
Producing Hook Placements to Enforce Expected Access
Control Policies

Divya Muthukumaran1, Nirupama Talele2, Trent Jaeger2, and Gang Tan3

1 Imperial College, London, United Kingdom
2 The Pennsylvania State University, University Park, PA, United States

3 Lehigh University, Bethlehem, PA, United States

Abstract. Many security-sensitive programs manage resources on behalf of mu-
tually distrusting clients. To control access to resources, authorization hooks are
placed before operations on those resources. Manual hook placements by pro-
grammers are often incomplete or incorrect, leading to insecure programs. We
advocate an approach that automatically identifies the set of locations to place
authorization hooks that mediates all security-sensitive operations in order to en-
force expected access control policies at deployment. However, one challenge
is that programmers often want to minimize the effort of writing such policies.
As a result, they may remove authorization hooks that they believe are unneces-
sary, but they may remove too many hooks, preventing the enforcement of some
desirable access control policies.
In this paper, we propose algorithms that automatically compute a minimal au-
thorization hook placement that satisfies constraints that describe desirable ac-
cess control policies. These authorization constraints reduce the space of en-
forceable access control policies; i.e., those policies that can be enforced given a
hook placement that satisfies the constraints. We have built a tool that implements
this authorization hook placement method, demonstrating how programmers can
produce authorization hooks for real-world programs and leverage policy goal-
specific constraint selectors to automatically identify many authorization con-
straints. Our experiments show that our technique reduces manual programmer
effort by as much as 58% and produces placements that reduce the amount of
policy specification by as much as 30%.

1 Introduction

Programs that manage resources on behalf of mutually distrusting clients such as databases,
web servers, middleware, and browsers must have the ability to control access to op-
erations performed when processing client requests. Programmers place authorization
hooks4 in their programs to mediate access to such operations5. Each authorization hook
guards one or more operations and enables the program to decide at runtime whether
to perform the operations or not, typically by consulting an access control policy. The
access control policy is deployment-specific and restricts the set of operations that each
subject is allowed to perform as shown in Figure 1.

4 Authorization Hooks are also known as Policy Enforcement Points.
5 There are several projects specifically aimed at adding authorization hooks to legacy programs

of these kinds [4, 5, 10, 11, 16, 20].

O1 O2

Access?(Subject, O1)

O1 O2

Access?(Subject, O2)

Access?(Subject, O1)

allow Subject1 O1
allow Subject2 O1
allow Subject3 O1
allow Subject4 O1
allow Subject5 O1

allow Subject1 O2
allow Subject2 O2
allow Subject3 O2
allow Subject4 O2
allow Subject5 O2

allow Subject1 O1
allow Subject2 O1
allow Subject3 O1
allow Subject4 O1
allow Subject5 O1

Access Control Policy Access Control Policy

(a) Automated Hook Placement (b) Manual Hook Placement

Fig. 1: Figure showing the effect of hook placement granularity on access control policy

There are two main steps programmers perform when placing authorization hooks
in programs. First, they must locate the program operations that are security-sensitive.
Researchers [7–9, 13, 17] have examined different techniques to infer this using a com-
bination of programmer domain knowledge and automated program analysis. Second,
programmers must decide where to place authorization hooks to mediate these security-
sensitive operations. Finding location to place authorization hooks is akin to finding
joinpoints in aspect-oriented programming. Prior automated approaches have suggested
hook placements that are very fine grained when compared to placements generated
manually by programmers. Understanding this difference is crucial to developing tools
for automated hook placement and is the focus of this paper.

The granularity of authorization hook placement affects the granularity of access
control policies that must be written for deploying programs. Placing hooks at a very
fine granularity means that the access control policy that needs to be written to deploy
the program becomes very fine-grained and complex, hindering program deployment.
Consider the example (a) in Figure 1 where an automated approach places hooks at two
distinct security-sensitive operations O1 and O2. If there are five subjects in a deploy-
ment, then the policy may need up to 10 rules to specify that the five subjects should
have access to both operations.

To facilitate widespread adoption of their programs, programmers want to avoid
complex access control policies at deployment. Consequently, they use their domain
knowledge to trade off flexibility of the access control policies in favor of simplified
policies. For example, an expert may know that when policies are specified for the
program, every subject who is authorized to perform O1 must also be authorized for
O2. With respect to authorization,O1 andO2 are equivalent and therefore it is sufficient
to insert one hook to mediate both operations as shown in part (b) of Figure 1, resulting
in a smaller policy with only five rules.

Minimality in hook placement must be balanced by the two main security require-
ments of enforcement mechanisms - complete mediation [2], which states that every
security-sensitive operation must be preceded by an appropriate authorization hook,
and the principle of least privilege, which states that access control policies only au-

2

thorize permissions needed for a legitimate prurpose. At present, programmers make
these trade-offs between minimality, complete mediation and least privilege manually,
which delays the introduction of needed security measures [16] yet still requires many
refinements after release.

Authorization Constraints. We believe that making the programmers’ domain knowl-
edge explicit is the key to solving the problem of authorization hook placement. We
propose an approach that is based on programmers specifying constraints on program
operations (e.g., structure member accesses), which we call authorization constraints.
Authorization constraints restrict the access control policies that may be enforced over
a set of operations. We use two kinds of constraints in our system. First, operation-
equivalence means that two distinct security-sensitive operations on parallel code paths
must be authorized for the same set of subjects, which enables a single authorization
hook to mediate both. The second kind is operation-subsumption, meaning that a sub-
ject who is permitted to perform one operation must be allowed to perform the second
operation. Therefore, if the second operation follows the first in a code path, then an
authorization hook for the second operation is unnecessary.

