
1

A Rose by Any Other Name or an Insane Root?
Adventures in Namespace Resolution

Hayawardh Vijayakumar, Joshua Schiffman, and Trent Jaeger
Systems and Internet Infrastructure Security Lab

Penn State University
Email: {hvijay,jschiffm,tjaeger}@cse.psu.edu

Abstract—Namespaces are fundamental to computing
systems. Each namespace maps the names that clients use to
retrieve resources to the actual resources themselves. How-
ever, the indirection that namespaces provide introduces
avenues of attack through the name resolution process.
Adversaries can trick programs into accessing unintended
resources by changing the binding between names and
resources and by using names whose target resources are
ambiguous. In this paper, we explore whether a unified
system approach may be found to prevent many name
resolution attacks. For this, we examine attacks on various
namespaces and use these to derive invariants to defend
against these attacks. Four prior techniques are identified
that enforce aspects of name resolution, so we explore how
these techniques address the proposed invariants. We find
that each of these techniques are incomplete in themselves,
but a combination could provide effective enforcement of
the invariants. We implement a prototype system that
can implement these techniques for the Linux filesystem
namespace, and show that invariant rules specific to each,
individual program system call can be enforced with a small
overhead (less than 3%), indicating that fine-grained name
resolution enforcement may be practical.

I. INTRODUCTION

Namespaces are fundamental to computing systems.
Namespaces map the names that clients use for retriev-
ing and sharing resources to the actual resources. For
example, a file’s pathname is linked to a unique file
inode that represents the physical resources that file
pathname addresses. The process of translating the name
to the resource in a namespace is called name resolution.
Filesystem, process, and network namespaces are well-
known examples, but component-specific namespaces
like system services (e.g., D-Bus methods), middleware
(Android), and web infrastructure (e.g., URLs) exist.
Namespace resolution is a key issue in any distributed
system design [1], [2], so we expect new namespaces
will continue to emerge as new software architectures
are developed.

However, the indirection that namespaces provide
introduces avenues of attack through the name resolu-
tion process. By altering the bindings between names

Apologies to William Shakespeare and his fans.

and the intended resources, adversaries can trick vic-
tim processes into accessing untrustworthy resources.
For example, time-of-check-to-time-of-use attacks [3]
(TOCTTOU) enable an adversary to change the file
inode bound to a pathname after the victim has checked
to determine the user’s access rights to that file. Other
attacks rely on the ambiguity surrounding which actual
resource may be associated with a name. A confused
deputy problem [4] may be created when an adversary
provides a file path to a privileged server that fails to
recognize the path is a link to a privileged inode, like a
password file.

The typical approach to defend against name res-
olution attacks is to provide programmers with API
changes that enable them to detect and prevent such
attacks themselves. For example, system calls have
been extended with flags that prevent a process from
creating a file if one already exists with that name
(prevents squatting) or following a symbolic link (limit
the accessible files). However, programmers continue
to make errors because some programs require such
risky functions and programmers simply fail to add the
necessary checks. Also, researchers have found that it
is difficult to prevent such attacks in general. Hu and
Dean proposed a system solution to prevent the access
TOCTTOU vulnerability [5], later extended by Tsafir et
al. [6], but others found both solutions flawed [7], lead-
ing to the requirement that any comprehensive defense
against race conditions requires an accurate model of the
programs that it protects. However, this limitation should
not prevent us from exploring defenses, but rather we
must build defenses understanding these limitations.

In this paper, we explore options for a unified system
solution to prevent name resolution attacks. We cite
the experience with preventing memory errors as a
motivation. The prevailing thought ten years ago was
that programmers could, with the right training and tools,
prevent such errors, but this proved to be ineffective.
Instead, incomplete defenses were proposed that do not
require programmer input [8], and those with sufficiently
low overhead, such as canaries [9] and non-executable



2

memory [10], have now been adopted to prevent many
types of buffer overflow vulnerabilities.

