
Runtime Verification of Authorization Hook Placement for the
Linux Security Modules Framework

Antony Edwards � Trent Jaeger Xiaolan Zhang
IBM T. J. Watson Research Center

Hawthorne, NY 10532 USA
Email:

�
jaegert,cxzhang � @us.ibm.com

May 17, 2002

Abstract

We present runtime tools to assist the Linux community
in verifying the correctness of the Linux Security Mod-
ules (LSM) framework. The LSM framework consists of
a set of authorization hooks inserted into the Linux ker-
nel to enable additional authorizations to be performed
(e.g., for mandatory access control). When compared to
system call interposition, authorization within the kernel
has both security and performance advantages, but it is
more difficult to verify that placement of the LSM hooks
ensures that all the kernel’s security-sensitive operations
are authorized. We have examined both static and run-
time analysis techniques for this verification, and have
found them to be complementary. Static analysis is more
complex to implement and tends to generate more false
positives, but coverage of all type-safe execution paths is
possible. Runtime analysis lacks the code and input cov-
erage of static analysis, but tends to be simpler to gather
useful information. The major simplifying factor in our
runtime verification approach is that we can leverage the
fact that most of the LSM hooks are properly placed to
identify misplaced hooks. Our runtime verification tools
collect the current LSM authorizations and find incon-
sistencies in these authorizations. We describe our ap-
proach for performing runtime verification, the design of
the tools that implement this approach, and the anoma-
lous situations found in an LSM-patched Linux 2.4.16
kernel.

1 Introduction

The Linux Security Modules (LSM) project aims to pro-
vide a generic framework from which a wide variety of
authorization mechanisms and policies can be enforced.

�
Work done with the author was at the IBM T.J. Watson Research

Center.

Such a framework would enable developers to imple-
ment authorization modules of their choosing for the
Linux kernel. System administrators can then select the
module that best enforces their system’s security policy.
For example, modules that implement mandatory access
control (MAC) policies to enable containment of com-
promised system services are under development.

The LSM framework is a set of authorization hooks in-
serted into the Linux kernel. These hooks define the
types of authorizations that a module can enforce and
their locations. Placing the hooks in the kernel itself
rather than at the system call boundary has security and
performance advantages. First, placing hooks where the
operations are implemented ensures that the authorized
objects are the only ones used. For example, system call
interposition is susceptible to time-of-check-to-time-of-
use (TOCTTOU) attacks [2], where another object is
swapped for the authorized object after authorization,
because the kernel does not necessarily use the object
authorized by interposition. Second, since the authoriza-
tions are at the point of the operation, there is no need to
redundantly transform system call arguments to autho-
rize kernel objects.

While placing the authorization hooks in the kernel
can improve security, it is more difficult to determine
whether the hooks mediate and authorize all controlled
operations. The system call interface is a nice media-
tion point because all the kernel’s controlled operations
(i.e., operations that access security-sensitive data) must
eventually go through this interface. Inside the kernel,
there is no obvious analogue for the system call inter-
face. Any kernel function can contain accesses to one or
more security-sensitive data structures. Thus, any me-
diation interface is at a lower-level of abstraction (e.g.,
inode member access). In addition to mediation, it is
also necessary to ensure that the proper access control
policy (e.g., write data) is enforced for each security-

sensitive operation. If there is a mismatch between the
policy enforced and the controlled operations that are ex-
ecuted under that policy, unauthorized operations can be
executed. We believe that manual verification of the cor-
rect authorization of a low-level mediation interface is
impractical.

Much recent effort has focused on how static analysis
tools may aid in the verification of various security prop-
erties [4, 9, 12]. As is the trend now, we expect that
static analysis will be used where possible, and runtime
analysis will be used to complete the analysis 1. Thus,
we are proceeding with the development of both static
and runtime verification tools, and have found that static
and runtime analysis have complementary features. Our
static analysis approach enables comprehensive verifi-
cation that the variables used in security-sensitive oper-
ations have been authorized [15]. However, it is difficult
to statically determine the authorization requirements
that should be checked. This is because different data
and control flows within functions may require different
authorizations. A useful insight for performing runtime
analysis is the assumption that LSM authorization hooks
are correctly placed in most cases. Thus, verification is
a matter of finding and resolving inconsistencies in au-
thorization requirements and verifying that the resultant
authorization requirements are correct. Runtime analy-
sis enables to implement this approach by collecting the
authorizations that are actually performed and display-
ing the actual authorizations, so anomalous cases (i.e.,
missing or inconsistent authorizations for an operation)
can be identified.