To use authorization constraints to place authorization hooks automatically, we have
to overcome two challenges. First, given a set of authorization constraints, a method
needs to be developed to use these constraints to minimize the number of authorization
hooks placed to enforce any policy that satisfies the constraints. Second, there should
be a method to help programmers discover authorization constraints. In this paper, we
provide solutions to both of these challenges.

Minimizing Hook Placement. We address the first challenge by developing an algo-
rithm that uses authorization constraints to eliminate hooks that are unnecessary. Specif-
ically, we show that: (1) when operations on parallel code paths are equivalent, the
hook placement can be hoisted, and (2) when operations that subsume each other also
occur on the same control-flow path, we can remove the redundant hook. This method
is shown to produce a minimal-sized6 hook placement automatically can enforce any
access control policy that satisfies the authorization constraints.

Discovering Authorization Constraints. In order to help programmers avoid the cum-
bersome task of writing complete authorization constraints, we introduce the notion of
constraint selectors. These selectors are able to make a set of constraint choices on
behalf of the programmer based on higher-level goals. For example, suppose the pro-
grammer’s goal is for her program to enforce multi-level security (MLS) policies, such
as those expressed using the Bell-La Padula model [3]. The Bell-La Padula model only
reasons about read-like and write-like operations, so any two security-sensitive oper-
ations that only perform reads (or writes) of the same object are equivalent. Thus, a
constraint selector for MLS guides the method to create equivalence constraints auto-
matically for such operations.

We have designed and implemented a source code analysis tool for producing autho-
rization hook placements that reduce manual decision making while producing place-
ments that are minimial for a given set of authorization constraints. The tool requires

6 Minimality in hook placement is conditional on having precise alias analysis and path sensitive
analysis

3

only the program source code and a set of security-sensitive operations associated with
that code, which can be supplied by one of a variety of prior methods [7–9, 13, 17].
Using the tool, the programmer can choose a combination of constraint selectors, pro-
posed hook placements, and/or hoisting/removal choices to build a set of authorization
constraints. Once constraints are established, the tool computes a complete authoriza-
tion hook placement that has minimum number of hooks with respect to the constraints.
We find that using our tool reduces programmer effort by reducing the number of pos-
sible placement decisions they must consider, by as much as 67%. Importantly, this
method removes many unnecessary hooks from fine-grained, default placements. For
example, simply using the MLS constraint selector removes 124 hooks from the default
fine-grained placement for X Server.

In this paper, we demonstrate the following contributions:

– We introduce an automated method to produce a minimal authorization hook place-
ment that can enforce any access control policy that satisfies a set of authorization
constraints.

– We simplify the task of eliciting authorization constraints from programmers, by
allowing them to specify simple high level security goals that are translated into
authorization constraints automatically.

– We evaluate a static source code analysis that implements the above methods on
multiple programs, demonstrating that this reduces the search space for program-
mers by as much as 58% and produces placements that reduce the number of hooks
by as much as 30%

We believe this is the first work that utilizes authorization constraints to reduce pro-
grammer effort to produce effective authorization hook placements in legacy code.

2 Motivation

2.1 Background on Hook Placement

Authorization is the process of determining whether a subject (e.g., user) is allowed to
perform an operation (e.g., read or write an object)7 by checking whether the subject
has a permission (e.g., subject and operation) in the access control policy that grants
the subject with access to the operation. Authorization is necessary because some op-
erations are security-sensitive operations, i.e., operations that cannot be performed by
all subjects, so access to such operations must be controlled. An authorization hook is
a program statement that submits a query to check for an authorizing permission in the
access control policy. The program statements guarded by the authorization hook may
only be executed following an authorized request (control-flow dominance). Otherwise,
the authorization hook will cause some remedial action to take place.

Related Work: The two main steps in the placement of authorization hooks are
the identification of security-sensitive operations and the identification of locations in

7 We acknowledge that many access control policies distinguish objects (e.g., files) from the
accesses (e.g., read or write), which are often called operations. We define operations to include
the object and access type in this paper.

4

m2::pWin,ListAccess
h2::pWin-‐>firstChild
WindowPtr * pChild =
pWin->firstChild->nextSib

h5::pChild-‐>mapped
pChild->mapped = True

m1::pWin,PropertyAccess
h1::pWin-‐>userProps
PropertyPtr * pProp =
pWin->userProps->next

m4::pProp,WriteAccess
h4::pProp-‐>data,	 pProp-‐>size
pProp->data = data
pProp->size = size

m3::pWin,ShowAccess
h3::pWin-‐>mapped
pWin->mapped = True

Resource res = ClientTable[i]
WindowPtr * pWin = (WindowPtr *) res

MapSubwindows

MapWindow

ChangeWindowProperty

Fig. 2: Hook Placement for functions MAPWINDOW, MAPSUBWINDOWS, and
CHANGEWINDOWPROPERTY

the code where authorization hooks must be placed in order to mediate such opera-
tions. Past efforts focused mainly on the first problem, defining techniques to identify
security-sensitive operations [6–9,13,15,17–19,23]. Initially, such techniques required
programmers to specify code patterns and/or security-sensitive data structures manu-
ally, which are complex and error-prone tasks. However, over time the amount of infor-
mation that programmers must specify has been reduced. In our prior work, we infer
security-sensitive operations only using the sources of untrusted inputs and language-
specific lookup functions [13].