The question we explore is whether a system approach
based on a combination of low-cost, incomplete defenses
that do not require programmer input may be found
to prevent many name resolution attacks. To find the
answer to this question, we identify the requirements for
name resolution attacks and explore the effectiveness of
candidate defenses. A key issue is that name resolution
attacks involve two components, one that manages the
namespace and one that uses the namespace, and it is
necessary for the two to collaborate to prevent such
attacks.

The paper continues with Section II that outlines the
security model for name resolution and describe a variety
of attacks against namespaces. Section III develops name
resolution invariants and evaluates the effectiveness of
previous defenses using these invariants. In Section IV,
we examine how such mechanisms may be composed
into a coherent defense mechanism, using the filesystem
namespace as the example. Finally, Section V explores
how this approach may be generalized to apply to
any name resolution mechanism and the challenges in
implementing the mechanism for particular namespaces.

II. BACKGROUND

In this section, we describe attacks on name resolution
and define our security model.

A. Name Resolution

Name resolution is performed by a name server. When
a client provides a name, the server returns a resource
reference. Each resolution is specific to a namespace,
which may map names to resources one-to-one, many-
to-one (e.g., many file pathnames may refer to one
file inode), or one-to-many (e.g., one name may refer
to many possible resources of which one is selected
ususally). At present, we have not seen a many-to-
many namespace. Name servers may also enforce access
control over the client’s ability to use the associated
resource. Once the resource reference is returned the
client may use that resource within the scope of her
access rights.

We briefly examine two different name resolutions to
demonstrate why security problems may occur in name
resolution. First, virtual address resolution converts a
virtual address (the name) to a physical address (the
resource). In modern systems, page table architectures
may contain one or more levels of mappings, where the
result of a mapping is the availability of the associated
physical frame backing the physical address. Virtual
address resolution does not suffer from vulnerabilities
because it is quite restrictive: the mapping is one-to-one,

defined by a trusted server, and only modifiable by the
client itself or the server.

Second, the file pathname resolution process is similar,
but presents some additional flexibility to allow multiple
parties to manage the namespace. An important issue
is that multiple clients may bind names to file inodes,
where some (the file owners) can choose the files’
access rights as well. Clients can create resources in
locations dictated by their file system permissions, but
some locations are shared (e.g., /tmp). Also, clients may
create multiple names for the same file inode, using
links. Naming a file inode does not require access to the
file, as a symbolic link is simply a path. As a result,
file resolution may depend on bindings between file
names and inodes defined by untrusted clients. Also,
the mapping between file names and inodes may be
changed by clients at any time. This flexibility enables
applications to create, manage, and share their files
easily, but also provides opportunities for adversaries.

B. Security Model
We now identify our security model for reasoning

about vulnerabilities described in this section. First,
name servers are trusted by all processes to perform
name resolution using their built-in, based on the current
state of the namespace. The adversary does not control
the name server. Second, victim processes are the targets
of potential attack. Any process could be a potential
victim, but they are assumed not to be under the control
of an adversary. In particular, we assume that they gen-
erate name resolution requests that are consistent with
the programmers’ model of the expected namespace.
Finally, adversaries may control any external host or
unprivileged processes on the victim’s host. We assume
that adversaries may use any permission available to the
hosts and processes they control.

Threats emerge from the distinction between the pro-
grammers’ model of the expected name resolution and
the actual resolution. Vulnerabilities are then possible if
the adversary is able to redirect the victim to a resource
with different security semantics than the expected re-
source. For example, if an adversary can get a victim to
obtain a reference to a file whose content is under the
adversary’s control (i.e., is low integrity) when a trusted
file is expected, then the victim can be compromised.
Alternatively, an adversary may also provide a name
to a high-integrity resource that the adversary cannot
modify directly and trick the victim, who can modify
this resource, to perform modifications dictated by the
adversary [4].

C. Example Attacks
There are a variety of name resolution attacks, and

we examine some specific instances that explore various



3

facets of namespace problems. We use these attacks to
identify four categories of problems with namespaces.

Namespace Pre-binding Attack. The namespace pre-
binding attack allows adversary processes to create un-
trusted bindings that help them masquerade as another
entity.

