encoder/decoder

In this section, we describe the set of desirable prop-
erties that guide the design of DOLOS's encoder-decoder
framework.
Stealthy encoding. Traditional encoding (e.g., Base-64)
does not account for stealth, and thus, a steady stream
of such outputs are easily detectable by current detectors.
To achieve stealth, we need to coerce the encoded ex-
�ltration traf�c to resemble benign DNS traf�c. While
this is challenging, we identify an opportunity to use
Generative Adversarial Networks or GANs (details on
GANs in [27]) in a novel way towards overcoming it.
GANs have been shown to generate examples that mimic
a given distribution (e.g., images resembling real humans).
However, they have not been previously used to morph
DNS ex�ltration data. Our key idea is to train a generator
to encode ex�ltration traf�c with the aid of an evolving
discriminator (trained with benign traf�c) that disam-
biguates such traf�c from benign DNS traf�c. A well-
trained generator then becomes an effective encoder that
can transform the ex�ltration data into a representation
akin to benign DNS traf�c. While similar training of a
GAN for a single objective (not in the DNS context)
has been done in other prior efforts, unfortunately, by
itself, this does not suf�ce. One must also ensure high
decoding accuracy at the external site, which is critical
for successful ex�ltration. Note that ful�lling multiple
objectives using the same GAN have been explored to
a limited extent in the ML community [5], [12], [90].

4

Figure 3: Of�ine training phase of DOLOS. The data from the
encoder is constrained to fool a discriminator, and must be
decoded by the decoder with high accuracy.

However, to the best of our knowledge, the �rst work to
apply this approach to realize a DNS ex�ltration attack.
Decoding accuracy. To ensure that the generated codes
can be correctly decoded with very high probability, in ad-
dition to accomplishing stealth, DOLOS includes asecond
discriminator (we abuse the term here) that is, in effect, an
evolving decoder. This decoder is trained jointly with the
generator and imposes a second objective to be ful�lled by
the latter. Speci�cally, the encoded representation (a) must
deceive the �rst discriminator and (b) must be translatable
to its original form by the decoder. To reiterate, to the
best of our knowledge, prior GAN efforts do not consider
multiple, different objectives during training.
Code compactness. An encoding that is both stealthy
and decodable with high probability, could entail high
overhead (lower encoding ef�ciency). Minimizing this
overhead is key for ef�cient ex�ltration. Towards this, we
model the problem of �nding the most compact encoding
as a search problem2. Speci�cally, we begin by consider-
ing different levels of compactness (corresponds to differ-
ent encoding overheads). We use a greedy approach where
we try the considered compactness levels in an ascending
order (most compact to least). For each, we try to generate
an encoding (satisfying stealth and decoding constraints)
within a predetermined time period. If unsuccessful, we
move to the next. The approach iteratively continues until
an encoding is found. More details are provided in § 4.4.

Blackbox ex�ltration . The discriminator is arguably the
best anomaly detector since it learns to discern ex�ltration
queries as they are iteratively re�ned to be similar to
benign DNS traf�c. Thus, if the generation process goes
through several rounds of interaction with the discrimina-
tor, the encoding is likely to be suf�ciently tuned to be
similar to benign traf�c and can evade blackbox anomaly
detectors (as shown in §6).

4.2. Encoder and Decoder design

Before delving into the details of our design, we de�ne
some notation used in what follows (summarized in Table
1). We de�ne random variables that represent the benign
traf�c and ex�ltration data asx andz, respectively. These
random variables will have their own distributions in terms

2. We tried to include a compactness constraint directly in the encoder-
decoder formulation, but it increased the time complexity signi�cantly.

TABLE 1: Key notation

Notation Description
Enc ,

Dec, Dis
The encoder, decoder and discriminator neural

networks, respectively
� Enc ,

� Dec , � Dis
The parameters of theEnc , Dec andDis , respectively

L m i The length of the ex�ltration chunk data
L E i The length of the encoding of an ex�ltration chunk of data

Ratio of the encoding length of a chunk

to the length of an ex�ltration chunk
VD Validation dataset

accD Validation decoding accuracy
H Maximum # of batches used for training
B # of samples in a training batch

�
A weighting hyperparameter to balance the updates

from the decoder and discriminator networks.

of characters in the query, the correlations across the
characters, etc. The of�ine phase relates to jointly training
three neural network blocks, viz., an encoder (Enc), a
decoder (Dec) and a discriminator (Dis). The parameters
of these neural networks (weights) are denoted as� Enc ,
� Dec and � Dis , respectively. The data to be ex�ltrated
is divided up into chunks, and each chunk is to be en-
coded and con�ned to onefake DNS query. We denote
a set of chunks asM , and each chunk is represented
by mi 2 M . The encoder, thus, takes a chunk of the
ex�ltration data of sizeL m i , consisting of a sequence of
charactersc = (c1; c2:::cj :::cL m i), and tries to map that
on to a codewordy = (y1; y2:::yL E i) of lengthL E i . Note
thatL m i may not be equal toL E i . The mapping function
of the encoder is represented byEnc(c) = f � Enc (c).