When it comes to the placement of authorization hooks, prior efforts typically sug-
gest placing a hook before every security-sensitive operation in order to ensure complete
mediation. There are two problems with this simple approach. First, automated tech-
niques often use low-level representations of security-sensitive operations, such as indi-
vidual structure member accesses, which might result in many hooks scattered through-
out the program. More authorization hooks mean more work for programmers in main-
taining authorization hooks and updating them when security requirements change. Sec-
ond, such placements might lead to redundant authorization, as one hook may already
perform the same authorization as another hook that it dominates. In our prior work, we
have suggested techniques to remove hooks that authorize structure member accesses
redundantly [13]. However, this approach still does not result in a placement that has a
one-to-one correspondence with hooks placed manually by domain experts. In X server,
it was found that while the experts had placed approximately 200 hooks, the automated
technique suggested approximately 500 hooks. In the following subsections we discuss
some reasons for this discrepancy.

2.2 How Manual Placements Differ

We find that there are typically two kinds of optimizations that domain experts perform
during hook placement. We follow with examples of both cases from the X Server.

5

Listing 1 Example of manual hoisting in the COPYGC function in the X server.
1 /*** gc.c ***/
2 int CopyGC(GC *pgcSrc, GC *pgcDst, BITS32 mask){
3 switch (index2)
4 {
5 result = dixLookupGC(&pGC, stuff->srcGC,
6 client,DixGetAttrAccess);
7 if (result != Success)
8 return BadMatch;
9 case GCFunction:

10 /* Hook(pgcSrc, [read(GC->alu)]) */
11 pgcDst->alu = pgcSrc->alu;
12 break;
13 case GCPlaneMask:
14 /* Hook(pgcSrc, [read(GC->planemask)]) */
15 pgcDst->planemask = pgcSrc->planemask;
16 break;
17 case GCForeground:
18 /* Hook(pgcSrc, [read(GC->fgPixel)]) */
19 pgcDst->fgPixel = pgcSrc->fgPixel;
20 break;
21 case GCBackground:
22 /* Hook(pgcSrc, [read(GC->bgPixel)]) */
23 pgcDst->bgPixel = pgcSrc->bgPixel;
24 break;
25 /* More similar cases */
26 }
27 }

– First, assume there are two automatically placed hooks H1 and H2 such that the
former dominates the latter in the program’s control flow. The placement by the
domain expert has a matching hook for H1 but not for H2. We can interpret this as
the expert having removed (or otherwise omitted) a finer-grained hook because the
access check performed by H1 makes H2 redundant.

– The automated tools place hooks (H1, ...,Hn) at the branches of a control state-
ment. The domain expert has not placed hooks that map to any of these hooks, but
instead, has placed a hook M1 that dominates all of these hooks8. The expert has
hoisted the mediation of operations at the branches to a common mediation point
above the control statement as shown in Figure 1.

First, examine the code snippet in Figure 2. In the figure, hooks placed by the pro-
grammer have prefixes such as m1:: and hooks placed by an automated tool [13]
have prefixes such as h1::. The function MAPWINDOW performs the operation
write(pWin→mapped) on the window, which makes the window viewable. We
see that the programmer has placed a hook m3::(pWin,ShowAccess) that specif-
ically authorizes a subject to perform this operation on object represented by pWin.
Access mode ShowAccess identifies the operation. The requirement of consistency
in hook placement dictates that an instance of hook ShowAccess should precede any
instance of writing to the mapped field of a Window object that is security-sensitive.
MAPSUBWINDOWS performs the same operation on the child windows pChild of a
window pWin. While the automated tool prescribes a hook at MAPSUBWINDOWS,
we find that the domain expert has chosen not to place a corresponding hook.
MAPSUBWINDOWS is preceded by the manual hook m2::(pWin,ListAccess)
for the subject to be able to list the child windows of window pWin, but there is no
hook to authorize the operation write(pChild->mapped)9.

Second, look at the example shown in Listing 1. The function COPYGC in the
X server accepts a source and target object of type GC and a mask that is determined by

8 There is no hook in the automated placement that matches M1.
9 We discuss the relevance of CHANGEWINDOWPROPERTY below.

6

the user request and, depending on the mask, one of 23 different fields of the source are
copied to the target via a switch-case control statement. Since each branch results
in a different set of structure member accesses, the automated tool infers that each
branch performs a different security-sensitive operation. Therefore, it suggests placing
a different hook at each of the branches. On the contrary, there is a single manually
placed hook that dominates the control statement, which checks if the client has the
permission DixGetAttrAccess on the source object. Therefore a single manually
placed hook replaces 23 automated hooks in this example.

2.3 Balancing Minimality with Least Privilege

We have in the X Server a mature codebase, which has been examined over several years
by programmers in order to reach a consensus on hook placement. We are convinced
that a deliberate choice being made by the experts about where to place hooks and which
hooks to avoid on a case-by-case basis. For example, in CHANGEWINDOWPROPERTY
in Figure 2, a property pProp of pWin is retrieved and accessed. Programmers have
placed a finer-grained hook m4::(pProp,WriteAccess) in addition to the hook
m1::(pWin,SetPropertyAccess). Contrast this with the MAPSUBWINDOWS
example where they decided not to mediate the access of a child object.

The fundamental difference between a manually written hook placement and an au-
tomatically generated one is in the granularity at which security-sensitive operations
are defined. When the automated tool chooses to place a hook at each of the branches
of a control statement, it implicitly identifies security-sensitive operations at a finer
granularity than experts. The choice of granularity of security-sensitive operations is an
exercise in balancing the number of hooks placed and least privilege. A fine-grained
placement allows more precision in controlling what a subject can do, but this granu-
larity may be overkill if programmers decide that subjects must be authorized to access
operations in an all-or-nothing fashion. For the switch statement with 23 branches, hav-
ing 23 separate hooks will lead to a cumbersome policy because the policy will have 23
separate entries for each subject. Since the programmers decided that all subjects either
can perform all 23 operations for an object or none, it is preferable to have a single hook
to mediate the 23 branches.

