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Abstract
Intranet access has become an essential function for corpo-
rate users. At the same time, corporation’s security adminis-
trators have little ability to control access to corporate data
once it is released to remote clients. At present, no confi-
dentiality or integrity guarantees about the remote access
clients are made, so it is possible that an attacker may have
compromised a client process and is now downloading or
modifying corporate data. Even though we have corporate-
wide access control over remote users, the access control ap-
proach is currently insufficient to stop these malicious pro-
cesses. We have designed and implemented a novel system
that empowers corporations to verify client integrity prop-
erties and establish trust upon the client policy enforcement
before allowing clients (remote) access to corporate Intranet
services. Client integrity is measured using a Trusted Plat-
form Module (TPM), a new security technology that is be-
coming broadly available on client systems, and our system
uses these measurements for access policy decisions enforced
upon the client’s processes. We have implemented a Linux
2.6 prototype system that utilizes the TPM measurement
and attestation, existing Linux network control (Netfilter),
and existing corporate policy management tools in the Tivoli
Access Manager to control remote client access to corporate
data. This prototype illustrates that our solution integrates
seamlessly into scalable corporate policy management and
introduces only a minor performance overhead.
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1. INTRODUCTION
Remote access to corporate Intranets is now an essential as-
pect of the corporate work environment. Client systems are
often used by employees both inside the corporate Intranet
and remotely from home. Since the remote client systems
that access the corporate Intranet are largely administered
by their users, this presents corporations with the problem of
controlling access to their information. Such remote client
systems can download confidential corporate information,
so leakage of this information is a problem. Further, remote
client systems can modify sensitive corporate data, so the
integrity of the modifications are also an issue. In this pa-
per, we present a novel system that enables corporate data
servers to manage confidentiality and integrity requirements
on accesses by remote client systems.
Figure 1 shows the generic systems model: AliceCorp is
the corporation that offers remote access to its employees.
Bob is one such employee who accesses the Intranet with his
client system. The remote access client program on Bob’s
client enables access to the corporate Intranet. AliceCorp
requires that the corporate data remains protected when of-
fering the remote access service, i.e., that remote requests
originating from the client do not compromise the integrity
of the corporate Intranet and that confidential contents of
responses to the client do not leak through Bob’s client.
However, a client’s ability to ensure enforcement of the cor-
porate policy is rudimentary at best today.
Today, most clients are mainly under control of their users
and the client configuration and software can differ consid-
erably from what the corporation would prefer. A client
machine that was originally configured by the corporate ad-
ministrators may no longer meet the original security re-
quirements, such that several security vulnerabilities may
be present. Consequently, clients have been conveniently
considered insecure and untrusted because protecting them
was either too expensive or too restrictive. As a result, com-
panies used appearance factors, such as operating system
type and patch level, the version of the anti-virus data base,
or active/non-active system passwords to reason about the
client’s trustworthiness.
Specifically, this paper examines two kinds of attacks (il-
lustrated in Figure 1) that cannot be countered by existing
remote access control mechanisms because of their lack of
reliable client security guarantees:

Firewall-Bypassing: External attackers can gain unau-
thorized access to the corporate Intranet. Most corporations
today, having invested into security for firewall and intrusion
detection systems, have raised the bar for external attackers
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Figure 1: External Threats Based on Remote Access

(Figure 1, attack 1) considerably. Therefore, attackers find
it easier to compromise the weaker client systems to hop in-
directly into the Intranet. By using the external interfaces
of Bob’s client, attackers can gain access to Bob’s remote
access tunnel and thus bypass the corporate firewall (see
Figure 1, attack 2). This is a real-time attack that is very
difficult to discover from within the corporation because the
attacker’s actions are covered by the user’s actions. With
many operating systems offering remote sessions, it cannot
be determined whether a service request originating from a
client is actually initiated by the client’s local user or an ex-
ternal attacker that has gained unauthorized access to the
client remotely or locally through a Trojan Horse.

Information-Leaking: Confidential data can also leak
indirectly through the client (Figure 1, attack 3). When
data is sent to a remote client, control over these data items
is transferred to the user’s client and to the user. Users may
allow other users, knowingly or by mistake, to download
such data in peer-to-peer sessions or to copy data onto re-
movable storage devices and distribute them afterwards; ma-
nipulated programs (Trojan Horses) on the client can gather
and leak information as well.
Current research addresses some of the problems inher-
ent in preventing these attacks, but significant issues re-
main. First, efforts are underway to leverage trusted hard-
ware, such as the TCG trusted platform module (TPM) [1],
to measure system integrity, but determining practical in-
tegrity levels and using them to make access control de-
cisions remain open questions. Second, classical integrity
policies, such as Biba and Low Water Mark (LOMAC) [2],
exist, but their application to remote clients may be im-
practical. For example, some degree of dependence on lower
integrity data may be permissible. Lastly, while the basic
notions of reference monitors are well-understood [3] and
distributed policy enforcement systems exist [4], preventing
these attacks requires greater dependence on the abilities of
the remote client than usual. For example, control of in-
formation leakage requires that the remote client be able
to control itself network interfaces according to a corporate
policy. Issues include determining which components can be
trusted to enforce policies, determining the kinds of policies
that can be enforced, and identifying practical limitations
that can be made to enable more effective enforcement.
This paper presents an approach that can be used in the
construction of VPN connections to control access to corpo-
rate data access and use by remote clients. First, we leverage
the TCG/TPM to measure the integrity of remote client
systems. We build this on an existing integrity measure-
ment system that runs on Linux and measures all executable
code, including libraries and kernel modules, that are loaded

onto a Linux system [5]. Next, we define an integrity policy
model that associates semantics with the integrity measure-
ments of remote clients and enables expression of policies
that leverage subject identity and integrity in access control
decisions. We utilize the Tivoli Access Manager (TAM) sys-
tem [6] to represent and distribute our integrity policies to
remote corporate clients. Lastly, we implement a personal
firewall on remote clients running Linux that enforces confi-
dentiality policies. Because we can measure the integrity of
the remote system reliably using the TPM, the integrity of
the remote client can be accurately determined and unau-
thorized access via the firewall can be prevented. Further,
we can verify the integrity of our enforcement mechanism
and manage possible leakage paths, so enforcement of confi-
dentiality requirements on corporate information is possible.
We have implemented a working prototype on Linux 2.6 and
our measurements show that the performance impact of this
approach is minor and accounts to about 4% on TCP traffic.
In Section 2, we detail the individual problems that un-
derlie enforcement of access control on remote clients and
outline the goals of this research. After describing related
work in Section 3, we outline our approach to measure and
control remote client’s access to corporate data in Section 4.
Section 5 details the implementation. Section 6 contains the
evaluation of the approach and its implementation. We con-
clude the paper and discuss future directions in Section 7.