Example 1 - System V shared memory. System V
shared memory uses a “key” namespace, as memory
pages are not addressible by the filesystem namespace.
The key resolves to a shared memory offering, and both
the offering and the sharing processes need to know their
unique key. Since this key namespace is shared, the same
key can be offered by processes running under subjects
with different integrity. Thus, if an adversary process can
associate a shared memory region with a key before a
trusted process process can, it can masquerade as that
trusted process. A generalization of this problem is IPC
squat [11].

Example 2 - XenStore. XenStore provides a store of
key-value pairs that contain information about running
virtual machines under the Xen VMM. Parts of this
namespace contain critical information, and must be
writable only by the privileged domain, dom0. However,
there have been at least two cases where, due to improper
permissions on the namespace, VMs were able to write
arbitrary values onto critical keys, thus introducing low-
integrity bindings. dom0 accessed and used this infor-
mation without realizing it was a bad binding.

Example 3 - Linux filesystems. A common attack on
Linux filesystems is link following. In this attack, a vic-
tim process uses some temporary files with predictable
names. It however, does not check that these temporary
files are already bound. Thus, an adversary process
simply creates a symbolic link with the predictable
name to any critical file (e.g., /etc/passwd). The
victim program corrupts the file, without realizing that
it followed a bad binding.

Namespace Rebinding Attack. In this type of attack,
an adversary rebinds a trusted binding to an unintended
resource. The ability to rebind makes an adversary more
powerful than the ability to just bind.

Example 4 - Linux filesystems. A common attack on
Linux filesystems is TOCTTOU. Here, a victim process
checks to see if the resource it accesses is valid, and then
uses it. However, in the time between the check and use,
an adversary could update the mapping to make it point
to a file of her choice.

Example 5 - HTML DOM. There are a few DOM
name resolution functions in JavaScript. In particular,
the getElementById function should ”access the first
element with the specified id” [12]. Although we do not
know of such exploits, an adversary who is able to inject
just plain HTML into a page (e.g., many forums allow

this), could re-bind the resolution of an already existing
HTML element to the adversary’s injected element by
giving it the same ID, provided it occurs earlier on the
page. JavaScript and other code that depends on this
element would now resolve to the adversary-controlled
element.

Namespace Multi-binding Attack. The previous
namespaces mentioned offer either one-to-one or many-
to-one mappings. However, some namespaces use one-
to-many bindings. The resolution algorithm then chooses
one among those bound to the name. An adversary can
create a binding and hope that the resolution algorithm
chooses it over other, legitimate choices.

Example 6 - Android IPC. Android enables processes
to communicate via the Binder IPC mechanism. We note
that Android IPC is vulnerable to IPC squat [11]. We
focus on a different problem here. A process can request
to connect to a foreground Activity, or a background
Service, by sending an Intent message, that identifies the
recipient of the request. Intents can explicitly identify
a recipient, or implicitly, by allowing the OS to select
among a possible set of processes that have registered to
handle that Intent. If an implicit Intent can be handled
by multiple foreground activities, the user is given a
choice to select one. However, if an implicit Intent can
be handled by multiple background services, any one
is chosen at random [13]! Thus, an untrusted activity
or service registering on an Intent allows unexpected
resolutions.

Example 7 - D-Bus. Another example of a one-to-
many resolution algorithm is in D-Bus. D-Bus is used
by processes for IPC. Servers group multiple related
methods into an interface. If a client sends a method
without specifying an interface, the bus daemon will try
to locate any interface with a matching method signature.

Improper Name Attack. The previous classes of attacks
are due to unexpected name resolution. However, pro-
grams may supply an unintended name for resolution.
This situation occurs most commonly due to bugs in
programs, where an adversary controls the supplied
name in ways she should not.

Example 8 - Directory Traversal. As an example,
consider directory traversal attacks in webservers. The
adversary supplies ../../etc/passwd, and instead
of fetching a HTML file, the webserver serves the
password file. In this case also, an unexpected resource
is fetched, though it is the requesting program that is
at fault, and not the name resolution. We contend that
the namespace is the proper place to defend against such
attacks, and the resolution algorithm can simply fail if it
knows the resource is not a proper one for the program.