We have also seen that even with manual hook placement multiple iterations may
be necessary to settle on the granularity that balances least privilege and minimality
in hook placement. For example, the X server version of 2007 had only four opera-
tion modes, namely, read, write, create and destroy. But during the subse-
quent release, the programmers replaced these with 28 access modes that were nec-
essary to specify and enforce policies with finer granularity. Since the first release of
X server with the XACE hooks in 2007, the hooks have undergone several changes.
Over 30 hooks were added to the X server code base, and some existing hooks were
also removed, moved or combined with other hooks [22]. Some of these changes are
documented in the XACE specification [21]. We believe that observing typical policy
specifications at runtime enabled the programmers to add and remove hooks in subse-
quent versions of the application. We want to understand iterative refinement and build
methods to automate some tasks in the process, making programmer decisions explicit.

7

3 Authorization Hook Placement Problem

Authorization hook placement involves two main steps: a) finding security-sensitive
operations (SSOs) in the program and, b) placement of hooks to satisfy a set of require-
ments. In this section we give a brief background into approaches that tackle the former,
followed by our intuition for how to approach the latter problem.

3.1 Identifying Security-Sensitive Operations

We provide some background on our prior research [13] in automatically identifying
the set O of security-sensitive operations (SSOs) in programs using static analysis.
Each SSO is represented using a variable v and a set of read and write structure mem-
ber accesses on the variable. For example, in the CHANGEWINDOWPROPERTY func-
tion shown in Figure 2, the last two statements produce a security-sensitive operation
pProp:[write(data), write(size)]. There may be multiple instances of an
SSO in a program. Each instance is represented using the tuple (o, l) where o is the SSO
and l is the location (statement) in the code where the instance occurs. Let OL be the
set of all instances of all the SSOs in the program. Our goal is to place authorization
hooks to mediate all the elements of OL.

Definition 1 An authorization hook is a tuple (Oh, lh) where lh is a statement that con-
tains the hook and Oh ⊆ OL is a set of security-sensitive operation instances mediated
by the hook.

A set of authorization hooks is called an Authorization Hook Placement. The ap-
proach in [13] produces a Control Dependence Graph (CDG) of the program to repre-
sent program statements and hooks. A CDG of a program CDG = (L,E) consists of a
set of program statements L and edges E, which represent the control-dependence rela-
tionships between statements. Since this exposes the statements that a given statement
depends upon for execution, it enables computation of authorization hook placements
that mediate all control flows in the program by ensuring that every operating instance
in OL is included in at least one authorization hooks Oh. We will continue to use the
CDG representation in this work for refining hook placements.

3.2 Consolidating Hook Placements

As mentioned in Section 2, the inital placement of hooks by automated techniques is
fine-grained, i.e., typically at every security-sensitive operation instance that is identi-
fied. Our intuition is that constraints on the access control policies to be enforced in
the program can be leveraged to consolidate authorization hooks in order to achieve the
right granularity for hook placements. Let U be the set of all subjects for a hypothetical
access control policyM for the given program. Let Allowed be a function that maps
each security-sensitive operation in O to subjects U that are allowed to perform the op-
eration according to policyM. We identify two cases that are relevant to the placement
of authorization hooks:

8

– Invariant I: First, given any two operations o1 and o2, if access control policyM
permitsAllowed(o1) = Allowed(o2) then o1 and o2 are equivalent for the purpose
of authorization. This means that any hook that mediates o1 and dominates o2 in
the code automatically authorizes o2 and vice versa.

– Invariant II: Second, given two operations o1 and o2, if access control policyM
permits Allowed(o1) ⊂ Allowed(o2) then operation o1 ‘subsumes’ o2 for the
purpose of authorization. This means that a hook that mediates o1 and dominates
o2 can also mediate o2 but not vice-versa.

As described above, we have observed that programmers often assume that their
programs will enforce access control policies that satisfy Invariant I (e.g., see Listing 1)
and Invariant II for every access control policyM that may be enforced by their pro-
grams (see Figure 2). This observation leads us to believe that in order to consolidate
hooks we need to impose equivalence and partial-order relationships between the ele-
ments in O. Therefore, we define a set of authorization constraints as follows:

Definition 2 A set of authorization constraints P is a pair (S,Q) of relationships be-
tween SSOs in the program, where Q stands for equivalence and S stands for sub-
sumption.

We can see that the equivalence relationship Q results in a partitioning of the set
O of security-sensitive operations. Let OQ be the set of partitions produced by Q. The
subsumption relationship S imposes a partial order between the elements inOQ. We can
use these two relationships to consolidate hooks on parallel code paths to a dominating
program location (hook hoisting operation) or eliminate a redundant hook on a post-
dominating program location (hook removal operation). We describe the technique for
this in the Section 4.

The challenge we address in this paper is how to use authorization constraints to
consolidate hook placements. Our system uses an algorithm that, given a program and
its set of authorization constraints, generates a minimal authorization hook placement
that satisfies complete mediation and least privilege. Complete mediation states that
every SSO instance in a program should be dominated by an authorization hook that
mediates access to it. A placement that enforces least privilege ensures that during an
execution of a program, a user of the program (subject) is only authorized to perform (or
denied from performing) the SSOs requested as part of that execution. This effectively
puts a constraint on how high a hook can be hoisted.