2. BACKGROUND
We aim to provide a remote access policy enforcement ar-
chitecture that can protect against firewall-bypassing to gain
unauthorized access (whose prevention we refer to as Secu-
rity Goal SG1) and information-leaking of confidential data
(Security Goal SG2) defined in the Introduction.

2.1 Measurement
The first problem is to determine whether the remote client
is running authorized code when it is connected to the cor-
porate Intranet. Since any memory of a process can become
executable, this is a difficult problem in general. However,
integrity measurement approaches are emerging that can be
leveraged to narrow the problem.
Recent advances in hardware enable better integrity mea-
surement on client systems. Many clients are now sold with
TCG Trusted Platform Module (TPM) [1] chips included,
and the low cost of such chips indicates that broad appli-
cation is possible. The TPM has a set of registers that it
protects from the client and it provides two operations on
each register content: extend and quote. The extend opera-
tion takes a value as input and computes the SHA-1 hash [7]
of the current register content and that value. This enables
the user of the TPM to build a hash chain. The envisioned
use of such a hash chain is to measure a predefined sequence
of code loads, such as for authenticated boot of an operating
system from the system’s BIOS and boot-loader. The quote
operation results in the TPM generating a signed message,
using a key protected by the TPM, of the target register’s
contents. This message can be used to send an authenticated
hash chain to a remote party which in turn may validate the
integrity of the code contained in the hash chain that be-
longs to the client. The TPM has other functions, such as
random number generation and sealed storage, but these are
not relevant to our discussion.
Recent work uses the TPM to measure the integrity of
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the application level on Linux systems [5]. Building on the
integrity verification of the Linux operating system using the
technique described above, we enable Linux to use the TPM
to store measurements of the code it loads, including kernel
modules, applications, and their shared libraries. The TPM
stores a value representing a hash chain of loaded code while
the extended Linux kernel stores the actual log of hashes.
Since the code is measured and the TPM is extended prior to
execution, remote parties can verify the integrity of a client
system by retrieving the Linux hash log and the quoted (i.e.,
signed) hash chain value from the TPM.
With respect to our case, the corporate VPN server can
validate the log for a client system before permitting the con-
nection to be opened or permitting the client to download
confidential corporate information. Further, the corporate
VPN server can even use integrity measurement to deter-
mine if a client system is capable of enforcing policies that
can control information leakage. The research question is
whether such actions can be made practical for a remote
access environment. We discuss the issues of using integrity
measurement to estimate system integrity and ensure effec-
tive policy enforcement below.

2.2 Security Policy
Given the integrity measurements of the previous section,
we want to be able to determine the likelihood that the
employee, rather than an attacker, is accessing the corporate
Intranet. Measurements identify the code that has been
loaded by the client system at the time of measurement.
Typically, this is used to identify vulnerable code. Since
vulnerable code can be compromised by an attacker, the
likelihood that an attacker will compromise such programs
to masquerade as the employee is high (assumed to be 1).
However, the situation is not always so clear-cut, as code
may be protected by limiting the interfaces to it and the
inputs it receives. First, some code may have known vulner-
abilities that may be leveraged only through network inter-
faces. If access to these interfaces is limited to trusted par-
ties (i.e., trusted as much as the corporate Intranet), then
the use of such code may be permissible. Second, some pro-
grams, such as Microsoft Word, may execute macros that
can permit a document writer to masquerade as the user. In
such cases, the source of the inputs may determine whether
an attacker may be in control of the client’s accesses to the
corporate Intranet.
In traditional integrity models, such as Biba [8] and LO-
MAC [2], integrity of a subject is based on its dependency on
other subjects. For example, a LOMAC policy requires that
the integrity level of the subject be equal to the minimum
integrity level of the objects that it has read or executed
(where integrity level is inversely proportional to likelihood
of compromise or vulnerability). Unfortunately, integrity
measurement does not provide a complete picture of depen-
dency. We measure the code that is loaded, not the informa-
tion flows. However, a combination of knowledge about the
code and the possible information flows allowed for this code
may provide a sufficient model for reasoning about security
decisions. We discuss the combination of policy enforcement
with code measurement in the next section, but briefly dis-
cuss policy modeling below.
In order to reason about the likelihood that the subject
making a request is the employee for whom the VPN con-
nection was made, we must not only estimate this likelihood,

but the policy model must also be able to express it. Most
systems either associate policy with a user or a sensitivity
level (e.g., for confidentiality or integrity). In this case, we
have a combination of both the employee and an estimate of
the integrity level of the client system. A research question
is whether current policy models are capable of expressing
such policies and can enforce them effectively.