4

A B C

R33 R80 R235

Namespace 

Namespace
Bindings

Names

Resources

D

R238

Fig. 1. A namespace has names that are resolved to resources through
bindings.

III. NAME RESOLUTION INVARIANTS

Based on the attacks above, we define name resolution
invariants for specifying the requirements for secure
name resolution. Figure 1 shows a conceptual model for
mapping names to resources, where each name may be
bound to one or more resources and a resource may have
multiple possible names. Using this model, we examine
how four different types of defenses may be used to
prevent name resolution attacks, finding that they each
provide partial solutions.

System Resource Restriction. The first defense re-
stricts the set of resources that may be retrieved from
a name resolution operation. For example, a network
firewall [14], [15] restricts which IP addresses may be
accessed by a particular system interface (e.g., a port),
regardless of the result from a DNS resolution. The aim
is to block resolutions that are known to be insecure,
such as redirecting mail requests to an untrusted server.
Thus, even though the DNS binding between a name
and an IP address may be untrusted, the firewall protects
the system from being redirected. However, if an IP
address may lead to a malicious resource, the firewall
may still allow it, should the system’s function require
such operations (e.g., web client access). Also, firewalls
require policy to be specified, which is a manual pro-
cess. We highlight firewalls rather than access control
mechanisms, in general, because firewalls can restrict
access per system interface. Access control instead gives
the process’ full rights to each program system call. We
discuss the importance of this in the next section.

Capabilities. A second defense is to circumvent the need
for name resolution by providing access to the necessary
resources directly. This is the aim of pure capability
systems [16], [17], which restrict all naming to be
performed using capabilities. That is, each process can
only access a resource for which it has a capability. Each
process has a capability to a memory region containing a

set of capabilities, and other capabilities may be obtained
from other processes indirectly. However, confinement is
a problem for capability systems [18] because we may
want to prevent a process from being able to obtain a
capability for an unauthorized object, even though it can
communicate with another process with that capability.
While EROS can prevent a process from obtaining capa-
bilities that would violate the *-property [17], it cannot
confine processes arbitrarily. SCAP [18] and ICAP [19]
proposed mechanisms to authorize capability use and
propagation, respectively, but writing such policies will
often depend on naming objects. The Capsicum system
takes this approach to an extreme, obtaining capabili-
ties when processes start [20]. However, one still has
to check name resolution when those capabilities are
collected. In general, developers find namespaces con-
venient, so replacing them entirely with pure capability
systems seems quite unlikely. Nonetheless, where names
can be converted to capabilities securely, the use of
capabilities prevents ambiguity due to name rebinding.

Namespace Management. A third defense restricts the
ability to modify namespace mappings used in reso-
lution. It has long been recommended that processes
have a private namespace [21], [2], and Linux has
supported per-process namespaces since version 2.4.19.
A per-process namespace enables a process to “unshare”
resources by creating their own namespace mappings
for a resource. This is employed by container-based
virtualization efforts, such as OpenVZ [22], which aim to
provide disjoint namespaces for processes in their con-
tainers. Also, D-Bus employs per-session namespaces,
which are specific to each logged-in session. Per-process
namespaces are typically used for convenience (e.g., to
run software that depends on different versions of a file
typically in the same path), but there is also a potential
for reducing name resolution attacks. For example, a
process may protect itself from compromise by only
using namespace bindings it or a trusted process defined.
Unfortunately, this may not always be practical because
servers may need to retrieve files defined by low-integrity
subjects in their namespaces.

Chari et. al [23] aim to ensure that only high-integrity
bindings are resolved in the Linux filesystem shared
namespace, by enforcing that only high-integrity subjects
(root and the requesting user) have permission to mod-
ify any component of a pathname that is being resolved
(by checking directory permissions). For cases where
this does not hold, they use additional heuristics on the
bindings to determine whether the resource resolved is
appropriate. By viewing the problem more broadly, we
envision that we can control name resolution directly us-
ing resource constraints (e.g., is the resource appropriate
for the request?) and using per-process namespaces to



5

prevent unexpected rebindings.