We observe that even though automated placement methods may be capable of pro-
ducing placements that can enforce any policy, and thus can enforce least privilege,
programmers will not accept a hook placement unless there is a justified need for that
hook. Specifically, programmers only want a hook placed if that hook will actually be
necessary to prevent at least one subject from accessing a security-sensitive operation.
That is, while programmers agree that they should give subjects the minimal rights, they
also require that a program should have only the minimal number of hooks necessary
to enforce complete mediation and least privilege.

9

4 Design

There are two main inputs to our approach: a) the set O of SSOs and their instances
OL in the program, and b) the control dependence graph CDG of the program. We have
defined these inputs in Section 3.1 and discussed prior work that uses static analysis to
infer them automatically.

Step 1: Generating a default placement: First, using O, OL and CDG, we gener-
ate a default placement. Since the elements in OL are in terms of code locations, and
the nodes in the CDG have location information, we can create a map C2O from each
node si in the CDG to the set of SSO instances in OL that occur in the same location as
si. The default placement D has a hook at each node si where C2O[si] 6= ∅.

Step 2: Generating constrained hook placement: If a set of authorization con-
straints Pi is already available, step 2 of our tool is able to automatically generate a
minimal placement10 Ei that can enforce any access control policy that satisfies the
constraints. Our approach uses the equivalence constraints to perform hoisting and sub-
sumption constraints to perform removal, thereby minimizing the number of hooks.
This procedure is described in Section 4.1. We discuss how we may assist programmers
in selecting authorization constraints for their program using high-level goals encoded
as constraint selectors in Section 4.2.

4.1 Deriving a constrained placement

Given default placement D and set of authorization constraints P , our system can de-
rive a candidate constrained placement E that satisfies complete mediation and least
privilege enforcement with the minimum number of hooks (used in step 3 of our de-
sign). The subsumption S and equivalence Q relationships in P enable us to perform
two different hook refinements on D to derive the E . We present the algorithm next and
the proof why it has desired properties is in Appendix A.

Hoisting The first refinement is called hoisting and it aims to consolidate the hooks
for mediation of equivalent operation instances that are siblings (appear on all branches
of control statements). This lifts hook placements higher up in the CDG based on Q.
Given a node si in the CDG, if each path originating from that node si contains SSOs
that are in the same equivalence class in OQ, then we can replace the hooks at each of
these paths with a single hook at si. This relates to the example in Listing 1, where if the
operations along all the 23 branches of the Switch statement in line 3 are equivalent,
then we can replace the 23 automatically generated hooks at those branches with a
single hook that dominates all of them.

Algorithm 1 shows how hoisting is done. It uses the CDG and the C2O map as
inputs. Accumulator α gathers the set of SSOs at each node si by combining the C2O
of si with the α mapping from the child nodes. The algorithm traverses the CDG in
reverse topological sort order and makes hoisting decisions at each node in the CDG.
We partition the set of nodes in the CDG into two types - control and non-control nodes.
Control nodes represent control statements (such as if, switch etc) where hoisting can

10 Henceforth referred to as a constrained placement.

10

Algorithm 1 Algorithm for hoisting
top′ = TopoSortRev(CDG)
while top′ 6= ∅ do
si = top′.pop()
if isControl(si) then
α[si] = C2O[si] ∪

⋂Q
j {α[sj] | (si, sj) ∈ CDG}

else
α[si] = C2O[si] ∪

⋃
j{α[sj] | (si, sj) ∈ CDG}

end if
end while

Algorithm 2 Algorithm for removal
top = TopoSort(CDG)
while top 6= ∅ do
si = top.pop()

OD =
⋂QS

j {φ[sj] | (sj , si) ∈ CDG}
φ[si] = α[si] ∪OD

OR = ∅
for all om ∈ α[si] do

if ∃on ∈ OD, (on S om) or (onQom) then
OR = OR ∪ {om}

end if
end for
β[si] = α[si]−OR

end while

be performed. At control nodes11, we perform the intersection operation
⋂Q which uses

the equivalence relation Q to perform set intersection in order to consolidate equivalent
SSOs. Note that this intersection operation limits how high hooks may be hoisted in
the program. At non-control nodes, we accumulate SSOs from children using a union
operation.

Note that this algorithm does not remove any hooks. It places new hooks that dom-
inate the control statements where hoisting occurs. For example, given Listing 1, the
algorithm would place a new hook before the Switch statement. The removal operation
which we discuss next will eliminate the 23 hooks along the different branches because
of the new hook that was placed by this algorithm.

Removal The second refinement is called redundancy removal and aims to eliminate
superfluous hooks from CDG using S. Whenever a node s1 that performs SSO o1 dom-
inates node s2 that performs SSO o2 and o1 either subsumes or is equivalent to o2
according to P , then a hook at s1 for o1 automatically checks permissions necessary
to permit o2 at s2. Therefore, we may safely remove the hook at s2 without violating
complete mediation.

In the example in Figure 2, if we had authorization constraints specify that operation
read(pWin→ firstChild) subsumes (or is equivalent to) operationwrite(pChild→
mapped), then we do not need the suggested hook h5.

Algorithm 2 shows how the removal operation is performed. The algorithm takes as
input the CDG and the map α computed by the hoisting phase. It traverses the CDG in
topological sort order (top-down) and at each node si makes a removal decision based
on the set of operations checked by all hooks that dominate si. The accumulator φ

11 Each control node has dummy nodes as children each representing a branch of the control
node

11

stores for each node si the set of operations checked at si and all nodes that dominate si.
While processing each node, the algorithm computesOD, which is the set of operations
checked at dominators to node si. Note that the CDG is constructed interprocedurally
(refer to Section 3.1) and a node can have multiple parents at function calls12. The

⋂QS

that combines authorized operations in case of multiple parents is shown in Algorithm 3.

