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ABSTRACT

Virtual machines are widely accepted as a promising basis for build-
ing secure systems. However, while virtual machines offer effec-
tive mechanisms to create isolated environments, mechanisms that
offer controlled interaction among VMs are immature. Some VM
systems include flexible policy models and some enable MLS en-
forcement, but the flexible use of policy to control VM interactions
has not been developed. In this paper, we propose an architecture
that enables administrators to configure virtual machines to satisfy
prescribed security goals. We describe the design and implementa-
tion of such an architecture using SELinux, Xen and IPsec as the
tools to express and enforce policies at the OS, VM and Network
layers, respectively. We develop a web application using our archi-
tecture and show that we can configure application VMs in such
a way that we can verify the enforcement of the security goals of
those applications.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and protection —Access Con-
trols

General Terms

Security

Keywords

Access Control, Policy, Compliance, Virtual Machines

1. INTRODUCTION

Virtual machine systems have been promoted recently as an ef-
fective basis for building secure systems. Virtual machine systems
enable the execution of commodity operating systems and appli-
cations within an isolated environment, thus protecting them from
other code running on the same platform (and vice versa). Vir-
tual machines systems have provided this isolation mechanism for
years [1], but the recent introduction of virtual machine systems
for commodity processors [5] has brought such isolation to inse-
cure commodity operating systems, Windows and Unix.
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The question is how we are going to leverage virtual machine
isolation to build secure systems. For distributed applications, a
virtual machine system still needs to provide the ability for VMs
to share data and communicate via untrusted networks. For ex-
ample, commercial virtual machine systems do not provide control
over access to network resources, so while a VM may be isolated
from others on that platform, unauthorized communications may
result in the leakage of information or integrity violations. Virtual
machine systems are being extended with reference monitoring to
control inter-VM communications [3, 20], but approaches to lever-
age such controls have yet to be developed.

Virtual machine systems that provide an architecture for enforce-
ment are not very common. Karger et al developed the VAX VMM
security kernel [9], which enforced an MLS policy over VM func-
tion. This work demonstrated that a commercial virtual machine
system could be a basis for mandatory access control enforcement,
although the system was not released publicly. NetTop [12, 6] and
Solaris Containers [10] are products that use virtualization tech-
nologies to enforce MLS policies. These approaches benefit from
the assumption of well-defined MLS policies across all platforms,
so when a VM is launched, it is clear in a global sense what its
permissions are. Some distributed applications are not so clear-
cut. An alternative is the Tahoma approach. Tahoma is a virtual
machine system that targets web applications [4]. While Tahoma
enables the configuration of access control for a VM dynamically,
the web server is assumed to be the source of such policies. Be-
cause the web server cannot be an authority over client data, policy
is limited to the web sites that can be visited by the client. How-
ever, the client may still leak secret data or suffer integrity failures
as aresult of providing these VMs with access to any sensitive data,
thus limiting the scope of web applications.

Our goal is to develop a virtual machine architecture whereby
VMs may be used as flexible, controlled domains, unlike the MLS
VM systems, and where the controls are defined to be consistent
with system’s security goals, unlike Tahoma. The insight is that it
should be possible to configure VM policies necessary to ensure
that the new VM’s operations satisfy the system’s security goals.
In this paper, we identify the operations requiring control and how
to configure VM and other policies to control such operations. We
also use our prior work on policy compliance [7, 18] to ensure that
the policies deployed within the VM are compliant with the system
security goals that govern its function.

In this paper, we make the following contributions:

1. We build an architecture that enable administrators to config-
ure flexible mandatory access control policies for VMs dy-

namically.

2. We leverage mandatory access control at operating system,



virtual machine monitors and network layers in order to en-
force system policies that rule the communications between
virtual machines.

3. The architecture also identifies the places where compliance
must be evaluated in order to ensure the enforcement of com-
mon security goals across the involved layers (OS, VMM and
network). We leverage our prior work on policy compliance
to ensure compliance of VM security policy and system secu-
rity goals [7, 18]. However, we do not focus on compliance
on this paper.

The rest of the paper is organized as follows: Section 2 moti-
vates the need for our architecture and its general requirements.
Section 3 describes the components of our architecture and their
configuration. Section 4 presents the way we ensure policy com-
pliance. Section 5 describes the implementation of the architecture,
and finally Section 6 concludes and elaborates on future work.

2. PROBLEM

Figure 1 shows a canonical distributed application. This is a
client-server application where information may flow from the client
to the server (e.g., web forms, document uploads), from the server
to the client (e.g., information queries, media downloads), or both.
Either information flow may be risky to the client (or server) be-
cause the client (or server) may leak information that she did not
intend or she may receive information that may compromise the in-
tegrity of the client (or server) system. Example applications that
fit this scenario include grid applications, where the results of the
computation must be high integrity and may need to be secret, and
web applications, which may be able to transfer secret data or may
possibly include low integrity data.