The decoder takes a codeword (y) from the encoder as
its input and estimates the original (raw) ex�ltrated chunk
as a sequence of characters viz.,ĉ = (ĉ1; :::ĉj :: ^cL m i).
Given the inputy, the decoder functionDec(y) represents
the probability that the output̂c = c, and is denoted by
Dec(y) = f � Dec (y).

The discriminator learns how to differentiate between
a benign DNS query and a codeword generated by the en-
coder. Speci�cally, the discriminator function,Dis (s) =
f � Dis (s) yields the probability that the given inputs,
belongs to the distribution of the benign samples. The
of�ine training is depicted in Fig. 3.
Stealth. Since the discriminator seeks to differentiate be-
tween benign and fake ex�ltration queries, it tries to mini-
mize the cross entropy loss between the input and the cor-
rect output (which is known as ground truth during train-
ing). Let us denote the probability of the discriminator's
prediction on the generated queries (fake) and the benign
queries asDis (Enc(z)) andDis (x), respectively; here,z
is the ex�ltration data fed to the encoder, andx is a benign
DNS query. To minimize the cross-entropy as alluded to
above, the discriminator will seek to minimize the loss
function: min[� log(Dis (x)) � log(1 � Dis (Enc(z)))] .
This, in turn, is equivalent tomax[log(Dis (x)) + log(1 �
Dis (Enc(z)))] .

At the same time, the encoder seeks to fool the
discriminator by minimizing the discriminator's con�-
dence (probability) with regards to labeling the gener-
ated fake queries. In other words, it wants to minimize
log(1 � Dis (Enc(z))) .

Given the con�icting objectives of the discriminator
and the encoder, we can model their interactions as an
iterative minimax game with the following loss function

5

(Ex andEz are the expectations over benign and ex�ltra-
tion data):

min
� Enc

max
� Dis

Ex [log(Dis (x))] + Ez [log(1 � Dis (Enc(z))] :

(1)
Decodability. To ensure the decodability of the generated
codes, we jointly train a decoder. Here, both the encoder
and the decoder seek to maximize the probability of
correctly predicting the original characters from the latent
space encodings. This translates to a minimization of the
average cross entropy between the inputs and the ground
truth labels. This cross entropy loss minimization is given
by:

min
� Enc ;� Dec

Ez [� log(Dec(Enc(z)))] : (2)

4.3. Practicalities

Neural network architecture. We need a neural network
architecture that captures semantic relationships as well
as short- and long-term dependencies across the charac-
ters in a benign DNS query. If the learnt embeddings
reproduce these properties, they can better mimic those
queries. There exist many neural network architectures
that satisfy the above properties, especially in the NLP
space, where capturing semantic relationships is critical.
Among those, we choose transformers [86] as our choice
since a transformer allows for parallel computations of
sequential data, which makes the training fast. One nuance
is that, typically, transformers take words as inputs; since
we want our approach to work with different types of
input data (e.g., credit card numbers, text data), we choose
our inputs to be characters instead of words. Note that as
discussed in detail later, even more complex data forms
(e.g., images, which we consider in this work) can be
represented using this method (e.g., with an image, each
byte representing pixel intensity can be considered as a
character and fed to the model).
Representation of the latent space. DNS queriesA and
AAAApermit only 64 characters. Thus, the encoder's out-
put (i.e.,y1; y2::yL E i) is a sequence of discrete characters
from these.
Non-differentiable discrete latent space. Our inputs are
discrete characters, and so are our latent space encod-
ings. Back-propagation, used to tune the neural network
weights, cannot be directly applied to discrete variable
representations that are non-differentiable (i.e., they have
zero gradients everywhere) [41]. To overcome this, we use
a popular solution for discrete representations, viz., the
softmax-Gumbel approximation [41]. The idea is to use
discrete variables in the forward pass, but use continuous
approximations (i.e, softmax) in the backward pass.

4.4. Training algorithm

We train DOLOS to optimize the objectives in Eqns.
(1) and (2) using an iterative algorithm. Iterative methods
are often used in GANs [27]; however, as discussed, the
novel aspect of our work is that we also seek very high
likelihood of decodability and compaction.