Algorithm 3 Compute
⋂QS on two sets Oi and Oj . Returns result in OT .

OT = ∅
for all oi ∈ Oi do

for all oj ∈ Oj do
if oi Q oj then
OT = OT ∪ {oi}

end if
if oi S oj then
OT = OT ∪ {oj}

end if
if oj S oi then
OT = OT ∪ {oi}

end if
end for

end for

Next, Algorithm 2 creates the set OR which is the set of operations that do not
have to be mediated at si since they are either subsumed by or equivalent to operations
that have been mediated at dominators to si. The resulting map β from nodes to the
set of operations that need to be mediated at the node gives the final placement. The
constrained placement E suggests a hook at each node si such that β[si] 6= ∅.

Note that both the bottom-up hoisting and top-down removal must be performed in
sequence to get the final mapping from nodes to the set of SSOs that need mediation.

4.2 Helping Programmers Produce Placements

In this section we discuss how a programmer might produce a hook placement using the
approach presented above. More specifically, would the programmer have to manually
generate a fine-grained set of authorization constraints in order to use our approach?
We envision an approach where programmers only need to specify high-level security
goals as opposed to fine-grained set of authorization constraints.

Suppose the programmer wishes to enforce a well-known security policy, such as
Multi-Level Security [12]. In MLS, subjects are assigned permissions at the granularity
of read and write accesses to individual objects. In our method, program objects are
referenced by variables in program operations, so any MLS policy that permits a sub-
ject to read a field of a variable also permits that subject to read any other fields of that
variable; a similar case holds for writes. This means that all read-like (write-like) ac-
cesses of a variable can be treated as equivalent. The programmer can produce a small
12 We avoid cycles in the CDG by eliminating back edges. This is for the purpose of being able

to sort nodes topologically in the CDG. When we perform hook hoisting and removal, it is the
control dominance information in a CDG that gets used in our algorithms; so eliminating back
edges would not affect our analysis.

12

Program LOC MANUAL DEFAULT MLS
Total %-Reduction %-Difference

X Server 1.13 28K 207 420 296 30 58
Postgres 9.1.9 49K 243 360 326 9 29

Linux VFS 2.6.38.8 40K 55 139 135 2 5
Memcached 8K 0 32 30 6 n/a

Table 1: Table showing the lines of code (LOC), number of manual hooks (MANUAL), de-
fault automated hooks (DEFAULT), and the impact of using the MLS constraint selectors for
hook placement, including the resultant number of hooks (Total), percent reduction in total hooks
(%-Reduction), and the percent reduction in the difference between the manual and automated
placements (%-Difference).

set of such rules to encode the security policy (we call this a constraint selector) which
serves as an input to the placement approach in lieu of a complete set of authorization
constraints.

Whenever a hoisting or a removal decision needs to be made by the approach, the
constraint selector will serve as an oracle that aids in this decision. The MLS constraint
selectors will stipulate that whenever all the branches perform either only reads or only
writes of the same variable (irrespective of the fields being read) a hoisting operation
should succeed. Similarly, if a hook mediated the read operation of a variable and is
dominated by a hook that mediates the read of the same variable (irrespective of the field
being accessed) the removal operation should succeed. The programmers can create
any such constraint selector that encodes relationships between data types that may be
application specific, or even encode the results or auxiliary static and dynamic analysis.

5 Evaluation

We implemented our approach using the CIL [14] program analysis framework and all
our code is written in OCaml. The CDG construction and default hook placement is
similar to the approach mentioned in prior work [13]. Our prototype implementation
does not employ precise alias analysis or a path sensitive analysis which may produce
some redundant hooks (e.g. in code paths that are not feasible).

Our goal with the evaluation was to answer two questions:
a) Does the approach produce placements that are closer to manually placed hooks?
b) Does the approach reduce programmer effort necessary to place authorization hooks?

In order to evaluate our approach, we compare hook placement produced by using
constraint selectors against the default hook placement produced using the technique
presented in our prior work [13]. We perform this comparison along two dimensions:

– First, we determine the number of hooks produced using both techniques and show
that using constraint selectors reduces the number of hooks by as much as 30%. We
also show that using the constraint selectors reduces the gap between manual and
automated placements by as much as 58% compared to the default approach [13].

– Second, we show that using constraint selectors reduces the programmer effort,
measured in terms of the number of authorization constraint options to manually
consider by as much as 58%.

13

Program DEFAULT MLS
REMOVE HOIST REMOVE HOIST

X Server 1.13 237 55 113 10
Postgres 9.1.9 208 42 146 21

Linux VFS 2.6.38.8 53 4 49 3
Memcached 8 1 6 0

Table 2: Table showing the hoisting (HOIST) and removal (REMOVE) suggestions in the default
placement (DEFAULT) and placements generated using the constraint selectors (MLS).

Evaluating Hook Reduction: Table 1 shows the total number of hooks placed for
each experiment. ‘LOC’ shows the number of lines of code that were analyzed, ‘MAN-
UAL’ shows the number of hooks placed manually by domain experts, ‘DEFAULT’
shows the number of hooks placement in the default case by the automated technique
and ‘MLS’ shows how using the constraint selectors affects the total number of hooks
and how this compares with the number of hooks placed manually. Within the ‘MLS’
column, ‘Total’ refers to the total number of hooks placed when using the constraint se-
lectors ‘%-Reduction’ refers to the percentage reduction in number of hooks compared
to the default placement and ‘%-Difference’ refers to percentage reduction in the gap
between automated and manual placement when compared against the default place-
ment. For example, in the case of X Server we see that in the experiment we considered
28K lines of code, where programmers had placed 207 hooks manually, whereas the de-
fault placement suggested 420 hooks. When the ‘MLS’ constraint selectors was used,
the number of hooks suggested by the automated technique went down to 296 which is
a 30% reduction in the number of hooks compared to manual placement and reduces
the gap between automated and manual hook placements by 58%.