2.1 Web Applications

In this paper, our focus is on web applications. Originally, web
applications were simple client-server applications in which the
client downloads content from a server, but web applications are
now complex, multi-party computations where content may be com-
posed based on client inputs from multiple sources. Web mashups
compose web pages from content, including executable code, that
originate from multiple sources. As a result, a web application may
involve downloading data from multiple servers. Instead of the
traditional client-server application shown in Figure 1, such web
mashups have a client interacting with multiple servers, each in a
different administrative domain potentially.

Further, clients may use such web applications to upload data
to any one of those servers. For example, U.S. spy agencies en-
vision using web applications as the basis for sharing information
among clients [23]. This presents both secrecy and integrity is-
sues. Clearly, secret information may be passed among users, but
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Figure 1: Canonical Distributed Application. Information may
flow in both directions.

a variety of information also comes from public, so-called “open
sources” !, so inadvertent and malicious leakage must be prevented.
Also, integrity protection is an issue, as web mashups that interact
with some untrusted servers may compromise the integrity of com-
putations with trusted servers.

Previous security architectures for web applications derived se-
curity requirements from the server’s perspective, but the web ap-
plications above indicate that the client also has security require-
ments that must be enforced. The Tahoma security architecture
isolates web applications into individual VMs that can only ac-
cess URLs specified by the server [4]. As multiple servers may
be involved in a web application, some determined by third parties
(e.g., to provide advertisements), it is neither practical nor effec-
tive for a server to define the security policy over a client’s inter-
action with all servers. The Swift architecture protects server data
from unauthorized access by clients while automatically decom-
posing applications into client and server components to improve
performance [2]. If the client has secret information that it wants to
protect from the server or believes that the server is providing low
integrity content, it cannot express such requirements in the Swift
system.

2.2 Layered Architectures

Virtual machine monitors and applications are now capable of
enforcing mandatory access controls, in addition to operating sys-
tems. We argue that each layer will play an important role in en-
forcing system security goals. Virtual machine monitor security
architectures, such as Xen sHype [20] and XSM [3], enable flexi-
ble, controlled interaction among VMs. Using such approaches, we
can configure web applications into their own VMs and can control
which servers each VM can communicate with. This is called the
separation kernel approach [19], and is the basis for the Tahoma
approach. The problem is that not all interactions within a web
application are the same from a security perspective. Some inter-
actions may involve secret communications, where others do not.
Also, some servers in a web application may provide high integrity
content, where others do not. As a result, we believe that using
VMs is beneficial, but access control within the VM will also be
necessary.

Within the VM, operating systems that implement mandatory ac-
cess controls, such as SELinux [14], and policy enforcing applica-
tions, such as those based on security-typed languages [13, 21] or
the ones that use application-level reference monitors [22, 11, 15],
can enforce mandatory access control policies. For web applica-
tions, we believe that enforcement both at the OS and application
level will be necessary. We find that some security functions are
more effectively handled by applications, for instance integrity pro-
tection [17].

The problem is that having multiple layers of enforcement means
that the MAC enforcement may be inconsistently enforced in some
levels. The administrator must ensure that MAC enforcement re-
quirements are supported by the VMM, VM’s operating system,
and applications, where necessary. Since we do not want to put
the burden of examining multiple policies on administrators our ap-
proach must provide automatic mechanisms to convey MAC policy
consistently among these layers.

As a basis for defining consistent MAC policies, all MAC poli-
cies must comply with the host system’s security goals. Unlike
the Tahoma system, where each VM is an application component
that does not interact with the host system, we envision that our
distributed applications may leverage some host system resources.

"Freely available information, which is analogous to open source
software.



Thus, we cannot use the Tahoma approach where policies are de-
fined by the web server, but rather the host system’s administra-
tive domain must govern the accesses available to each VM. In this
work, we develop a virtual machine architecture that ensures that
the host’s MAC requirements are enforced across all layers (VMM,
OS, and application) in a VM system.

Based on the analysis above, we claim that a virtual machine
architecture must support the functions described below to deploy
VMs in a manner that ensures enforcement of a system’s mandatory
access control (MAC) requirements.

1. Policy Compliance: The virtual machine architecture must
ensure that each component enforces the system’s MAC pol-
icy. If a layer’s MAC policy enforces the system’s MAC pol-
icy, we say that its MAC policy complies with the system’s
MAC policy. In our architecture, we only deploy layers that
have compliant MAC policies.