2.3 Enforcement
Prevention of particular information flows may enable us to
use code that has some potential for misuse in a high in-
tegrity manner. The problem is to determine what forms
of control are useful and identify the necessary enforcement
mechanisms. E.g., we find that it is appropriate to use con-
fidential data in processes that may not write the data to
the client’s file system (i.e., all persistent writes go to the
corporate Intranet). The challenge is to identify such sys-
tem restrictions that enable useful processing and determine
how these can be measured, so that the corporate servers can
verify that their policies can be correctly enforced.
The types of enforcement options that we consider in-
clude access to network connections, file systems, and other
objects managed by the operation system. Thus, it is neces-
sary for the client operating system to provide the necessary
controls over these objects. E.g., Linux provides the Net-
Filter interface that enables fine-grained control of network
communication within the operating system. The Linux Se-
curity Modules framework can be used to control access to
file systems and other system objects. E.g., an instance of a
word processor could be started that can only communicate
with the corporate Intranet or a RAM file system.
Measurement is not only the basis for integrity, but also
the basis for enforcement. If we load a kernel on the client
system that implements the enforcement properties that we
desire, then the corporate server can use the measurement
of this kernel to verify that the expected enforcement will
be performed.

2.4 Experiment
The research problem is to find whether an acceptable so-
lution exists for the problems outlined above. To recap, we
envision that secure client access to a corporate Intranet re-
quires that the following problems be solved: (1) determine
the integrity level of the client system based on the code it is
running; (2) determine whether to trust this client to enforce
information flow controls necessary to make such integrity
assumptions about client; (3) determine whether additional
security properties, such as confidentiality, need to be en-
forced by the client and whether the kernel supports these;
(4) integrate the integrity of the client into the remote access
control policies governing the client’s access to the corporate
servers; (5) enforce this policy on remote access clients and
VPN server; and (6) track changes in the remote client’s se-
curity properties (i.e., sense relevant changes in the client’s
software stack) and implement resultant policy changes.

3. RELATED WORK
We examine related work in the areas of integrity measure-
ment, security policies for integrity management, and policy
enforcement on remote clients.

System Integrity Measurement: Verifying the integrity of
a client’s software stack isn’t a new problem; practical so-
lutions have only appeared recently though. Arbaugh et.
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al. [9] describe an architecture to securely boot operating
systems in such a way that only trusted systems will be
booted in all cases. Outgoing authentication [10] enables
attesting the software stacks of cryptographic co-processors
[11, 12]. Both approaches are too restrictive for client envi-
ronments because they require only completely trusted con-
figurations boot in the former case or are ultimately imple-
mented as single application systems in the latter case.
Some subsequent research focused on using additional hard-
ware to assess the software stack integrity. Independent au-
ditors are explored by Hollingworth et. al. [13], Dyer et.
al. [14] and Molina et. al. [15]. Hollingworth suggests us-
ing the second CPU on a dual-processor board to provide
autonomous monitoring and control of the operating sys-
tem. Dyer et. al. apply secure co-processors from which the
client system and its network access can be both protected
and monitored. Zhang et. al. [16] extended these ideas to
monitor the integrity of a client kernel by examining ker-
nel data structures from a secure co-processor. Molina et.
al. explore a co-processor as an independent auditor that
supervises the integrity of the host operating system.
More recently, research has focused on measuring the in-
tegrity of systems in a secure manner and enabling verifica-
tion by remote parties, called authenticated boot. All these
architectures envision leveraging the TCG Trusted Platform
Module (TPM) [1] for securely storing measurements. The
NGSCB approach [17, 18] also depends on special hardware
to separate a trusted system partition from the standard
operating system. Terra [19] is a trusted computing archi-
tecture that is built upon a trusted virtual machine mon-
itor that –among other things– authenticates the software
running in a VM for remote parties. However, the VMM
must be trusted and deriving security properties from the
footprint of VM partitions appears difficult. All of these so-
lutions would be quite expensive and at the same time very
restrictive if they were to be applied to remote access clients.

Integrity Policies: Most access control policies aim to pro-
vide system integrity guarantees, although integrity is typ-
ically implicit. Access matrix style policies, such as role-
based access control (RBAC) [20, 21], associate policies with
subjects or roles that stand for a set of subjects. The in-
tegrity of a individual subject or object is not explicitly spec-
ified, but the permission assignments are intended to control
access to provide sufficient integrity. Integrity is also implicit
in secrecy policies, such as Bell-LaPadula [22].
Policies that explicitly reason about integrity include Biba,
LOMAC, and Clark-Wilson [8, 2, 23]. In Biba and LOMAC,
subjects and objects are given integrity levels, and subjects
cannot retain their integrity level and depend upon lower in-
tegrity subjects or objects. Biba prohibits such information
flows, whereas LOMAC permits such flows by lowering the
integrity of subjects dynamically based on the dependencies
they use. For Clark-Wilson, low integrity dependencies are
permitted, but only if the high integrity subject either dis-
cards or upgrades the integrity of the data. In this paper
we measure code integrity and their enforcement abilities to
achieve coarse-grained integrity guarantees. Biba and Lo-
mac are finer-grained models, which are often too restricted
in practical environments. Clark-Wilson requires assurance
that is impractical for our applications.

Client Policy Enforcement: Steve Bellovin proposed in
1999 [24] that firewalls should be considered for client sys-
tems as well as their historic place at network boundaries

to improve filtering effectiveness. Ioannidis et. al. [25] pro-
posed to distribute IPSEC credentials through trust man-
agement to such distributed firewalls. On the one hand,
filtering as close as possible to the client allows fine-grained
access control and ensures that all packets received by and
sent from the client are intercepted by the firewall. On the
other hand, moving firewalls onto the client makes them
more difficult to manage and exposes them to client vulnera-
bilities. None of the existing approaches considers validated
client security properties in the access control policy.

4. REMOTE ACCESS ARCHITECTURE
We propose a remote client access control enforcement archi-
tecture (c.f. Subsection 4.2) that implements access control
using the following steps:
(i) We use non-intrusive software-stack attestation (In-
tegrity Measurement Architecture IMA [5]) and apply it to
client systems to classify the integrity of the client. This
measurement approach is described in Section 2.1. The cor-
porate VPN server receives and verifies a list consisting of
measurements of all executable content that has been loaded
for execution (annotated SHA-1 values of files) into the re-
mote client’s run-time since reboot. We use this information
to determine in Subsection 4.1 the integrity level of the client
system (i.e., the likelihood that the client is acting properly
on behalf of the employee).
(ii) The integrity measurements are also used to determine
if the client can enforce desired integrity and confidentiality
goals. In this case, it is the presence of trusted enforcement
programs rather than the absence of low integrity programs
that is the issue. We describe this verification in Section 4.2.
(iii) Given the client’s integrity class and the presence of
the necessary enforcement software, the VPN server can del-
egate enforcement of the access control policy to the client
system. The access control policy and decisions are de-
scribed in Section 4.3.
In Section 5, we demonstrate the architecture’s use.