Evaluating Programmer Effort: We define programmer effort as the search space
of authorization constraints that the programmer has to examine manually. Therefore,
we measure the reduction in programmer effort by counting the number of hoisting and
removal choices that the tool automatically makes using the constraint selectors after
the default placement. The results for this experiment are shown in Table 2 with the
number of removal choices (REMOVE) and hoisting choices (HOIST) for each exper-
iment. For example, there were 237 removal choices and 55 hoisting choices available
to the programmer after the default placement for X Server. After applying the pro-
posed placement approach using the MLS constraint selectors, there are 113 removal
and 10 hoisting choices remaining from which the programmer has to select from. This
implies that using the MLS constraint selectors has reduced the number of choices that
the programmer has to make to produce their desired placement. Making some set of
hoisting and removal choices may expose additional choices due to newly introduced
dominance and branch relationships. Therefore the number of choices shown in this
table is not a measure of the total remaining programmer effort but only of the next set
of choices available to the programmer.

We ran our experiments on four programs:
X Server 1.13. Our results show that we are able to reduce the amount of programmer
effort by 58%. The number of hooks generated is reduced by 30% (reducing the gap
between manual and automated placements by 58% as well).
Postgres 9.1.9. This version has mandatory access control hooks [1] hooks, but these
are incomplete according to the documentation of the module [1]. Therefore, we only
consider discretionary access control hooks. Our experiments show that we are able to

14

reduce the amount of programmer effort by 32%. The number of hooks generated is re-
duced by 15% (reducing the gap between manual and automated placements by 46%).
Linux kernel 2.6.38.8 virtual file system (VFS). The VFS allows clients to access
different file systems in a uniform manner. The Linux VFS has been retrofitted with
mandatory access control hooks in addition to the discretionary hooks. Our results show
that there is an 17% reduction in programmer effort and four fewer hooks then default
placement.
Memcached. This general-purpose distributed memory caching system does not cur-
rently have any hooks. Our experiments show that constraint selectors are able to reduce
the amount of programmer effort by 33% and the number of hooks by 22%.

In the case of the Linux VFS, ‘MLS’ does not make a significant dent on the removal
choices. All the removal choices in Linux VFS fell into one of three categories. First, 24
of the 49 remaining choices are interprocedural hook dominance relationships where the
security-sensitive objects being guarded by the hooks were of different data types. For
example, the hook in function do rmdir dominates the hook in vfs rmdir, there-
fore there is a removal opportunity. But the hook in the former mediates an object of
type nameidata and the latter mediates an object of type struct dentry *. Our
approach currently only performs removal when the hooks mediate the same variable.
Second, 19 choices are interprocedural hook dominance relationships where the object
mediated is of the same type but because it is across procedure boundaries and our ap-
proach does not employ alias analysis, it conservatively assumes that they are different
objects. Finally, six choices were due to intraprocedural hooks on the same object but
one mediates reads and the other mediates writes. The ‘MLS’ constraint selector forbids
removal in these cases.

6 Conclusion
In this paper we have successfully demonstrated that our automated system can generate
minimal authorization hook placements that satisfy complete mediation and least priv-
ilege guided by authorization constraints. We show that using static and dynamic anal-
ysis techniques to help programmers select these authorization constraints. We show
how our technique can be practically used by programmers to reduce the manual effort
in weighing different authorization hook placement options.

Acknowledgement. We thank the anonymous reviewers of this paper and the shepherd
Dr. Christian Hammer for their valuable feedback in preparing this manuscript. This
material is based upon work supported by the National Science Foundation Grant No.
CNS-1408880 and in part by DARPA under agreement number N66001-13-2-4040.
The U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.

References

1. F.38. sepgsql. http://www.postgresql.org/docs/9.1/static/sepgsql.
html, 2013.

2. J. P. Anderson. Computer security technology planning study, volume II. Technical Report
ESD-TR-73-51, HQ Electronics Systems Division (AFSC), October 1972.

15

http://www.postgresql.org/docs/9.1/static/sepgsql.html
http://www.postgresql.org/docs/9.1/static/sepgsql.html

3. D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition and Multics
interpretation. Technical Report ESD-TR-75-306, HQ Electronic Systems Division (AFSC),
March 1976.

4. J. Carter. Using GConf as an Example of How to Create an Userspace Object Manager. 2007
SELinux Symposium, 2007.

5. D.Walsh. Selinux/apache. http://fedoraproject.org/wiki/SELinux/
apache.

6. A. Edwards, T. Jaeger, and X. Zhang. Runtime verification of authorization hook placement
for the Linux security modules framework. In Proceedings of the 9th ACM Conference on
Computer and Communications Security, pages 225–234, 2002.

7. V. Ganapathy, T. Jaeger, and S. Jha. Automatic placement of authorization hooks in the Linux
Security Modules framework. In Proceedings of the 12th ACM Conference on Computer and
Communications Security, pages 330–339, Nov. 2005.

8. V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code for authorization policy en-
forcement. In Proceedings of the 2006 IEEE Symposium on Security and Privacy, pages
214–229, May 2006.

9. V. Ganapathy, D. King, T. Jaeger, and S. Jha. Mining security-sensitive operations in legacy
code using concept analysis. In Proceedings of the 29th International Conference on Soft-
ware Engineering (ICSE), May 2007.