2. Policy Configuration: The compliant MAC policies must be
configured at each layer of the system. This process should
be automated as much as possible to ensure that the result is
compliant.

3. Policy Enforcement: Since we want to exchange information
between the involved layers we need to be able to convey
the labeled data between layers and effectively authorize its
communication.

3. ARCHITECTURE

This section presents a framework that addresses the issues pre-
sented in Section 2. It enforces security policies at multiple layers,
application, VM, VMM and network, and includes mechanisms to
ensure that the policies are compliant with security goals, defined
by the host domain over the application. In this framework, dis-
tributed application components, such as browsers and web servers
are hosted inside guest virtual machines running a mandatory ac-
cess control operating system, such as SELinux. However, we fo-
cus primarily on the client (browser) side of web applications in
this paper. We assume that the applications are also written using
mechanisms that enable them to enforce a mandatory access con-
trol policy, such as security-typed languages [13, 21] or user-level
reference monitors [22, 11, 15].

The system design primarily consists of two distinct phases:

e Configuration Phase: This phase involves bootstrapping a
new VM for a web application with appropriate security poli-
cies to ensure compliance with the host domain’s application
security goals at each layer.

e Policy Enforcement Phase: This phase is responsible for
authorizing requests from the VMs and extending the secu-
rity guarantees by conveying the security label of the request
end-to-end for that application.

3.1 System Design

The architecture consists of three components: (1) a privileged,
Loader VM, which performs configuration and enforces VMM level
policies; (2) an application authority, which defines application-
specific policies; it maintains information about all applications
hosted within an organization and (3) a web application VM (or
Browser VM) in which the sandboxed application runs. The idea
is that the application authority defines an application policy that
the Loader VM installs at the VMM level and at the web appli-
cation VM. The web application VM is sandboxed by the Loader

VM which also authorizes its inter-VM communications, but the
web application VM may also be entrusted with some enforcement
policies through its configuration. The Figure 2 shows different
services in our system design and how these services map to each
of the components mentioned above.

The Loader VM defines three services for configuring and run-
ning sandboxed VMs: (1) a VMLoad service; (2) a policy store;
and (3) a label mapper. The VMLoad daemon is responsible for
bootstrapping new Browser VMs to serve the web application and
ensuring compliance between application and system policies. The
VMLoad service authorizes requests to load a new web application
VM, it identifies the web application corresponding to the URL,
obtains the web application policies from the policy store, config-
ures and starts the new VM, and ensures that the VMM enforces
the inter-VM communications according to these policies.

The policy store is the policy engine that generates and main-
tains the host domain’s application policies. It services requests
for (1) mapping URLs to web applications; (2) generating policies
for specific instances of web applications; and (3) generating cer-
tificates for authenticating IPsec tunnels. The policy store can be
considered as a local copy of the host domain’s application author-
ity, which defines the policies for all clients in that domain. The
policy store caches such web application policies and retrieves the
policies from the application authority on a cache miss. On a sim-
ilar note, the policy store also acts as a local copy of the certificate
authority and is responsible for generating and signing network cer-
tificates for authorizing connection requests, if trusted (e.g., based
on hardware attestation), or passes such requests onto the applica-
tion authority.

The label mapper is a trusted service that maps object identifiers
for distributed objects (e.g., URLs) into security labels to ensure
correct enforcement. This solves the problem that the host may not
know the labels of objects defined externally to the system. Each
of the VMs, including the Loader VM, has a local copy of the la-
bel mapper serving mapping requests for such remote objects. The
label mapper caches two kinds of policy. First, there is a label-
ing policy that maps URL objects to security labels. The label-
ing policy maps regular expressions for the object names to labels.
Second, there is a miss-handler policy that identifies where label-
ing requests should be forwarded given a miss in the URL mapper.
The miss-handling policy maps regular expressions to the server
to send the response and also defines limits on the label responses
(e.g., secrecy and integrity ranges) for that server.

The web application VMs include two additional services: (1)
an update daemon (called update-d) that receives requests from
the VMLoad service to update application policies on the local VM
and (2) a SIESTA service [7] that evaluates compliance of applica-
tion and VM security policies. The update daemon accepts dy-
namic policy update requests from the VMLoad service only. We
discuss the variety of policies below. The SIESTA service is used
to load applications that enforce mandatory access control (MAC)
policies. SIESTA verifies that the application’s MAC policy only
allows information flows permitted by the OS MAC policy (e.g.,
SELinux). Only applications that meet this requirement may be en-
trusted with permissions that would violate system security goals,
if not enforced correctly by the application. Web application VMs
also include label mappers that cache mappings specific to that ap-
plication.