Program Resource Restrictions. Finally, a fourth de-
fense is based on knowledge of the program intent.
Cai et al. argue that any kernel (i.e., name server) race
detector must have side information about the program
or it otherwise is limited in its function [7] (i.e., either
has false positives or false negatives). As capability and
namespace management solutions eliminate races by pre-
venting changes in bindings, they are not susceptible to
these limitations (although they have other limitations).
However, the firewall defense above and other custom
race detectors that would run in the name server [5],
[6] suffer some limitation. The challenge is how to get
this side information. Programmers may specify such
information, but they are typically loathe to annotate
their programs and often make errors. The alternative
is to perform program analyses to identify races and
the scope of resources required for each system call.
However, runtime analysis may be incomplete and static
analysis may be imprecise.

Based on this analysis of known defenses, we identify
four distinct ways to prevent name resolution attacks, but
each has limitations. Our goal is to define invariants for
name resolution, and then explore how we can combine
such techniques to greatly limit an adversary’s ability to
compromise victims, eliminating attacks entirely in some
cases.

We thus propose the following name resolution invari-
ants:

i-resource: Each name resolution R = (s, n, p) in
namespace s of name n by process context p must restrict
the resource output from a resolution of s to authorized
resources for p and n.

i-binding: Each name resolution R = (s, n, p) in
namespace s of name n by process context p must restrict
the namespace bindings used in resolutions of s to those
defined by authorized subjects for p and n.

We note that each name resolution should enforce its
requirements of the invariants i-binding and i-resource
– only one or both may apply. To see why this is
the case, consider the following two cases for Linux
filesystems. First, consider the directory traversal attack
in Section II-C. In this case, even if the webserver
follows only trusted bindings, it will end up with a
resource that is outside the scope for that particular
process context (e.g., process’s execution call stack).
Thus, i-binding is irrelevant here, but i-resource needs
to be enforced. On the other hand, consider a program
accessing /tmp. It is known that adversaries can write
to /tmp, and there is no use placing restrictions such
as that the resource being fetched should be in /tmp
(i-resource is irrelevant). What is needed is a guarantee

that the particular file being resolved is through trusted
bindings (i-binding).

We define invariants on process context rather than
simply processes in general, because the i-binding and
i-resource constraints on each process execution context
that makes the name resolution request may be different.
It is well-known that many attacks are caused because
a process expects a resource with particular properties
at a particular system call, but the adversary may use
name resolution ambiguity to produce a resource with
different (i.e., adversary-controlled) properties. For ex-
ample, a text editor might accept adversary-controlled
low-integrity files to edit, but only high-integrity files
as shared libraries – different constraints apply in dif-
ferent process contexts. Hence, The name resolution
invariants categorize the resource properties into two
types: i-binding for those describing the binding used to
retrieve the resource and i-resource for those properties
of the retrieved resource itself. Process context allows
for different properties per execution context (e.g., call
stack) of the process.

Given these invariants, we find that the prior defenses
relate to the invariants in the following way. System
resource restrictions enforce the i-resource invariant. Ca-
pabilities enforce a special case of the i-resource invari-
ant: ensuring that the same resource is used in multiple
name resolutions. Namespace management enforces the
i-binding invariant. Finally, program resource restrictions
may imply i-binding and i-resource restrictions, but these
restrictions may be incomplete. That is, the quality of
program resource restrictions depends on the accuracy
of program analyses (static or dynamic) and the effort
that programmers make in helping to improve the results
of such analyses. Since we have little control of what the
programmers may or may not do, the other mechanisms
are necessary to provide defense-in-depth to prevent
name resolution attacks.

IV. EXPERIMENT

Motivated by previous defenses against memory at-
tacks, we examine the efficacy of building a system
mechanism to enforce the name resolution invariants.
In general, a system mechanism should implement the
four defenses from the previous section efficiently, and
require little or no programmer effort to use to prevent
many attacks. We explore such defenses in the context of
the Linux filesystem, but we envision that such defenses
can be applied to other namespaces similarly.