Towards iteratively optimizing the objectives in equa-
tions (1) and (2), we update the weights of the neural
networks after each batch of inputs, until we generate
stealthyanddecodable, fake DNS queries. Speci�cally, we

Algorithm 1 Training DOLOS Encoding
Input: ex�ltration and benign DNS datasets ,accD
Input: Validation dataset (VD), Validation Model (VM)
Input: Validation model fooling rate threshold (�)
Input: Training time out threshold (H)
for in range (0.5,1.5,0.1)do

Initialize Dec, Dis , Enc with latent space of size � L m i

while True do
(1) Sample batches from ex�ltration dataset and benign dataset
of size B.
(2) Update the Discriminator as follows:
r � Dis

1
B

P B
k [log(Dis (xk)) + log(1 � Dis (Enc (zk))) .

(3) Update the Encoder : r � Enc � 1
B

P B
k [log(1 �

Dis (Enc (zk))) + (1 � �) � 1
L m i

P
j log(p

ĉ j).
(4) UpdateDecoder with r � Dec

1
L m i

P
j log(p

ĉ j).
if 1

j VD j

P
v 2 VD

1(argmax Dec (Enc (v)) = v) � accD

& VM (Enc (VD)) � � then
return trained DOLOS

end if
if # of batches� H then

breakf Need a bigger encoding sizeg
end if

end while
end for

�rst sample a batch from benign DNS traf�c and a batch
from the output ofEnc to update the weights ofDis . In
the seconditerative step, the same batch from theEnc is
fed to both theDec and Dis , and feedbacks from both
are used to update the weights ofEnc. Since the updates
from both networks may vary in magnitude and effect,
the encoder may be forced to favor one objective over the
other. We use and tune a hyper-parameter� to balance
the two objectives. In thethird step, we update theDec
weights to enhance the decoding accuracy. The three steps
are repeated until DOLOS is able to successfully bypass
a validation step (discussed below in what follows). The
of�ine training of DOLOS is captured in Algorithm 1.
Compactness. As discussed in § 4.2, we seek compaction
to increase the ex�ltration rate. For a given length of a raw
chunk, the generator is constrained to output a �xed (to
be determined) length encoded query (regardless of the
semantic content of the raw chunk). We seek to �nd a
value of = L E i

L m i , that allows us to map a raw chunk of
length L m i to the shortest possible encoding lengthL E i

output by the generator. This would then maximize the
ef�ciency of the encoding (highest amount of information
encoded into the smallest number of characters in the
latent representation). In other words, we search for the
smallest value of , such that the encoded query is de-
codable, and preserves stealth. Speci�cally, any smaller
would violate either stealth or decodability or both. For
simplicity, we con�ne the search space of between 0.5
and 1.5 with step 0.1. We begin with the smallest (which
yields the most compaction), and if the model does not
meet the the criteria used to stop training (discussed next),
we re-initialize the models and train them with the next
larger value.

Once is thus determined, if we know what is the
maximum permissible encoding lengthL E i (the maximum
length of DNS queries sent by the victim host), we can
compute the corresponding raw chunk length that can be
used asL M i = L E i

 . We then collect tokens to �ll anmi

smaller than this length and generate the encoding during
online operations as discussed in § 5.

6

Validation. Since it is very hard to fool the evolving
discriminator (as it continuously learns), we use a val-
idation process to determine when to stop training. Af-
ter everyN batches (1000 in our evaluations), we �rst
test the decodability of the generated codes using the
trained decoder to ensure it meets the decoding accuracy
constraints. Subsequently, we test the stealthiness of the
generated codes against an anomaly detector (not the
Discriminator) just trained on benign DNS queries.
If we fool this detector with a very high probability (> 99
%), we assume that the GAN has been suf�ciently trained.
We note that the anomaly detector is different from the
defenses we test DOLOS against, and thus it does not
violate the blackbox assumption. Further implementation
details are in Appendix A.

4.5. Composing spurious queries

As discussed in §3, we form a bank of spurious queries
of�ine by sampling the generated traf�c from batches
in a validation dataset and identi�ng the most frequent
3-4 characters. We randomly combine these along with
natural separators present in DNS queries, viz., `hyphen'
and `dot', to form spurious queries. We re�ne these with
our discriminator until validation.

5. Tuning the ex�ltration online

Next, we describe DOLOS's operations on an infected
host. We reiterate that DOLOS's encoder is unaware of the
defense, or the policies employed upon �agging a domain
as an attack site.