3.2 Configuration Phase

As mentioned, this phase is responsible for loading a new VM to
support a particular web application. A web application VM may
encounter a web page/object that it is not authorized to serve. This



Browser VM Browser VM

Label Mapper

Lab. Mapper
SIESTA

Browser

update-d

Loader VM

[ sHype/Xen J

AA
[Application
Policy &
Mapper Pol]
/ Browser VM Messages
2a 1) Request VMLoad to start a new Browser VM.

2) Request PolicyStore to map application
and download Policies.

2a) Request App. Authority on cache miss.
3) Update Browser VM and Loader VM Policies.
4) Load a new Browser VM.

Figure 2: Virtual Machine System Architecture showing the interaction of components during the configuration phase.

situation could arise because:

o the web page/object requested by the user does not belong to
the web application currently served by the VM.

e the web page/object requested does not fall within the se-
crecy/integrity range of the web application VM.

In such cases, we would like to open a new web application VM
that can service this request. Configuring this new application VM
correctly is the focus of the configuration phase.

The Figure 2 shows how different system components interact
with each other to load a new web application VM. Below we de-
scribe the steps to configure and load a new web application VM,

1. The VMLoad service authorizes the request based on the se-
curity policy enforced at the Loader VM, i.e. whether calling
VM is allowed to serve the application, if there is a transition
involved then whether that transition is allowed for the call-
ing VM, etc. If the request is authorized, the service locates
the Browser VM image from a pre-defined location in the
local file system.

2. The VMLoad service queries the policy store to identify the
web application corresponding to the URL object and to de-
fine the application identity and the secrecy/integrity range
for that identity. The secrecy/integrity range of the identity
determine the Browser VM’s secrecy/integrity range and web
application to run.

3. The VMLoad daemon requests the policy store to download
necessary policies to support the new web application. It
requests,

e Mandatory Access Control policies for Loader VM and
Browser VM, to authorize system access to application
objects.

o Network Policies to setup secure tunnels, to convey the
security label.

e Mapping Policy for the label mapper, to support URL
mapping for the web application.

e Certificates to authorize the setup of secure tunnels with
the destination.

4. The policy store generates application specific policy mod-
ules from appropriate templates and sends them to the VM-
Load daemon.

5. The VMLoad daemon updates the Browser VM image di-
rectly or sends a request to the update daemon running inside
the web application VM. It also updates the Loader VM with
the downloaded policy modules in order to support new ap-
plication specific types and secure tunnels for inter-VM com-
munication control (e.g., SELinux policies in Xen’s dom0).
In addition to these policies, the VMLoad daemon also up-
dates SIESTA specific configurations to set the secrecy/integrity
range of the browser instance.

6. Finally, the VMLoad daemon loads the new Browser VM
and starts up the browser instance to serve the web page/object
request.

3.3 Enforcement Phase

This phase is mainly responsible for enforcing end-to-end manda-
tory access control on the web application. Each web application
VM serves a single web-application and is confined to a pre-defined
secrecy/integrity range.

1. The browser receives the request to load a web page/object,
retrieves the security label of the web page from the label
mapper, and assigns the label to the socket that will be used
to retrieve information from the web server. The Figure 3
shows how label mapper interacts with different components.

e the label mapper in the VM checks its local cache for
the mapping. On a cache-miss, it forwards the request
to the label mapper specified in the miss-handling pol-
icy.

e if no label mapper can resolve the label of the web
page/object, the label mapper returns a default security

label, which in our case is a low secrecy/low integrity
label.

2. The Mandatory Access Control policy installed in the VM
operating system authorizes the communication based on the
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socket’s security label and establishes a secure communica-
tion channel, to convey the label, between the web applica-
tion VM and the VMM (which is also the Loader VM cur-
rently).

3. The VMM determines the security label of the inter-VM com-
munication and authorizes the communication based on the
system policy installed during the configuration phase

4. If authorized, the communication is forwarded on the secure
communication channel, to convey the security label and pro-
tect the secrecy/integrity of the communication, to the web
server. Communication is authenticated using certificates
generated by the policy store (or application authority, de-
pending on the trust model).

4. POLICY COMPLIANCE

We want to enforce end-to-end information flow policies by in-
tegrating enforcing mechanisms at several layers. Since we have
independent tools at every layer we need to ensure that each layer
enforces the system’s security goals, which we call the policy com-
pliance problem. In our architecture, we need to verify policy com-
pliance at two layer transitions: (1) between the application policy
and the operating system policy in the web application (Browser)
VM and (2) between the web application VM policy and the overall
system policy stored in the VMM.