Experimental Platform. For our experiment, we built a
prototype to enforce the name resolution invariants for
the Linux filesystem. Our in-kernel mechanism mediates
all filesystem name resolutions. To do this, we extended
the SELinux security module to compare the a file inode



6

Process

Filesystem
Nameserver

(Linux kernel)

LSM
allows 

access?Trigger
LSM Hook

Resolution satisfies 
binding constraints for 
this process context ? 

Request inode 
through filename Fetched inode satisfies 

resource constraints for 
this process context?

(2)

Allow
Access

No

(1)

(3)

(4)

Yes, get 
resolved inode

No
No

Yes, Start resolving 
filename to inode

Yes

Fig. 2. Our prototype for the Linux filesystem enforces invariant
i-binding at (3) and i-resource at (4).

and its security labeling against the expected inode based
on the requested name and the process’ state during
the request. We also evaluated the performance of our
proof of concept mechanism in enforcing the name
resolution invariants per individual process system calls
(see below). Another issue we explore is how easy it
is to identify the name resolution invariant constraints
for each process context. We explore where the policies
may be obtained without manual input, particularly in
assessing program resource restrictions.

Prototype Implementation. We implemented our
filesystem namespace enforcement prototype in the
Linux 2.6.35 kernel as shown in Figure 2. When a
process makes a filesystem related system call, (1) the
kernel’s filesystem name resolver converts the path to
an inode. The inode is then (2) passed through the
normal OS access control mechanisms (DAC and LSM
access control checks). If the access is valid, during the
resolution process, we (3) check if the binding used
to resolve the inode satisfies any constraints for that
particular process context (if any exist), thus maintaining
i-binding. Next, (4) we verify that the fetched inode sat-
isfies any constraints required for that particular process
context (if any exist), maintaining invariant i-resource.
We currently approximate i-binding by asserting that
some resolutions use a private namespace, approximately
the basic mechanism of Chari et al. [23]. Only resolu-
tions that pass both the i-resource and i-binding rules are
accepted. Currently, we use the program counter of the
calling process as the process context, to enable applying
different i-resource and i-binding requirements at each
point where the program requests a name resolution.

Security Results. We now examine how our prototype
integrates into the four prior defenses.

System Resource Restriction. Our prototype can verify
that the resource retrieved as a result of a name lookup
is within a set of authorized resources for that particular
access to satisfy invariant i-resource. The authorized
resources are represented by a set of inodes and a set of
security labels. The retrieved inode must be a descendant
of one of the inodes in the authorized resources and have
a security label in the set of authorized security labels.
For example, to prevent link and parsing vulnerabilities,
the inode must be a descendant of the authorized inode.
To prevent squatting and untrusted input, the label of
the inode must be in the authorized set, which are
determined by application. Use of untrusted, dynamic
libraries can be prevented by limiting the inodes to
specific subtree (e.g., in /lib and /usr/lib) or to
specific labels (e.g., SELinux label lib_t).

Capabilities. Capabilities are a direct reference to a
resource, and elide the need for name resolution. We
can mimic capabilities in our prototype by requiring
use of a particular resource from a prior resolution.
For example, to prevent TOCTTOU attacks, the proto-
type can enforce that the vulnerable system call (e.g.,
open() after access()) use a previously resolved
inode (in this case, the same inode as was referenced
in the access() call). In effect, we have assigned a
capability to the open() interface. Determining when
to require the same resource is a challenge. Researchers
have identified the combinations of system calls that
are vulnerable to TOCTTOU attacks [24] to guide the
identification of such requirements from program intent.
We use such information to collect likely TOCTTOU
cases from program resource restrictions, described fur-
ther below.