In this paper, we present a runtime verification approach
and tools to assist the LSM community and Linux ker-
nel developers in verifying that the LSM authorization
hooks completely authorize accesses. The runtime anal-
ysis approach involves: (1) instrumenting the Linux ker-
nel to collect security relevant runtime events (e.g., ma-
jor kernel events, such as system calls, LSM authoriza-
tions, and controlled operations) and (2) analysis of the
collected data to identify potential errors. We extend
GCC to perform analyses of its abstract syntax tree to
add instrumentation to the Linux kernel as necessary.
Kernel modules collect the runtime events generated by
the instrumentation. We also have analysis programs
that use a basic filtering language to extract the events
of interest for analysis (e.g, for a particular system call),
generate authorization graphs that show anomalous au-
thorizations, and sensitivity class lists that aggregate au-
thorization requirements as comprehensively as possible
to minimize the effort to verify authorization require-

1Consider the static checking of type-safe C code where possible
and the runtime checking of other code used by Ccured [11].

ments. We have found three bugs in LSM hook place-
ment in the file system that have since been fixed, and
another anomaly that resulted in significant discussion.
We demonstrate the use of these tools on LSM-patched
Linux version 2.4.16.

The remainder of the paper is structured as follows. In
Section 2, we define the general hook placement prob-
lem. In Section 3, we develop an approach to solving
the general hook placement problem. In Section 4, we
outline the implementation of the tools and discuss the
analyses performed and their results. In Section 5, we
conclude and describe future work.

2 General Hook Placement Problems

2.1 Concepts

We identify the following key concepts in the construc-
tion of an authorization framework:

� Security-sensitive Operations: These are the op-
erations that impact the security of the system.

� Controlled Operations: A subset of security-
sensitive operations that mediate access to all other
security-sensitive operations. These operations de-
fine a mediation interface.

� Authorization Hooks: These are the authorization
checks in the system (e.g., the LSM-patched Linux
kernel).

� Policy Operations: These are the conceptual oper-
ations authorized by the authorization hooks.

Correct authorization hook placement must ensure that
the authorization hooks authorize all security-sensitive
operations. Such authorization tests whether the sys-
tem’s authorization policy permits the requesting prin-
cipal to execute the particular security-sensitive opera-
tions. It is more convenient to express authorization pol-
icy at a higher level (e.g., file read or write), so rather
than authorizing the individual security-sensitive opera-
tions we authorize conceptual operations, which we call
policy operations. Further, since the number of security-
sensitive operations can be large, it is preferable to au-
thorize them once at an interface that mediates all the
security-sensitive operations. The set of controlled op-
erations defines such a mediation interface. Thus, we
define our problem to verify that all controlled opera-
tions are authorized for the expected policy operations
using the LSM authorization hooks.

S SSS S S

H: Authorization Hook
P: Policy Operation
C: Controlled
 Operation
S: Security-sensitive
 Operation

Syscall Trap

Kernel

...

User

System Call Approach LSM Approach

...

......

C C

H

P/C

P

H

Figure 1: Comparison of concepts between system call interposition framework and LSM.

Identifying the controlled operations is more difficult for
the in-kernel mediation of LSM than for the system call
mediation mechanisms of the past. As shown in Fig-
ure 1, the system call interface is well-known for pro-
viding mediation of all the security-sensitive operations
in the system call. Therefore, the system call interface
can be used both as the controlled operations and the
policy operations.

When authorization hooks are inserted in the kernel, a
mediation interface is no longer obvious, so the con-
trolled operations and their mapping to policy operations
is no longer so easy to identify. For example, rather than
verifying file open for write access at the system call
interface, the LSM authorizations for directory (exec),
link (follow link), and ultimately, the file (write) are per-
formed at the time these operations are to be done. This
approach has the benefits of eliminating susceptibility to
TOCTTOU attacks [2] and redundant authorization pro-
cessing, but in order to verify the hook placement more
work is necessary to identify the controlled operations,
the policy operations they correspond to, and verify that
the authorization hooks authorize them properly.