We say that one policy (e.g., an application’s) is compliant with
another policy (e.g., a OS’s) if all the information flows authorized
by the first policy are also authorized by the second policy. If so,
then the reference monitor enforcing the first policy cannot permit
an illegal flow of information relative to the second policy. In pre-
vious work, we developed SIESTA service [7] to check compliance
of a program before it can be executed to ensure that every program
executed complies with an OS policy.

Compliance testing is necessary for a class of programs, called
trusted programs, that may be entrusted with responsibilities in en-
forcing the system’s policy. A program is said to be trusted if it is
given permissions that enable it to create an information flow that
would violate the system policy, but it is trusted to prevent such
a flow. While trusted programs are often trusted blindly in current
systems, the emergence of application-level reference monitors [22,
11, 15] and security-typed languages [13, 21] now provide a basis
for a program to control its information flows.

4.1 Application Compliance

l High Integrity (default)

Trusted Program

System Info Flow Info Flows

Policy (for data)

(for program
components)

Figure 4: System data must not flow into Trusted Program
components (e.g., configuration files and executables), so they
have a natural integrity relationship Program Integrity Domi-
nates System Integrity (PIDSI).

However, operating system and trusted program policies are de-
veloped independently, meaning that they cannot be directly com-
pared because of differences in access control models, semantics
and/or name spaces. Manual mapping is an option, but it is not scal-
able. To overcome this problem we observed that trusted programs
and their components (e.g., configuration files and executable) usu-
ally are higher integrity than the data upon which the programs are
applied. As shown in Figure 4, the system security policy defines
the legal information flows for the data in the system, whereas in-
formation should normally flow from trusted program components
to the data upon which they are applied. Intuitively, a program’s
code and configuration should not depend on the data in which it
processes, but the output data necessarily depends on the code used
to generate it. As a result, we propose The PIDSI (Program In-
tegrity Dominates System Integrity) [18] approach where trusted
program objects are assigned a higher integrity level than the sys-
tem data, which the trusted program processes. This assignment
results in a simple integration of program policy and system pol-
icy that enables automated compliance verification of trusted pro-
grams.

Using PIDSI, verifying policy compliance of a trusted program



policy (e.g., browser) with the application VM policy works as
follows. The SIESTA service is started during the Browser VM
bootup. While loading the Browser VM, the VMLoad service as-
signs secrecy and integrity bounds to the VM and also appropri-
ately updates the SIESTA configuration. SIESTA ensures that the
given trusted program (e.g., the browser) is executed on the system
only if the system and application policies comply: (1) the browser
falls within the secrecy/integrity range of the VM (i.e., no flows
to illegal labels in system) and (2) does not permit illegal indirect
flows between system policy labels (i.e., does not permit a flow
from data to a trusted program component directly, which is pre-
vented by construction, or indirectly through any uncommon low
integrity program objects). By checking this we guarantee that the
browser and the Browser VM system policies comply.

4.2 VM Compliance

In this work, we introduce the policy compliance between a VMM
policy and its application VMs. As the PIDSI approach helped
us configure program policies to enable simplifications in compli-
ance testing, we also want to configure application VMs to comply
with VMM policies. The advantage here is that the application VM
starts as a blank slate, so it can be configured to comply. The chal-
lenge then is to provide an architecture for configuring VMs based
on the functional and security goals of the application.

In our architecture, the VMLoad service obtains dynamically-
generated application policies for access control, network security,
labeling, etc. from the policy store. The policy store uses policy
templates as a basis for generating the access control and network
policies, as these must include the network identity (i.e., IP address)
of the server. The architecture uses IPsec certificates to verify that
the servers are authorized to participate in the application. Since
the VMM and VM policies are downloaded together, they are pre-
sumed to be compliant by default. This compliance can be verified
offline, as the information flows are independent of the servers im-
plementing them.

The label mapper policies for labeling and miss handling do not
need to be specialized at runtime at present. We use the DNS names
for servers, and use [Psec certificates to justify their participation
in the application, as described above. An important issue is that
objects in the VM may already be labeled prior to this execution.
If a malicious system mis-labels some secret data as public, then
the VM could leak it despite using a compliant policy. We do not
assess whether a prior labeling of VM objects is correct at present.
This problem is similar to verifying the labels of imported objects
in system assurance.

The policy store retrieves the policies from an application au-
thority. The question is whose authority is represented in the ap-
plication authority: the client’s, the server’s, or both. In our appli-
cations, we are concerned about inadvertent leaks or misuse of low
integrity data by our clients, so our application authorities repre-
sent the client administrative domain’s view of the policy. Where
the server only provides data of one label, it only needs to use the
client’s labels in Labeled IPsec communication [8]. Where the
server may choose among multiple labels, the server is trusted to
choose the appropriate label. We imagine that an offline process is
necessary for client domain administrators to agree with applica-
tion servers on such labeling. Further investigation on this topic is
required.