Namespace Management. As mentioned above, we
implemented a mechanism to restrict some process con-
texts to use the existence of a per-process namespace for
resolution, emulating the basic enforcement mechanism
in Chari et al. [23]. This can prevent a number of attacks,
such as ones against squatting on temporary files. In
this way, only a process can only resolve names to the
resources that it created in /tmp, and attacker processes
cannot modify the bindings in a victim’s /tmp directory,
as they cannot change this namespace. As Chari et
al. noted [23], there may be legitimate cases where
untrusted bindings may be used, and they implement
some further defenses based on heuristics for these more
complex cases. We have not yet implemented a general
mechanism for enforcing more complex rules, although
those authors have shown that the necessary binding
inforamtion is accessible. Also, recall that we argued
previously that using i-resource invariant constraints
instead may be more effective than trying to control the
binding alone.

Program Resource Restrictions. By knowing more



7

about what a program is expected to do, we can fur-
ther restrict the scope of resources accessible at vari-
ous process contexts. We explore the effectiveness of
runtime program analysis to generate name resolution
constraints for process contexts. MAC policy writers
use runtime analysis of programs to determine their
least privilege policies [25]. Many Linux packages now
include a test suite for evaluating the function and
robustness of these programs. We run these test suites
to gather runtime information. In our experiment, we
use the runtime analysis to identify likely TOCTTOU
system calls to generate constraints (i.e., cases where the
same name is used across known vulnerable system call
sequences). We also believe that runtime analysis will
be useful for identifying process contexts that should
be limited to trusted resources (e.g., to prevent search
path vulnerabilities and squatting attacks). We envision
that a combination of both static and runtime analyses
should be performed, although a key problem is that the
actual invariant constraints may depend on the particular
configuration of the program.

Prototype Performance. A performance concern is
that we might have a large rule base specifying valid
resolutions for different running process contexts, and
thus traversing rules might incur much overhead. Thus,
we ran the system on a simple rule base to assess the
basic performance. Our rule base consists of rules that
protect pairs of system calls against TOCTTOU attacks
for various processes, by making sure the latter system
call is given capabilities to access only the object that
the former system call has checked for [24] (enforcing
i-resource).

For a macrobenchmark, we chose compiling Apache,
as it performs a relatively high number of filesystem
operations, and would represent close to a worst case for
us. We found an overhead of 2.8%. We also measured
the overhead on individual system calls that access
the filesystem namespace, They ranged from 4% for
read/write calls, 17% for open/close calls, to 27% for
stat/access calls. The access system call performs very
little apart from checking for access, and hence has a
maximum overhead. However, this is amortized over the
higher cost for other system calls, as we find in the
macrobenchmark.

V. DISCUSSION AND FUTURE WORK

Our experiment shows that it may be possible to
control name resolution by leveraging a combination
of the four prior defenses to enforce name resolution
invariants per process context. However, this preliminary
investigation raises several, interesting research ques-
tions:

• Can we enforce both i-binding and i-resource in-
variants using a single mechanism? Current ap-
proaches either enforce bindings or resources re-
trieval, but not both. A coherent approach could
utilize whichever approach is most effective for a
particular defense.

• Can the same name resolution enforcement tech-
niques be applied to all namespaces? We see that
some namespaces, such as Android and DOM ob-
jects, use namespaces where multiple objects may
have the same name. It would seem that i-binding
or i-resource could enforce such resolutions, but are
there application-specific requirements that may not
easily be captured in either of these invariants?

• Can we generate the most efficient invariants for
enforcement? Then, a question becomes whether
the most efficient enforcement policy can be deter-
mined from the programs. For example, to prevent
TOCTTOU attacks, we may simply restrict vulnera-
ble operations to use the same resource, rather than
enforcing bindings.

• Does it really matter whether the runtime analysis
generates complete name resolution policies? Using
runtime analysis, we can collect name resolution
policies, but these may be too conservative. For
example, there may be authorized cases that are not
seen by the runtime analysis. Therefore, there may
be acceptable cases that need to be added to the
policy after the fact. Rather than extending policies
manually, we can examine techniques for generating
policies automatically, such as Bouncer [26].

• Can we develop a general approach to name reso-
lution enforcement? Given an enforcement mecha-
nism, automated policy generation, and automated
policy optimization, can we build a library that
builds and maintains name resolution enforcement
policies automatically for all kinds of namespaces?