4.1 Determine Client Integrity
In this step, the VPN server uses the validated integrity
measurements of the client system [5] to classify its integrity
level and enforcement abilities. The integrity level deter-
mines the identity for client accesses to corporate data and
the enforcement abilities determine the ability of the client
to control data once it is received.
Figure 2 illustrates this process. One measurement repre-
sents the hash chain of loads for the BIOS, boot-loader, and
operating system. This should match a known value for this
sequence of code loads. Subsequent measurements cover the
software loaded on the operating system, including programs
loaded via exec, kernel modules, and shared libraries. The
method ensures that a remote party can cryptographically
verify the source, integrity, and freshness of the measure-
ments. The properties of the measurements ensure that no
measurements may be removed or reordered once made.
Using this mechanism, the VPN server obtains and vali-
dates a list of measurements comprising all executable con-
tent that was loaded into the client’s run-time since reboot.
All executables corresponding to a measurement can po-
tentially have been compromised and thus compromise the
client system 1. Consequently, compromised software might

1As we measure software when it is loaded, we would not see
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Figure 2: Attestation by Measurement Projection

prevent the client from correctly measuring events that oc-
cur after the compromise.
Thus, we determine the integrity of the client by evaluat-
ing each measurement against a known set of measurements.
Each known measurement is associated with its integrity
class. Following classes partition the set of known software:

• Malicious: Such programs are known to be malicious
(e.g., syslogd of the root toolkit, Trojan versions of
libraries). The presence of one of these programs in
the measurements indicates a compromise.

• Remote (Vulnerabilities): Such programs use net-
work connections and have known vulnerabilities to
remote attackers. Web and mail clients are poten-
tially included in this category. Remote attackers from
the Internet or Intranet could compromise these pro-
grams, which could not be detected by the measure-
ments taken at the time of loading those programs.

• Local (Vulnerabilities): Such programs have vul-
nerabilities, but these vulnerabilities are limited to lo-
cal input data, such as files with embedded executable
content. Although local exploits are possible, most
practical systems today will need to run programs that
have local vulnerabilities. Additional client tools, (e.g.,
virus scanners) can mitigate this risk.

• Uncontrolled: Certain programs change the software
stack, but do not yet perform integrity measurements,
such as kernels not implementing the measurements or
remote access programs not measuring their sensitive
configuration files. The execution of these programs
could result in the load of unmeasured malicious or
vulnerable code. These programs should not be run
at present, but could be modified to work with the
system later.

• Acceptable: These programs contain no known vul-
nerabilities or malicious code and do not enable cir-
cumvention of the measurement system.

The known set includes fingerprints (SHA-1 hashes) of all
known executables and other files that are expected to be
found in measurement lists of remote access clients. In our
example, it includes SHA-1 hash values of all Redhat 9.0
programs and libraries including updates, the fingerprints
of our own extensions for client policy control, acceptable
kernels, and boot configurations.
We use these sets of fingerprints to evaluate a client ac-
cording to the rules 1- 3 shown in Figure 3. The above evalu-

if this software becomes compromised after loading. How-
ever, we can and will use the known vulnerabilities of mea-
sured software and decide whether we assume this case or
not.

client ∈ Distrusted ← ∃e ∈ E(client) : ¬(e ∈ Known)
∨(e ∈ (Malicious ∪ Uncontrolled ∪ Remote))

(1)

client ∈ IntHigh ← ∀e ∈ E(client) : (e ∈ Acceptable) (2)

client ∈ IntMedium ← ¬(client ∈ IntHigh)∧
∀e ∈ E(client) : e ∈ (Acceptable ∪ Local)

(3)

Figure 3: Determining the Client Integrity Level

ation is valid until the client loads new executables that were
not previously measured. To keep track of the integrity of
clients connected to the Intranet, the client must update the
VPN server with new integrity measurements. It is prefer-
able that such updates be done at measurement time and
prior to the actual load.

4.2 Policy Enforcement Architecture
The policy enforcement architecture is shown in Figure 4.
To the client, we have added a personal firewall that inter-
cepts all IP packets that enter or leave the client. It makes
access decisions based on a policy obtained from a policy
agent residing in user space. In addition, we may use ker-
nel mechanisms on the client, such as the Linux Security
Modules (LSM) interface, to control access.
Further, the VPN server provides enforcement of client
accesses to corporate data. The server uses its determina-
tion of the client’s integrity and knowledge of the client’s
enforcement capabilities to control the client’s access to cor-
porate data. From this, the server determines whether the
client can protect the integrity of computations (SG1) and
prevent leakage of confidential corporate data (SG2).
The personal firewall extracts the service type (e.g., SSH,
Telnet, HTTPS, HTTP) and the service direction (incoming
or outgoing service; this can be different from the packet flow
direction) from the packet and submits this information to
the policy agent.
The policy (see Section 4.3) is obtained from a remote
corporate policy server based on the information in a con-
figuration file local.conf. The policy agent uses a local replica
of the corporate access policy, authzn persfw.db, to retrieve
the policy for this object (e.g., outgoing SSH) and returns
it to the firewall, where it is used for authorizing the packet
and stored for future reference in a kernel policy cache.
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Figure 4: Policy Enforcement Architecture

Verification of the presence of a sufficient policy enforce-
ment architecture is necessary before releasing corporate
data to the client system. First, the measured kernel in-
dicates whether it contains the personal firewall. Second,
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when the policy agent is loaded, it is measured. Third, the
policy agent measures the configuration and policy database
files that it actually uses. Lastly, the kernel must indicate
which process it is using as the policy agent.
In addition to running enforcement code, a kernel capable
of enforcement will require other functions to implement the
necessary controls. For confidentiality, we may require that
no data is saved in persistent storage on the client. Thus,
access controls may prevent file system access or a RAM file
system may be used locally. Also, emerging technologies,
such as sealed storage, may be used to protect the confiden-
tiality of data unless the proper code is run on the client.
The kernel and its capabilities, such as the Linux Security
Modules framework, RAM file system only, etc., are veri-
fiable from the code measurement. We do not specifically
define these mechanisms.
Thus, if the kernel and policy agent are not compromised,
then the measurement of their input code and configurations
should be sufficient to identify their integrity and prove to
the VPN server that the client system is capable to enforce
corporate policies.