S. IMPLEMENTATION AND EVALUATION

We implemented a prototype according to the design presented
in Section 3. In this prototype we use a Java-based web browser,
Lobo [16], whose core components are re-written using Jif (Java In-

formation Flow) [13], to enforce mandatory access control within
the browser. Jif ensures application-level enforcement of manda-
tory access control policies. We also use Xen virtual machine mon-
itor to sandbox browser instances and web servers. Finally, we
use SELinux as the guest operating system inside the virtual ma-
chines to ensure enforcement of mandatory access control policies
at the operating system layer and empower the management do-
main (domO) of Xen with functionalities of the Loader VM.

In this section, we demonstrate the prototype functionality with
an information flow-aware web application that may be used to
share sensitive information. The web application is based on the
Open Source Intelligence [24] model for processing information.
In that model an analyst gathers information about a particular area
of interest from different sources, both trusted and untrusted.

In our prototype the web pages that the analyst uses for finding
and analyzing information are secret. Additional sources the ana-
lyst visits for gathering information may be secret also, but some
may be public, “open” sources, which are therefore, public. The
secret and open sources are hosted in separate web server VMs in
our prototype. The main security goal of this web application pro-
totype is to enforce information flows, so that secret information is
not leaked despite the analysts being able to view secret and public
information together (e.g., via a mashup).

5.1 Configuration Phase

The privileged Loader VM is the key component responsible for
configuring and loading new Browser VMs to support the web ap-
plication. We implemented Loader VM as a collection of Linux-
based services running in dom0 (the Xen management domain).

On system startup, the analyst requests the VMLoad daemon
in domO to load a new Browser VM to access the homepage of
his trusted web server. The VMLoad is a network daemon run-
ning in domO. It is dedicated to bootstrapping new Browser VMs
and ensuring compliance. Currently, VMLoad authorizes the re-
quest based on the IP address. In our current implementation, only
Browser VMs, with internal IP addresses are allowed to send the
request. VMLoad queries the policy store to retrieve web applica-
tion details corresponding to the URL object. The VMLoad also
requests the policy store to download necessary IPsec and SELinux

policy modules.

The policy store is a network daemon running in dom0 and acts
as a local cache for the global application authority. The policy
store is responsible for mapping URLs to web applications, gen-
erating and maintaining IPsec policies, [Psec certificates, SELinux
policy modules, and label mapper policies. In the current imple-
mentation, the policy store maintains different templates for IPsec
policies and appropriately updates them based on the type of pol-
icy requested. This example shows an IPsec policy template for the
Browser VM.

spdadd <src> <dest> any -ctx 1 1 < context> -P

out ipsec esp/tunnel/ <src> - <dest> /reqg;
spdadd <dest> <src> any -ctx 1 1 < context> -P
in ipsec esp/tunnel/ <dest> - <src> /req;

The policy store also maintains a database containing details
about the web application such as the list of web servers (host-
names), the MLS-range, etc. In the table given below, ws3 serves
URL objects belonging to analyst application within the mentioned
MLS range from sensitivity level 0 (sO in SELinux) to 5. However,
wsl and ws2 serve data in the MLS range from sensitivity level 6
to 15.

table = (’analyst’, s0-s5,’1" ,’ws3’),
("analyst’, s6-sl15,’2" ,’wsl’, 'ws2’),
(' DEFAULT’, '0Q0")



The policy store gets the list of web servers from the table and
updates the template to generate the required policy. In the case
of the analyst application, the Labeled IPsec policy should allow
the Browser VM to access the web server containing the analyst’s
secret profiles (s6-s15) and search other “open” web servers (sO-
s5).

The SELinux policy modules for the new Browser VM and the
domO corresponding to the web application are maintained sepa-
rately by the policy store. In our implementation, the policy store
also acts as the certificate authority and is responsible for creating
and signing IPsec certificates to support the web application. Our
implementation uses openssl to generate and sign certificates. The
policy store creates a new key for each of the web servers and signs
it. The label mapper policies for the Browser VM and the dom0 are
maintained in the folder corresponding to the web application. On
request, policy store retrieves the necessary mapper policies and
sends them to the VMLoad service.

The VMLoad daemon checks compliance between the down-
loaded SELinux policy modules and the overall system policy using
SIESTA as described in Section 4. Finally, it updates the virtual
machine image with these policies and loads a new Browser VM
using the Xend daemon. After the basic VM services are loaded,
the SIESTA daemon verifies compliance and then loads the browser
instance at the specified secrecy/integrity range.