10. L. Gong and R. Schemers. Implementing protection domains in the javatm development kit
1.2. In NDSS, 1998.

11. R. Love. Get on the D-BUS. http://www.linuxjournal.com/article/7744,
Jan. 2005.

12. Multilevel security in the department of defense: The basics. http://nsi.org/
Library/Compsec/sec0.html, 1995.

13. D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leveraging “choice” to automate authoriza-
tion hook placement. In CCS’12: Proceedings of the 19th ACM Conference on Computer
and Communications Security, page TBD. ACM Press, October 2012.

14. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermediate language and tools
for analysis and transformation of c programs. In Compiler Construction, 11th International
Conference, CC 2002, pages 213–228. Springer, 2002.

15. J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. Adsafety: type-based verifi-
cation of javascript sandboxing. In Proceedings of the 20th USENIX conference on Security,
SEC’11, pages 12–12. USENIX Association, 2011.

16. SE-PostgreSQL? http://archives.postgresql.org/message-id/
20090718160600.GE5172@fetter.org, 2009.

17. S. Son, K. S. McKinley, and V. Shmatikov. Rolecast: finding missing security checks when
you do not know what checks are. In Proceedings of the 2011 ACM international conference
on Object oriented programming systems languages and applications, OOPSLA ’11, pages
1069–1084. ACM, 2011.

18. F. Sun, L. Xu, and Z. Su. Static detection of access control vulnerabilities in web applica-
tions. In Proceedings of the 20th USENIX conference on Security, SEC’11, pages 11–11.
USENIX Association, 2011.

19. L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. Autoises: automatically inferring security
specifications and detecting violations. In Proceedings of the 17th conference on Security
symposium, pages 379–394. USENIX Association, 2008.

20. Implement keyboard and event security in X using XACE. https://dev.laptop.
org/ticket/260, 2006.

21. Implement keyboard and event security in X using XACE. https://dev.laptop.
org/ticket/260, 2006.

16

http://fedoraproject.org/wiki/SELinux/apache
http://fedoraproject.org/wiki/SELinux/apache
http://www.linuxjournal.com/article/7744
http://nsi.org/Library/Compsec/sec0.html
http://nsi.org/Library/Compsec/sec0.html
http://archives.postgresql.org/message-id/20090718160600.GE5172@fetter.org
http://archives.postgresql.org/message-id/20090718160600.GE5172@fetter.org
https://dev.laptop.org/ticket/260
https://dev.laptop.org/ticket/260
https://dev.laptop.org/ticket/260
https://dev.laptop.org/ticket/260

22. Xorg-Server Announcement. http://lists.x.org/archives/
xorg-announce/2008-March/000458.html, 2008.

23. X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for static analysis of authorization hook
placement. In Proceedings of the 11th USENIX Security Symposium, pages 33–48, August
2002.

A Hook Placement Properties

First, we want to prove that the authorization hook placement mechanism satisfies two
goals: least privilege enforcement and complete mediation. We start by showing that
our initial placement satisfies these properties and the subsequent hoisting and removal
phases preserve this property. Least privilege is defined as follows:
Definition 3 In a least privilege placement a hook (Oh, lh) placed at location lh au-
thorizing a set of SSOs Oh implies that for each oi ∈ Oh, on each path in the program
originating from lh, there must be an operation instance (oj , lj) such that (oi S oj) ∨
(oiQoj) .

Complete mediation is defined as:

Definition 4 Complete Mediation requires that for every operation instance (oi, li),
there exists a hook (Oh, lh) such that lh control flow dominates li and there exists
oh ∈ Oh such that (oiQoh) ∨ (oh S oi).

Our approach depends on two inputs a) The set of all SSOs in the program b) The au-
thorization constraints that determine all possible optimizations (hoisting and removal)
in hook placement. Our proof assumes that both of these specifications are complete.

Our approach starts by placing a hook at every instance of every SSO in the pro-
gram. First, it is trivial to show that this results in a placement that adheres to complete
mediation since every SSO instance has a corresponding hook. Second, this approach
guarantees least privilege since every hook is post-dominated by the SSO instance for
which it was placed.

Hoisting. The hoisting in Algorithm 1 hoists the hooks pertaining to equivalent SSOs
on all branches of a control statement in a bottom-up fashion in the CDG. The hoisting
operation introduces a new hook which dominates the control statement. This new hook
preserves least privilege since all the branches of the control statement (therefore all
paths originating from the new hook) must contain instances of operations that are
equivalent to the one mediated by the new hook. This stage does not remove any hooks
so complete mediation is preserved.

Removal. The redundancy removal stage in Algorithm 2 propagates information about
hooks placed in a top-down fashion in the CDG. The removal operation does nothing
to violate least privilege since it does not add additional hooks. When each node n of
the CDG is processed, the set of propagated hooks that reach n represent the hooks
that control dominate n. Therefore, if a hook h placed at node n is subsumed by or
equivalent to any hook in the set of propagated hooks, then h can be safely removed
without violating the complete-mediation guarantee.

Additionally given sound and complete alias analysis we can also guarantee a mini-
mality in hook placement (constrained by complete mediation and least privilege). The

17

http://lists.x.org/archives/xorg-announce/2008-March/000458.html
http://lists.x.org/archives/xorg-announce/2008-March/000458.html

construction of our algorithm guarantees that both hoisting and removal at each node
are performed transitively in the context of all successors and predecessors respectively.
Therefore, using an oracle-based argument similar to the proof in [13] we can show that
with respect to a given set of authorization constraints after using our technique to re-
move hooks, no additional hoisting or removal can be performed, resulting in a minimal
placement.

18

	Producing Hook Placements to Enforce Expected Access Control Policies