2.2 Relationships to Verify

Figure 2 shows the relationships between the concepts.

1. Identify Controlled Operations: Find the set
of operations that define a mediation interface
through which all security-sensitive operations are
accessed.

2. Determine Authorization Requirements: For
each controlled operation, identify the authoriza-
tion requirements (i.e., policy) that must be autho-
rized by the LSM hooks.

3. Verify Complete Authorization: For each con-
trolled operation, verify that the correct authoriza-
tion requirements are authorized by LSM hooks.

4. Verify Hook Placement Clarity: Controlled oper-
ations implementing a policy operation should be
easily identifiable from their authorization hooks.
Otherwise, even trivial changes to the source may
render a hook inoperable.

The basic idea is that we identify the controlled opera-
tions and their authorization requirements, then we ver-
ify that the authorization hooks mediate those controlled
operations properly. First, we need an approach to find
the controlled operations in the kernel. Second, because
the controlled operations are at a lower level than the
policy operations (i.e., authorization requirements), we
need an approach by which the authorization require-
ments of each controlled operation can be determined.
Third, we need to compare the LSM hook authorizations
made to the expected authorization requirements. These
tasks are complex for in-kernel authorization, so it is ob-
vious that automated support is required.

Lastly, to ensure maintainability of the authorization
hooks we must verify that the controlled operations rep-
resentative of each policy operation can be easily de-
termined from the authorization hook locations. This
work has been done, but in interest of focus it is out-

Controlled Operation

Security-sensitive Operation

Mediates

Mediates

1

2

3

4

Authorization Hook

Predicts

Policy Operation

Comprises

Figure 2: Relationships between the authorization con-
cepts. The verification problems are to: (1) identify con-
trolled operations; (2) determine authorization require-
ments; (3) verify complete authorization; and (4) verify
hook placement clarity.

side the scope of this paper. This is work is presented
elsewhere [3].

2.3 Related Work

Recently, static analysis has shown promise in a vari-
ety of ways. First, existing program analysis tools have
been used to find common security errors, such as buffer
overflows and printf vulnerabilities [9, 12, 13]. We
also use one of these tools, CQUAL [5], in our static
analysis approach [15]. These tools require a signifi-
cant amount of code annotation prior to their use (i.e.,
scales with size of the code). We perform GCC analysis
to automate the annotation task, such that it is practical
for the Linux kernel. Such analyses tend to error on the
conservative side (i.e., no false negatives) which means
that more false positives than reasonable may be gener-
ated. We are working on secondary analyses to elimi-
nate obvious false positives. Also, some analysis tasks
are difficult to do with static analysis tools. In our case,
determining the authorization requirements of individual
operation would require complex data and control flow
analysis beyond that intended by CQUAL.

Second, Engler et al enables extension of GCC, called
xgcc, to do source analyses, which they refer to as meta-
compilation [4]. A rule language, called metal, is used
to express the necessary analysis annotations in a higher-
level language. Since the rules match multiple state-
ments, the amount of annotation effort is reduced. A
variety of software bugs, including security vulnerabili-

ties, have been found by this tool [1]. While it appears
that xgcc could be used for the static analysis we per-
form, the metal rules would be more complex than the
CQUAL annotation and the GCC analyses. Also, xgcc
is not intended to derive authorization requirements.

Another related problem is the certification of systems.
Historically, the Orange Book [10] was used for guid-
ance in the construction of secure operating systems,
but this is now being supplanted by the Common Cri-
teria [7]. However, the certification task is ad hoc and
laborious, and has generally not been successful in im-
proving the security of commonly-used operating sys-
tems. Gutmann argues in his thesis [6] that certifica-
tion approaches, including formal verification tools, are
doomed to failure unless they represent concepts at the
level of the source code. Gutmann also advocates a com-
bination of static and runtime analyses. The approach
that we use differs from certification in the sense that it
checks for particular errors rather than providing a top-
down assurance that the overall system meets its require-
ments. An interesting research question is whether a suf-
ficient breadth and depth of such checks could provide a
confidence comparable to certification. Unlike certifica-
tion, such confidence could be maintained as the source
code evolves.