5.2 Enforcement Phase

Our implementation uses Labeled IPsec tunnels [8] and SELinux
policy modules in the Browser VM and Loader VM to enforce and
extend the mandatory access control policies implemented at the
application and operating system layers.

When the Jif browser tries to load the homepage of the analyst,
it retrieves the security label of the URL of the homepage from the
local label mapper and assigns that label to the socket used for the
communication.

The label mapper is a Linux-based daemon running in dom0 and
in each one of the Browser VMs. It caches mappings of URLs
to security labels and the VMLoad daemon updates the necessary
mapping policy while loading the web application VM. (the policy
store provides the mapping). The following example shows one of
the entries that map a given URL to a defined security label (recall
that the object name can be a regular expression).

http://ws-vml.cse.psu.edu/public.html --
root:sysadm_r:analyst_t:s4

In our prototype, the label of the URL identifies the web ap-
plication to which the object belongs (unless it is a default label,
high or low). If the communication is authorized, the kernel sub-
system checks the IPsec policy and creates a Labeled IPsec tunnel
between the Browser VM and the Loader VM; in our case it is the
dom0. The kernel subsystem in dom0 extracts the security label
of the communication from the labeled IPsec tunnel, authorizes the
communication based on the label, and extends the tunnel segment
to the destination domO to convey the security label. Furthermore,
the IPsec tunnel segment with the destination domO is authorized
based on the [Psec certificates installed during the VM load.

To summarize, we establish three orthogonal labeled IPsec tun-
nels to convey the security label of the browser communication to
the web server at the other end: 1) between Browser VM and its
domO, 2) between source and destination domOs, and 3) between
the web server VM and its dom(. The Labeled IPsec tunnels be-
tween the VMs and its domO is used only for conveying the security
label of the browser socket.

Finally, the SELinux policy at the web server has to authorize the
browser access before sending the requested web page/object. The

ipsec-tools package is used to configure and setup IPsec security
policies. The setkey tool is used to maintain the policies and racoon
is the IKE daemon used for negotiating security associations.

The IPsec and SELinux policies should allow the analyst to ac-
cess the secret web server data. Every time the analyst tries to
access a URL with different security label, a new series of Labeled
IPsec tunnels is created to convey the new security label.

When the browser tries to access an object from an untrusted
web server, the security level does not fall within the secrecy range
of the local VM and hence SELinux policy prevents that action.
When it tries to access a different web application, the system will
throw an error due to lack of Labeled IPsec policy. At present, both
errors will result in the browser sending a request to the VMLoad
service to load a new Browser VM for that URL.

5.2.1 Pre-Loaded VM

In the initial implementation, the VMLoad daemon loads a new
Browser VM every time it receives a request. The latency to load
anew VM from scratch is high and may not be acceptable in some
web-based environments. Also this approach will result in redun-
dant Browser VMs as there is no mechanism to forward requests to
existing virtual machines. To mitigate these problems we propose
that the implementation use pre-loaded VMs.

Three kinds of VMs can be running in the system at any point of
time: (1) Idle VMs that are not currently serving any application,
(2) VMs that are already serving a particular application but ready
to accept further requests and (3) VMs that are already serving an
application and not ready to service further requests.

The VMLoad daemon maintains a table with details about the
VMs in the system, their status, the web application identity, and
other details such as secrecy/integrity range.

table = (1, <VM InternalIP>’, ’analyst’, ’s0-s5’,
" SERVING’, ’"ACCEPT’, <VM Global IP>),
(3, <VM Internal IP>, "7, '’",
"IDLE’, "ACCEPT’, <VM GLobal IP>)

In this setup, the VMLoad daemon first queries the table for VMs
that are already serving the web application and ready to accept
new requests. If it does not find one, it looks for idle VMs and
forwards the request, instead of loading a new VM.

The update daemon running in the VMs uploads any policy up-
dates for an idle VM. It is also a Linux-based network daemon that
retrieves IPsec, SELinux policy modules, and system configura-
tions from the VMLoad daemon and updates the VM to control the
web application.

5.3 Evaluation

This section mainly evaluates two aspects of our implementa-
tion: (1) effectiveness of our prototype in providing the security
guarantees required by the application and (2) system performance
when loading a new URL.