Most of today's defenses make an inference on queries
sent to each primary domain (i.e., decide if that domain is
an ex�ltration site or not) [64], [73], [74]. Such inferences
are based on the volume, the rate, the repetition of queries
and the entropy associated with the aggregation of queries
to that domain. To evade detection, DOLOS must tune
these parameters for each domain to which it ex�ltrates
data (can do so independently), towards achieving evasion
with respect to those domains.
The best rate for stealthy ex�ltration . DOLOS observes
benign traf�c over an empircally chosen time window
(few hours) to estimate the ex�ltration rate. In particular,
DOLOS needs to choose the number of requests (N), and
the average query size, (L), in each time window. The
bigger these values, the more data can be ex�ltrated, but
if they are too large, detection is very likely. A naive
approach is to observe the number of requests and the av-
erage length of requests to each domain, and from among
these, choose theN and L that would maximize the
ex�ltration rate (i.e.,N � L per time window). However,
as discussed benign traf�c consists of many repetitions
of queries (either partial overlaps or full repetitions). To
be consistent with benign queries, the attacker has to
transmit unique ex�ltration requestsandrepeated requests,
and requires an estimation of the rate of requests in each
category. Note that determining exactly how many times
each query is repeated is not necessary as this value differs
across different primary domains and we have not seen
it being used in practical defenses. In other words, the
percentage of unique and repeated queries transmitted to

each domain should be consistent with the repetition rate
seen in benign queries sent by the victim host.

Beyond repetitions, many requests are partially similar
in benign DNS traf�c. Not accounting for partial similarity
may expose the attack [74]. To illustrate, the follow-
ing two unique requests are considered partially similar:
gllto1.glpals.com and, gllto2.glpals.com .
To evade the detector, DOLOS includes both repetitive
and partially overlapping spurious queries consistent with
benign traf�c; these are later ignored after ex�ltration.

Key idea. To estimate the volume of “unique” or
dissimilar queries for each primary domain (obtained from
the benign traf�c on the compromised host), we cluster the
associated queries; those belonging to the same cluster
can be deemed similar or repetitions. From these, DOLOS
identi�es the domain for which the combination of aver-
age query length and number of unique queries yields the
highest ex�ltration rate, and uses these values in tuning
its ex�ltration process.

Clustering algorithm.Existing clustering methods, in-
cluding even the simplest of them (i.e., k-means clustering
[55]) are expensive. This is because k-means requires
multiple iterations of comparisons among the data to
converge, and a large space complexity to store all the
queries from the host. Importantly, the proper “k” is not
known a priori. Because of this, we design a simple
algorithm for DOLOS. In brief, for each primary domain,
the algorithm processes the streamed queries. With each
query, it measures the similarity between the query and
thecluster representativesof previously formed clusters; if
the query is not similar to any representative, a new cluster
is created with that query chosen as its representative.

To assess the similarity between two DNS queries,
we use the following approach. For each pair of queries,
we measure the Jaccard similarity [40] by computing
intersection between the characters of the query relative
to the length. If this value is greater than a pre-selected
threshold, we consider the queries to be partially similar.
To select the appropriate threshold, we conduct of�ine
analysis using samples of benign traf�c and �nd that a
threshold value ranging from 0.7 to 0.8 effectively groups
similar queries.

The algorithm has aO(n � d) run time complexity
wheren and d refer to the number of DNS queries sent
by the host to a primary domain and the number of clusters
per primary domain to which queries are sent, within
the time window of interest. This process is captured in
Algorithm 2.
Online ex�ltration . DOLOS's online work�ow is shown
in Fig. 4. DOLOS computes the number of unique queries
that it can transmit in a time window, as well as the
number of spurious queries it must insert, based on
the clustering it has constructed3. DOLOS computes the
most frequent characters used in the encoded ex�ltration
queries; it then chooses the spurious queries that are clos-
est to the cluster members (in terms of Hamming distance)
from the pre-stored bank (recall § 4.5). Subsequently, for
the given ex�ltrated data, DOLOS encodes chunks of the
proper size (it computes the size based on the learned

3. The number of spurious queries is the difference between the total
number of queries and the number of unique queries that are determined
by our clustering (for each domain).

7

	Introduction
	Background and Threat model
	Background
	Threat model

	System Overview
	GAN based encoder-decoder design
	Properties of Dolos's encoder/decoder
	 black Encoder and Decoder design
	Practicalities
	Training algorithm
	Composing spurious queries

	Tuning the exfiltration online
	Evaluations
	Preliminaries
	Evaluation results
	Dolos Complexity
	Real implementation details and results

	Discussion
	Related Work
	Conclusions
	References
	 A: Details of various parameters
	 B: Holistic evaluation of Dolos with various datasets individually
	 C: Stealth with various datasets
	 D: Ablation Study
	 E: Decodability of Dolos's lossy encoder's outputs
	 F: A closer look at the performance with the classification-based detection methods
	 G: Linux logs results and case studies