3 Solution Description

The key insight we leverage in runtime analysis for the
Linux Security Modules (LSM) framework is that the
LSM authorization hook placement is largely correct,
such that cases that are inconsistent with the norm are
likely to be indicative of an error. For example, it would
be considered unusual if a particular controlled opera-
tion has different authorization requirements on different
runs of the same system call.

We have found that the attributes of controlled opera-
tions can be totally-ordered with respect to their impact
on authorization requirements. For example, if all the
controlled operations in a system call have the same au-
thorizations, then the value of the other attributes of a
controlled operation do not affect the authorizations (i.e.,
system call is at the top of the order). We use this knowl-
edge to identify cases that are anomalous (i.e., authoriza-
tions are sensitive to attributes that they should not be)
and to partition controlled operations into their maximal-
sized classes by common authorizations. Further unex-
pected sensitivities in these classes are used to identify
errors.

In all of the discussion below, we use the following as-
sumptions. First, we leverage the type safety of much

of the Linux kernel. This does not invalidate any of the
errors we find, but there could be other errors as well.
Second, we assume that accesses to objects of the autho-
rized data types define the mediation interface. These
data types are the ones that correspond to system call
concepts (e.g., files, inodes, sockets, skbuffs, ipc mes-
sage queues, etc.). Access to kernel data is designed to
go through these data structures. While we have not ex-
plicitly validated this, we have done some more detailed
analysis presented elsewhere [3].

3.1 Authorization Sensitivity Attributes

Table 1 lists the attributes of controlled operations to
which authorization requirements may be sensitive. We
refer this group of attributes collectively as the autho-
rization sensitivity attributes. Each controlled operation
has information about the conditions under which it was
executed (system call, system call inputs, function, loca-
tion in function, path to controlled operation), the object
it was executed upon (datatype and object), and the op-
eration performed (member/access).

These attributes are totally-ordered, such that if the au-
thorizations of controlled operations differ when the
value of one factor is changed, then the authorizations
also differ when a higher factor is changed. For exam-
ple, if two controlled operations on a particular object
have different authorizations, then that datatype will also
have different authorizations for the two controlled op-
erations.

Conversely, if the authorization requirements of con-
trolled operations are insensitive to changes in one fac-
tor, then they are also insensitive to changes in all lower
factors. For example, if all controlled operations on the
same datatype have the same authorizations, then so do
all controlled operations on the same (structure) mem-
ber.

3.2 Authorization Sensitivity Impact

The classification of controlled operations by their au-
thorization sensitivity divides the controlled operations
into two categories: (1) known anomalies and (2) sen-
sitivity classes whose authorization requirements need
verification. In the first case, sensitivity to some of
the authorization sensitivity attributes is considered il-
legal. We define invariants below for these cases. In
the second case, we partition the controlled operations
into maximal-sized classes with the same authorizations.
These classes enable verification of authorization re-
quirements and identification of anomalous classifica-
tions.

3.2.1 Anomalies

The sensitivity of authorizations to the attributes below
the double line in Figure 1, intra-function and path, are
always considered to be anomalous. Sensitivities of
these types mean that the execution path (path) or lo-
cation within a function (intra-function) determine the
authorization requirements of a particular controlled op-
eration on the same member.

The following invariant formally expresses our path in-
sensitivity invariant.

Path Insensitivity Invariant

���������	��
��������������
�������������������
��������������� �!����"#�$�%"&�'���(����)*�$��)+�

(1)

This invariant states that the same controlled operation
(
��",����)

) run in the same event (
�%",�-��)

defined by the
system call and its inputs) must have the same authoriza-
tion requirements (defined by the function

�
). That is,

the execution path within an event cannot affect a con-
trolled operation’s authorization requirements.

Similarly, we define an invariant for intra-function in-
sensitivity.

Intra-Function Insensitivity Invariant

���&��������
.���$����������
������/��0�����1�2/����	���3���
��45�����	�6��45�0�����3�7�8��������������� �!����"#�$�%"&�'���(����)*�$��)+�

(2)

In this case, two controlled operations in the same func-
tion (computed by the function

/
) and which make the

same member access (computed by the function
4

)
must have the same authorization requirements

�
.

3.2.2 Authorization Sensitivity Classes

For the other cases, we cannot easily identify them as er-
rors. Instead, we partition the controlled operations into
authorization sensitivity classes based on their autho-
rizations and attribute sensitivity and determine whether
their authorization requirements are correct.