If such questions can be answered in the affirmative,
then attacks based on name resolution can be greatly
reduced, as buffer overflow attacks have been. How-
ever, as Cai et al. showed [7], developing guaranteed
defenses against TOCTTOU attacks (i.e., one form of
name resolution attacks) depends on an accurate under-
standing of program semantics, which may be beyond
what is computationally tractable. Thus, name resolution
enforcement provides defense-in-depth to prevent attacks
that may be overlooked by programmers.

REFERENCES

[1] D. R. Cheriton, “The v Distributed System,” Communications of
the ACM, 1988.

[2] R. Pike, D. Presotto, K. Thompson, and H. Trickey, “Plan 9 from
Bell Labs,” in UKUUG Proc. of the Summer 1990 Conf, 2006.

[3] M. Bishop and M. Dilger, “Checking for Race Conditions in File
Accesses,” Computing systems, 1996.



8

[4] N. Hardy, “The confused deputy,” Operating Systems Review,
vol. 22, no. 4, pp. 36–38, Oct. 1988.

[5] D. Dean and A. Hu, “Fixing races for fun and profit,” in
Proceedings of the 13th USENIX Security Symposium, 2004.

[6] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva, “Portably solv-
ing file tocttou races with hardness amplification,” in Proceedings
of the 6th USENIX FAST. USENIX, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1364813.1364826

[7] X. Cai, Y. Gui, and R. Johnson, “Exploiting unix file-system
races via algorithmic complexity attacks,” in Proceedings
of the 30th IEEE Symposium on Security and Privacy,
2009. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1607723.1608123

[8] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of CCS ’05. ACM, 2005.

[9] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “Stackguard:
automatic adaptive detection and prevention of buffer-overflow
attacks,” in Proceedings of the 7th USENIX Security Symposium,
1998.

[10] “Homepage of PaX,” http://pax.grsecurity.net/, 2008.
[11] J. Burns, “Developing Secure Mobile Applications For Android.”
[12] w3schools, “HTML DOM Document getElementById()

Method,” http://www.w3schools.com/jsref/met doc
getelementbyid.asp.

[13] E. Chin et al., “Analyzing Inter-Application Communication in
Android,” in MobiSys, 2011.

[14] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin, Firewalls and
Internet Security; Repelling the Wily Hacker. Addison-Wesley,
2003.

[15] R. Marmorstein and P. Kearns, “A Tool for Automated iptables
Firewall Analysis,” in Proceedings of the USENIX Annual Tech-
nical Conference, 2005.

[16] N. Hardy, “The KeyKOS architecture,” Operating Systems Re-
view, vol. 19, no. 4, pp. 8–25, Oct. 1985.

[17] J. S. Shapiro and S. Weber, “Verifying the EROS Confinement
Mechanism,” in IEEE Symposium on Security and Privacy, 2000.

[18] P. A. Karger and A. J. Herbert, “An Augmented Capability
Architecture to Support Lattice Security and Traceability of
Access,” in Security and Privacy, IEEE Symposium on, 1984.

[19] L. Gong, “A Secure Identity-Based Capability System,” in Pro-
ceedings of IEEE Symposium on Security and Privacy, 1989.

[20] R. Watson, J. Anderson, and B. Laurie, “Capsicum: practical
capabilities for UNIX,” in Proceedings of USENIX SS ’10, 2010.

[21] R. Needham, ““Names”,” Distributed systems, S. Mullender, ed.,,
1989.

[22] “OpenVZ,” http://wiki.openvz.org/Main Page.
[23] S. Chari, S. Halevi, and W. Venema, “Where do you want to

go today? Escalating Privileges by Pathname Manipulation,” in
NDSS, 2010.

[24] C. Pu and J. Wei, “A Methodical Defense against TOCTTOU
Attacks: The EDGI Approach,” in ISSSE, 2006.

[25] N. Provos, “Improving host security with system call policies,”
in Proceedings of USENIX SS ’03, 2003.

[26] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado,
“Bouncer: securing software by blocking bad input,” in Proceed-
ings of SOSP ’07. ACM, 2007.