5.3.1 Effectiveness

One of the main security goals of this analyst-based application
is to clearly isolate secret and public web sites. We differentiate
secret and public web objects based on their security level and the
web server address.

o SIESTA and the enforced SELinux policy ensures that the Jif
browser does not handle objects beyond the secrecy/integrity
range of the virtual machine.



e Labeled IPsec policy and corresponding SELinux policy mod-
ules ensure that Jif browser cannot access objects not belong-
ing to the web application.

SELinux policy mediates all accesses to system objects and La-
beled IPsec policy controls all the network accesses. In addition,
domO kernel mediates all network communications from the vir-
tual machines.

In this model, we assume that the level of assurance provided by
the Jif browser and SELinux operating system is enough to allow
the same Browser VM to access different web servers, at different
secrecy ranges but it is not safe to allow content from low integrity
servers to be accessed where secret data (i.e., above s5) is being ac-
cessed. A new Browser VM would be initiated for the low integrity
pages at these secrecy levels.

5.3.2  Browser Startup Latency

In our prototype implementation, we sandbox browser instances
inside a virtual machine. The VM creation happens whenever the
user wants a access a URL belonging to a new web application
or a URL that the VM is not authorized to access (not within the
secrecy/integrity range of the Browser VM). We wanted to measure
the overhead of loading a new Xen virtual machine on a new web
page request.

Operation Latency
Configure/Load Policy 4.90 seconds
From Scratch

Loading Browser and Page | 18.50 seconds
Configure/Load Policy 0.90 seconds

Pre-Loaded VMs
Loading Page 2.80 seconds
. Cold-start Loading Page 7.45 seconds

Native Browser
Warm-start Loading Page 1.50 seconds

Table 1: Browser Startup Latency

Table 1 shows the cost (in seconds) of: (1) loading a web page in
a new Jif Browser VM from scratch; (2) loading a web page inside
an idle Browser VM; and (3) loading a web page in a native Firefox
browser in dom0. For the Browser VM measurements, we break the
measurement into the two phases, configuration and enforcement
(i.e., loading the browser and page). The From Scratch entry of
the table shows the cost incurred by these phases while loading
the web page inside a new Virtual Machine. We loaded the VMs
several times to ensure repeatability. The prototype implementation
is not yet optimized and hence the performance results should be
considered as an upper bound on the overhead. Nonetheless, 20
plus seconds is considered too expensive. The Tahoma prototype
consumes approximately 10 seconds, but has fewer configuration
tasks [4]. We believe it is possible to considerably reduce VM boot-
up time from the measured 18.50 seconds if we optimize the virtual
machine image to load only necessary services and also it depends
heavily on the system’s resource usage model.

From the values we can conclude that majority of the time is
spent on loading a new Xen VM. To avoid this overhead, our sys-
tem maintains a pool of idle Browser VMs, see Section 5.2.1. The
Pre-Loaded VMs entry in the table shows the cost of loading a new
web page in the pre-loaded VM scenario. Surprisingly, it took less
than a second to configure and load policies compared to the 5
seconds latency in the previous case. We believe the difference

is mainly due to costly disk writes which are eliminated when we
send the policies to the update daemon in this case. With pre-loaded
VMs it took less than 3 seconds to load a new web page after con-
figuration.

For comparison, the bottom row of the table shows the latency of
opening a Firefox browser window on the dom0. We measured two
cases: (1) the "cold-start" latency of launching the browser freshly
and (2) the "warm-start" latency of launching the browser, assum-
ing it has been previously launched. From the performance values
provided in the table, we can gather that with further optimizations
it is very much possible to reduce the browser load latency of our
prototype on par with the "warm-start" latency of native Firefox
browsers.

6. CONCLUSIONS AND FUTURE WORK

Currently, virtual machine environments do not provide adequate
mechanisms to configure flexible security policies for VMs and
the other layers that are involve in security enforcement. In this
paper, we presented an architecture to address this issue. Our ar-
chitecture enables administrators to set up secure communications
between targeted virtual machines based on application templates
that can be configured automatically at runtime. We implemented
such architecture based on tools that allow us to express and en-
force mandatory access controls at operating system, virtual ma-
chine monitor and network layers and to convey security informa-
tion between them.

We evaluated our implementation using a simple web applica-
tion. It establishes secure channels between targeted virtual ma-
chines across different layers (OS, VMM and network) according
to a given configuration. We have also evaluated the response time,
in the context of our test application, to load a new VM. We have
introduced the concept of pre-loaded VMs to reduce the latency to
load a new VM. Our evaluation shows that despite the overhead
imposed by different components, the proposed system incurs only
nominal performance overhead.

As future work, we will examine other applications in order to
test the robustness of our approach. Further, we plan to explore
ways to reduce the time to load a new virtual machine and using
other mechanisms to label network communications and convey se-
curity requirements between virtual machines.
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