The authorization sensitivity class computation is as fol-
lows. For each sensitivity level starting at the highest
(system call), we partition the controlled operations into
sensitivity classes where all controlled operations have
the same value for the sensitivity attribute, then we test

Factor Authorizations are same for:
System Call all controlled operations in system call
Syscall Inputs all controlled operations in same system call with

same inputs
Datatype all controlled operations on objects of the same datatype
Object all controlled operations on the same object
Member all controlled operations on same datatype, accessing

same member, with same operation
Function all same member controlled operations in same function
Intra-function same controlled operation instance
Path same execution path to same controlled operation instance

Table 1: Authorization Sensitivity Factors: names and effects on authorizations

whether the class also has the same authorizations. If
not, then we try the next lower attribute and partition
based on both attributes and test again. This approach
repeats until we have assigned every controlled opera-
tion to a sensitivity class.

Partitioning depends on the attribute. For the system call
attribute, all the controlled operations of a system call
are in one class. For system call inputs, all controlled op-
erations of the same system call and with the same type
of inputs are aggregated (see Section 3.3 below). For the
datatype attribute, the controlled operations are classi-
fied by the system call, inputs, and datatype of the op-
eration’s object. Thus, successively finer partitions are
created in each step of the analysis.

A classification succeeds (i.e., is x-sensitive where x is
the attribute) if it is the first attribute in which all the
controlled operations in that class have the same autho-
rizations. Note that other classes at the same sensitivity
that have the same authorizations are aggregated to form
the maximal-sized classes. Once the classes are created
it is a manual process to verify that the authorizations
for each class is correct. For the file system, the num-
ber of classes is small enough that manual verification is
practical.

As an example, consider the read system call. File op-
erations are datatype-sensitive because all controlled op-
erations on file objects are authorized for read. Man-
ual verification involves checking that read permission
for files is sufficient. Since the read authorization also is
intended for the file’s inode, we mark the file’s inode as
authorized for read as well. However, after classifica-
tion, one inode controlled operation is not authorized. It
is on a different object, so inode operations are object-
sensitive. This is an operation on the directory inode
of the file to determine whether a signal should be sent
as a result of a read in this directory. Several other file
system calls also perform test for notification, and no-

tification is only performed if the original file operation
is authorized. Therefore, we can say that this directory
inode should also be authorized for file read. The same
goes for the current task and superblock as well. It is
straightfoward to extend the collection to do this, how-
ever. Ultimately, we would expect that all controlled op-
erations in the read system call are authorized for read
access.

Other than finding an authorization completely missing,
the most common way for identifying an error is to find
two classifications (i.e., two aggregates with different
authorizations) that perform an important common op-
eration. This situation occurred in fcntl where two
different classifications (based on different system call
inputs) operate on the same f_owner field (see Sec-
tion 4.2.4).

In comparison to static analysis, we both verify that the
objects are authorized and verify what the authorizations
should be in a single step. Both the static and runtime ap-
proaches enable quick verification that the file and most
inodes are authorized properly. Both identify that the di-
rectory inode is not authorized. In both cases, manual
examination is necessary to determine whether there is
an exploitable situation. However, the runtime approach
has an advantage that it is easier to state additional au-
thorizations, such as for the directory inode in the read
system call. Also, the verification of the specific policy
operation authorized is easier in the runtime analysis.

3.3 Necessary Data Collection

By logging system call entry/exits/arguments, function
entry/exits, controlled operations (i.e., object, datatype,
member, and operation), and authorizations, we collect
all the necessary values for the sensitivity attributes. All
the information can be easily logged, but the identifi-
cation of meaningful object identifiers and system call

input changes need some further analysis.

During execution, objects are referenced via function
pointers, but this is not necessarily a sufficient identi-
fication of an object. For example, an inode has a persis-
tent identifier (i.e., device, inode number) that is used in
authorization. Therefore, for each datatype we define a
specific approach for computing their object identifiers.
These identifiers are used for determining all operations
and authorizations on an object.

Across system calls, we assume objects that are used in
the same variable have the same authorization require-
ments. To simulate this we use the first controlled oper-
ation in which an object appears as an identifier. If two
objects are first accessed in the same controlled opera-
tion they must be assigned to the same variable. How-
ever, different execution paths may result in the same
variable being used in a different controlled operation
first. However, aggregation of classes with the same au-
thorization requirements will merge these cases, so this
assumption has proven effective.