4.3 Security Policy
Given the client’s integrity and the identity of the corporate
employee, the personal firewall determines the access rights
of the client to corporate data. Corporations might not be
able to deliver access control decisions and enforcement on
this fine-grained, per-packet-level for thousands of remote
clients. However, our experiments with the prototype show
that this architecture is sufficiently scalable if the policy
enforcement is done locally on the client and only the general
supervision of the client’s computing integrity is performed
remotely by the VPN server. The actual decision function
implemented by the personal firewall is shown in Figure 5.

Bool AccessDecision(packet(service,direction), cap(userid)){

[decision,client-constraints,packet-constraints]
:= azn(cap(userid),service,direction);

return (decision AND hold(client-constraints))
AND (hold(packet-constraints));

}

Figure 5: Access Control Decision Function

First, the personal firewall extracts service type and service
direction from an access controlled packet. Then, the policy
agent adds the user’s credentials and retrieves the autho-
rization decision from the policy data base. If the result
is ”permission denied”, then this decision is communicated
to the firewall, and this packet is discarded. If the result
is ”granted”, then the policy agent evaluates extended at-
tributes that refer to client constraints. Client constraints
describe the integrity and confidentiality levels required of
the client system (e.g., the client has mechanisms to im-
plement high secrecy control). If they are fulfilled, then
it communicates the packet constraints and a preliminary
”granted” permission back to the personal firewall. The
packet constraints describe the enforcement required by the
client on the packet (e.g., protect the confidentiality of the
data in a ’high’ manner). The personal firewall will evaluate
the constraints and determine whether they meet the hold
predicate. This predicate implies that the client system’s in-

tegrity and confidentiality enforcement meet or exceed the
constraint defined by SG1 (firewall bypass prevention) or
SG2 (information leakage prevention). We describe scenar-
ios that aim to achieve this in Section 5.1.

5. IMPLEMENTATION
This section describes the implementation of the policy en-
forcement prototype. It is based on an example set of mea-
surements from which we determine client integrity and en-
force remote access based on the integrity of the client.
We implemented the remote access client system on Red-
hat Linux 9.0 with a 2.6.5-bk2 kernel. The policy agent
agent comprises about 1100 lines of code (Loc) not includ-
ing the authorization library that is part of the Tivoli Ac-
cess Manager. The kernel part comprises about 1800 Loc
including cache handling, connection tracking, packet clas-
sification, and authorization retrieval from user space.

5.1 Example
Figure 6 shows selected measurements that we will refer to
in the course of this section.

#000: BC...AB (bios and grub stages aggregate)
#001: A8...5B grub.conf (boot configuration)

#002: 1238A...A22D1 vmlinuz-2.6.5-bk2-lsmtcg

#003: 84ABD...BDA4F init (first process)
#004: 9ECF0...1BE3D ld-2.3.2.so (dynamic linker)
...
#439: 2300D...47882 persfw user (client policy agent)

#440: BB18C...BDD12 libpdauthzn.so (policy client libraries)
#441: D12D9...829EE libpdcore.so
...
#453: DF541A...BE160 local.conf (policy agent)
#454: 6AC585...DC781 authzn persfw.db (policy db)
...

Figure 6: Sample of client measurements E(client)

There are four key measurements for determining client in-
tegrity and its enforcement abilities in Figure 6: (i) the
personal firewall that is integrated into the Linux kernel
(vmlinuz-2.6.5-bk2-lsmtcg, c.f. #002 in Fig 6) and that con-
trols the network traffic of the client, (ii) the policy agent
(persfw user, c.f. #439 in Fig 6) that retrieves authorization
decisions from the policy database, (iii) the configuration file
of the policy agent (local.conf, c.f. #453 in Fig 6), and (iv)
the local copy of the policy database (authzn persfw.db, c.f.
#454 in Fig 6) that is replicated with the corporate master
data base when the policy agent starts up on the client.
The kernel and all preceding boot states are measured
by the BIOS and bootloader. Succeeding measurements are
induced by the kernel and applications using the Linux In-
tegrity Measurement Architecture (IMA) [5]. We instru-
mented the policy agent to induce measurements on the
configuration file local.conf and the policy data base file au-
thzn persfw.bd before loading and using them.

5.2 Server Enforcement
The VPN server will first determine the client’s integrity
and then it will determine the client’s enforcement abili-
ties. Based on these, it will determine whether to grant any
access to the client (SG1) and whether it will entrust any
confidential information to the client (SG2).
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Every slight variation of these files (program version dif-
ferences, policy changes in the data base, changes in the
configuration file) will be reflected by differing measure-
ment values. The VPN server compares now measurements
#002,439,453,454 to a set of known and trusted fingerprints
on the VPN server these programs.
At this point, we know whether these programs are au-
thentic and configured according to the corporate policy.
What we do not know is whether they are actually running
or not (i.e., they could have run earlier and exited). How-
ever, we know that the kernel is running and from the kernel
measurement, we can conclude whether the personal firewall
is actually installed and thus filters all network traffic. The
personal firewall by default (hard-coded) allows only traffic
between the client and the VPN policy server that supplies
replication of the policy database file.
For example, we use the kernel image measurement and
compare it with a known set of SHA-1 values of kernels ex-
hibiting images with different (meaningful) configurations.
Table 1 shows kernels with different configurations. If our
client kernel measurement equals one of the hashes in the
table, then we confirm its integrity matches a known kernel
and assign it the associated enforcement abilities.
Kernels #2 and #3 are capable of protecting system in-
tegrity (SG1). They ensure that all external network com-
munication is completely controlled by the IP Netfilter-based
personal firewall. This is necessary to close the means for
an attacker to compromise the system. They do not sup-
port drivers for the serial line, such as a wireless keyboard,
which could be abused by nearby attackers to issue unautho-
rized keyboard commands on behalf of the user. Kernel #1
supports modem connections, which can use non-IP com-
munication and thus bypass the IP Netfilter-based firewall.
We approach confidentiality by confining data that is re-
trieved from the Intranet to the client system’s current boot
cycle. Within this boot-cycle, we ensure that this data can-
not leak through client interfaces (e.g., USB, WIFI, Serial
Port) or be carried over to other (less restrictive) boot cycles
via file systems or other persistent storage, c.f., Figure 7.
Kernel #3 supports local persistent file systems, which
means that confidential information could be carried over to
other less protected boot cycles. Kernel #2 is the only one
that meets the requirements ensuring that no confidential
data is leaked (SG2). We configure the client to mount
file systems over the protected remote access link from the
Intranet. Additionally, we configure the client to use a RAM
disk for its root file system, which supports just enough
functionality to run a Gnome Desktop, a web browser, and
the remote access policy architecture. This web browser is
then used as the client interface to access confidential data
inside the Intranet. Some client interfaces however, such as
the display and keyboard, must be allowed in order to render
the client usable. Whether sound is to be allowed or not is an
issue of corporate policy. Attacks through these interfaces
are excluded from our attacker model (c.f. Section 2).
At the time the remote access client disconnects from the
Intranet, it must reboot in order to clean the confidential
information from the memory. The personal firewall is con-
figured not to re-open the network interface after a client
disconnects from the corporate VPN until after reboot if it
has accessed services requiring confidentiality properties.
The VPN server combines the integrity level of the remote
client with the enforcement abilities derived from its kernel
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Figure 7: Confining Data on the Remote Client

image to conclude that the client system running exemplary
kernel #2 with an integrity validation of high (no unknown,
no malicious, no vulnerable software) satisfies security goals
SG1 and SG2. Thus, requests from this client can be trusted
to have actually been initiated by the user logged into the
remote client and authenticated against the VPN server.

5.3 Policy Integration
We retrieve the corporate access control policy for the per-
sonal firewall using the Tivoli Access Manager (TAM) [6].
TAM is a centralized server where employee identities and
their access rights are stored. Access rights are specified as
permissions for subjects to perform operations on objects.
We use the identity of the user logged into the remote
client to find subject identity information (i.e., TAM user
id, member group ids). In our prototype, remote users are
allowed to access a service if they have execute permission
(’x’) on the object. Objects are identified by a type of service
(HTTP, SSH, etc.) combined with the service direction.
Permissions are stored in Access Control Lists (ACLs)
attached to the service object and are extended by addi-
tional security property requirements using TAM extended
attributes of the ACL (e.g., required client security prop-
erties, transport security on the remote access tunnel, or
restrictions to specified server IP addresses). Access of a
user id from a remote client (subject) to an Intranet Service
(object) is permitted, if the ACL attached to the Intranet
Service object allows the subject to execute this object and
if additional security properties as specified in the extended
attributes of the object hold (c.f. Figure 8 and Table 2).
Using this approach, we define policies to (i) allow service-
specific policies that take into account the service direction
(incoming/outgoing from the remote access client’s perspec-
tive) and (ii) attach additional security requirements (e.g.
client and packet constraints) to this service’s specific policy.
For this purpose, we define a new objectspace “remoteAc-
cessPolicy” in Tivoli AM and populate it with the supported
services. An objectspace is basically a directory structure,
where each node and leaf represents a virtual resource to
which access control lists can be attached. Figure 8 shows
the object space tree for our remote access policy. Table 2
shows attribute names and values, as well as in the rightmost
column the enforcement entity: packet-related constraints
are enforced by the firewall, client enforcement constraints
are enforced by the client policy agent, and general client-
integrity constraints are enforced by the VPN server.
The authorization request for a user Mycroft would look
as follows: aznDecision(cap, “/remoteAccess Policy/app-
services/http/out”, “x”). Cap comprises the capabilities of
Mycroft (IDs of groups of user Mycroft), the next parameter
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# Kernel(SHA-1) Configuration Property

1 123AD...A22D1 IMA, Modem, Wireless, Onboard-Ethernet, Persfw none
Netfilter, IPSEC, no other communication, modules support

2 E1F98...34AA1 IMA, Onboard-Ethernet, Persfw, Netfilter, IPSEC, no other communications SG1 & SG2
no modules support, no serial port support, no persistent file systems

3 AA424...4131B like Kernel #2 but supports ext2 file systems SG1

Table 1: Properties Based on Kernel Configurations

/ "remoteAccessPolicy"

"app-services""net-services"

outin outin outin outin outin outin outin outin

ftphttphttpsssh telnetping dns
query

source
quench

ACL: Group:http_out "X" + Extended Attributes

Figure 8: Remote Access Policy Object Space

Extended Attribute Name Value Constraint

TransportProtocol and Port TCP/80 packet (FW)
ServerIP 10.9.*.* packet (FW)

TransmissionSecurity SSL/IPSEC packet (FW)
MinClientIntegrity Medium client (VPN)

Meet SG1 (fw bypass protection) Required client (PA)
Meet SG2 (data confinement) Not Required client (PA)

Table 2: Extended Attributes Example: http out

denotes the service and type (virtual resource object), the
third string specifically asks for eXecute permission. The
capabilities of the user are acquired by the authorization
agent once throughout its initial binding to the authoriza-
tion replica and re-used as long as the client’s user does not
change. The aznDecision call returns either access denied
or access permitted. If access is permitted, then it returns
also the extended attributes connected to the ACL that was
used to determine the authorization result.
In our example, if the user at the remote access client
is not member of the group http out, then the policy client
receives an access denied response. Otherwise, it receives
back access permitted including the additional constraint at-
tributes, implemented as a list of string-pairs. Additionally,
to allow a user with IDMycroft outgoing PING, DNSLookup,
and SSH, we merely add user Mycroft to the groups ping out,
dnslookup out, and ssh out.
These extended attributes are shown in Table 2, and they
refine the access constraints for the outgoing HTTP ser-
vice: we allow outgoing HTTP connections (outgoing from
a client perspective) for members of the ’http out’ group to
all servers in the subnet 10.9.*.* if the remote access tun-
nel is either SSL or IPSEC protected. These constraints are
enforced by the personal firewall (FW). Additionally, the
client must exhibit at least medium Integrity level, which is
checked by the VPN server, and must enforce SG1, which
is checked by the policy agent (PA) locally on the client.
This example shows, how the corporate remote access pol-
icy manages firewall rules and constraints for remote clients

that are then enforced by the personal firewall as described
in the next section.

5.4 Personal Firewall Implementation
We integrated the personal firewall into the Linux kernel.
It first registers a queue handler for INET packets with the
kernel Netfilter [26]. It then redirects all packets traversing
the NF IP LOCAL IN hook (incoming IP packets) and the
NF IP POST ROUTING hook (outgoing IP packets) to our
queue handler. Using a queue handler, we ensure that we
don’t block the kernel or network traffic if we have to delay
some packets to resolve access control decisions that involve
policy lookups in user space. The queue handler then en-
forces the remote access policy on each data packet before
re-inserting it with DROP or ACCEPT verdict according to
the access control decision.
We implemented a stateful packet filter that keeps session
information on TCP packets and thus requires access control
only on the the TCP connection setup packets. For packets
belonging to an existing TCP session, we only check whether
the initial client security properties changed. For packets
requiring access control decisions, the personal firewall will
create a policy query request and send it to the policy agent
through the /dev/policy interface (returning an earlier read
request by a polling policy agent thread). Transaction num-
bers ensure that returned access control decisions can be
safely linked to the requests. The personal firewall caches
earlier access control decisions to resolve future queries lo-
cally. The cache is very effective because there are only a
few services used by typical clients. It be used until the
policy changes, which is indicated by the policy agent.
We have implemented some global rules into the personal
firewall, such as to drop all packets that are not initiated
by the client or the VPN server ends of the remote access
tunnel. Consequently, the client can communicate over IP
only through the tunnel. We also restrict traffic between the
remote access client and the corporate policy server to the
protocol and port used by the policy agent to replicate the
policy data base. To avoid service interactions, we switched
off any IPTables kernel support that could compete with our
registration of the personal firewall with Netfilter hooks.

5.5 Policy Agent Implementation
The policy agent uses the authorization interface [27] of
Tivoli Access Manager to resolve authorization requests.
First it binds to the TAM using the userid and password
of the remote access user. In return, the policy agent re-
ceives this user’s credentials, which are used in subsequent
authorization requests as described in Section 5.3. We use
the local mode of the authorization interface that creates
a local replica (about 600 KBytes for a tree as outlaid in
Figure 8) of the AM master policy data base on the client.
Authorization requests are resolved locally on the client by
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the authorization library code, which yields about 11,000 au-
thorizations/second. Tivoli Access Manager offers to either
periodically poll the master policy data base for updates or
to receive notifications of master policy data base changes.
We implement the latter because we do not want thousands
of remote access clients to poll the corporate policy server
unnecessarily. This configuration is subject to notification
deletion attacks; however, as the policy data base is mea-
sured and validated, the VPN server can detect out-of-date
policy data bases on clients.
The policy agent polls the “/dev/policy” character device
file for authorization queries from the personal firewall. Any
received request is then translated into a format that is un-
derstood by the Policy Access Manager authorization service
(see Section 5.3). The translated request is fulfilled by the
local replica of the master data base, which returns the au-
thorization decision. If the decision yields access permitted,
the policy agent validates additional constraints specified in
the extended attributes Meet SG1/SG2 (c.f., Table 2).
Therefore, the policy agent determines the client secu-
rity properties by reading the kernel measurement from the
measurement list and comparing it to known SHA-1 values
with known properties stored in the local.conf configura-
tion file. Measuring local.conf on the client and validating
it at the VPN server ensures that the policy agent and the
VPN server agree about the corresponding assignment of
kernel SHA-1 value and client security properties. The pol-
icy agent assumes that the measurement list is correct and
expects the VPN server to disconnect the client if the client
integrity becomes compromised. If it applies, the policy
agent then validates the required client security properties
with the ones derived from the current kernel measurement.
If the constraints of the authorization decision are satisfied
(given properties dominate the required properties), then
the general verdict (accept) and remaining packet-related
constraints (e.g., server IP constraints) are returned for en-
forcement to the personal firewall through the “/dev/policy”
device file. Unique transaction numbers ensure that the fire-
wall relates requests and responses correctly to each other.
Waiting queues ensure smooth operation of the kernel.

6. ANALYSIS
Policy decisions and enforcement overhead. The re-
mote access client runs Redhat Linux 9.0 on a 2GHz IBM
Thinkpad T30 that includes a TPM security chip. We used
a 2 GHz Netvista Linux workstation as the VPN server and
a separate 2 GHz Windows 2000 Server for the Tivoli Access
Manager run-time suite including LDAP and Authorization
server. The initial binding of the policy client to the autho-
rization service consists of the local replication of the master
authorization data base ( 600 KBytes in our example) on the
Access Manager server as well as acquiring the remote user’s
capability set and takes about 2 to 3 seconds. Table 3 shows
the network round-trip delay through the personal firewall
performing policy decisions on each data packet as averages
of 100,000 round-trip samples.
The first two rows show the UDP and TCP round-trip ref-
erence values without the firewall in our experiment testbed.
Line 3 shows the overhead introduced by resolving the policy
for each round-trip (2 packets) through the user space policy
agent (not using caching). Comparing this number to line
1 determines the policy overhead per packet to be about
(1087 - 162)/2 = 463µs, which translates to about 2000

# Configuration RT Overhead

1 Reference UDP 162 µs 0%
2 Reference TCP 200 µs 0%
3 No Policy Cache UDP 1087 µs 570%
4 No Policy Cache TCP 209 µs 5%
5 Policy Caching UDP 180 µs 11%
6 Policy Caching TCP 208 µs 4%

Table 3: Prototype Performance (PL 100 bytes)

authorizations per second. Line 4 measures only the TCP
connection tracking overhead added by the policy agent be-
cause authorization decisions are made only once at TCP
connection setup time, which is not included in the mea-
surement. The last two lines show the generally assumed
overhead using kernel policy caching (15 cache lines) and as-
suming cache hits for all authorization decisions. The UDP
overhead is about 11% because every single packet must be
checked against the policy. The TCP overhead (line 6) is
only 4%, representing the TCP connection tracking and no
additional policy decisions for packets belonging to existing
TCP connections (assuming the policy did not change).
The kernel policy cache stores authorization decisions so
that successive policy lookups are resolved in the kernel and
don’t involve interaction with the user space policy agent.
As soon as the policy changes or the client security proper-
ties change, the kernel cache and existing TCP connection
tracking entries are marked dirty and no longer used. Most
of the performance-critical traffic will be TPC traffic, which
yields about 4% overhead. The maximum policy-induced
delay for UDP or TCP connection setup packets (e.g., delay
when starting SSH) is about 463µs; the average overhead
afterwards is about 4%. Pre-loading the kernel policy cache
with the most likely needed authorization decisions can fur-
ther reduce the delay.
To decide if SG1 or SG2 hold, the policy agent on the
client compares the local kernel measurement to a list of
known kernel measurements and reads the properties of this
kernel from the configuration file. This operation does not
add visible overhead as our set of known kernels is small.

Overhead of measuring clients The general overhead
of the integrity measuring architecture is very low [5]. Full
initial measurement validations incur about 3 seconds round-
trip delay, including the request from the VPN server to
the client, receiving back the signed aggregate and a list
of 400-500 measurements, validating the measurement list
against the signed aggregate, evaluating individual measure-
ments against the database, and inferring the client integrity
properties as described in Figure 3. The related processes
are not optimized. Subsequent evaluations (integrity heart-
beat) only involves retrieving a new signed aggregate (1/5
second) and newly added measurements from the client.
Practically, our approach applies to remote access to sen-
sitive services, e.g., data-entry points at banks (teller ter-
minals), or remote access to classified data (government,
corporations). We don’t envision such a client-approach to
connect to an ISP or to connect to Amazon.com. Thus, the
remote client is governed by the security policy of the ac-
cess server and it is pretty common that this restricts the
client environment wherever this is possible to ensure that
the client conforms to the corporate security policy and cor-
porate software support. The fingerprint data base is ac-
cordingly maintained and includes fingerprints of currently
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acceptable software (not future, nor old). E.g., a corpo-
ration will support one or two Linux distributions (e.g.,
Redhat or SuSE) and related software. The database for
each supported distribution will be roughly 25000 entries,
reflecting the distribution software package size. It grows
as new updates are added to a supported distribution (ap-
proximately once a week) and is independent of the num-
ber of client systems running such a distribution. The data
base is maintained by flagging existing entries as distrusted
(or deleting those entries) once the represented software or
configuration is known to include unacceptable vulnerabil-
ities and patched versions are available. This goes usually
hand-in-hand with adding new known fingerprints for soft-
ware updates. Client’s running unsupported distributions or
software will be recognized by unknown (hence untrusted)
fingerprints and do not add to the fingerprint data base.
Scalability is relevant in two ways – client measurement
and verification. Client measurements grow linearly with the
number of new software modules executed. Rerunning exist-
ing software does not result in a new measurement and has
negligible performance impact as shown in (perf). Verifica-
tion time per measurement is constant (based on hash table
retrieval), so the verification time is also linear in the num-
ber of measurements of the client. The verification space
is linear with the size of the distribution. Multiple distri-
butions on the same platform may reuse much of the same
code. The use of different platforms will result in different
binaries, but the number of platforms is a small constant
number, so we expect that the space considerations would
still be linear in distribution size.

7. FUTURE WORK AND CONCLUSION
We have designed and implemented a novel access control
architecture that enables corporations to verify client in-
tegrity properties and establish trust into the client’s policy
enforcement before allowing them remote access to corpo-
rate Intranet services. To this end, we have shown how to (1)
determine the integrity level of a client system based on the
code running on the client; (2) determine whether to trust
this client to enforce information flow controls necessary to
make such integrity assumptions about client; (3) determine
whether additional security properties, such as SG1 or SG2,
must be enforced by the client and whether the kernel sup-
ports these; (4) integrate the integrity of the client into the
remote access control policies governing the client’s access to
the corporate servers; (5) enforce this policy on remote ac-
cess clients and the VPN server. We have introduced an in-
tegrity heart-beat enabling the VPN server to track changes
in the remote client’s security properties (i.e., sense relevant
changes in the client’s software stack) and implement re-
sulting policy changes. We have implemented a Linux 2.6
prototype system that utilizes the TPM measurement and
attestation framework, existing Linux Netfilter, and Tivoli
Access Manager to control remote client access to corporate
data. This prototype illustrates that our solution integrates
seamlessly into scalable corporate policy management and
introduces only minor performance overhead.
Future work includes measuring isolation properties of
client systems in order to handle unknown or distrusted fin-
gerprints. To this end, we are experimenting with measuring
SELinux policy and policy enforcement and with extending
the measurement architecture onto virtual machine moni-
tors allowing to attest to a single isolated virtual machine.
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