The system call arguments change on almost every call,
but only a few of the arguments really impact authoriza-
tions (e.g., the access flag on open). Therefore, we col-
lect the arguments, but only use the arguments that we
have found impact authorization requirements to do par-
titioning. Only a few system calls that we have examined
have different authorizations based on their input argu-
ments, such as open, ioctl, and fcntl. Because
different authorizations are used based on different in-
puts, these system calls are more complex, and hence,
more prone to errors.

4 Implementation

Complete authorization is verified by analyzing (offline)
a kernel execution log. This section describes the imple-
mentation of the tool that creates this log, the implemen-
tation of the log filtering tool used to prepare and display
analysis data, and the results of our analysis thusfar.

4.1 Collecting Runtime Information

4.1.1 Log Contents

Table 2 shows the information collected during runtime
analysis. Controlled operations are identified by the tu-
ple (instruction pointer, object type, member, access).
A controlled operation ID is assigned to each unique
combination. Authorizations are uniquely identified by
(LSM hook, policy operation). Like controlled oper-

Record Type Data

Controlled Op. Context ID Controlled Op. ID OID
Authorization Context ID Auth. ID OID
Function Entry Context ID Instruction Addr.
Function Exit Context ID

Table 2: Log Record Types

ations, a unique authorization ID is assigned to each.
Function entry and exit are recorded as well. The func-
tion entry address uniquely identifies the function.

For each controlled operation or authorization per-
formed, the log must include the identity of the object
(e.g., inode) involved. Object identities (OIDs) are de-
fined per object type, for example, inodes are identified
by (device ID, inode number) while tasks are identi-
fied by process-ID. OIDs are only required to be unique
within a context.

We use the concept of a context to mean the processing
of a kernel event (e.g., a system call). Authorizations
are obviously only valid in the context in which they are
executed, therefore, the log entries must also include the
context of controlled operations and authorizations.

4.1.2 Collection Overview

Figure 3 presents an overview of the tool. Creation of
the log involves three stages: the required information
must be generated, it must be collected, and it must be
written to the log.

Information is generated in three different ways. First,
authorization information is generated by the LSM
hooks. Second, controlled operation details are gener-
ated by compiling the kernel with a modified version
of GCC that identifies controlled operations, and instru-
ments the kernel with calls to a handler function be-
fore all such operations. Control-flow information is
also generated by instrumenting the kernel at compile-
time. Third, context information is generated by placing
breakpoints in the kernel. These three methods are dis-
cussed in more detail in the following sections.

Four kernel modules are loaded to receive the informa-
tion shown in Figure 3. These modules perform coarse-
grained filtering, and arrange the information into the
correct format, before passing the record to the logging
module. The logging module assigns a context ID to
the incoming records and writes the information into a
buffer.

Logging Module

Instrumented Calls

Linux

Control-Flow Filter

Context Filter

Authorisation Filter

Controlled Op. Filter
Instrumented Calls

Breakpoints

LSM Hooks

/proc

Kernel

Figure 3: Implementation Architecture

4.1.3 Authorization Information

Hooks to log authorization information are already pro-
vided by the LSM patch, so little additional implemen-
tation is required. The authorization filter is simply an
LSM module that adds a log entry for each authorization.
These log entries identify the authorization that was
performed (e.g., RMDIR PARENT, RMDIR TARGET)
and the object authorized.

4.1.4 Controlled Operations

To log controlled operations, we first have to locate con-
trolled operations in the kernel, and then provide a mech-
anism for detecting the execution of these operations.

Identifying controlled operations in the kernel requires
source analysis. Rather than a direct source-code analy-
sis (which is difficult), we chose to identify controlled
operations by analyzing GCC’s intermediate tree rep-
resentation. As Linux depends on GCC extensions,
a source-code analysis would require using the GCC
parser, therefore making use of the tree it already builds
seems logical. To identify controlled operations, we tra-
verse the tree looking for expressions in which mem-
bers of mediated data types are accessed 2. When a
controlled operation is detected we insert a call to a
function __controlled_op that includes the object,
type, member, and access, before the statement in which
the expression exists. If the expression is the condition
statement of a loop, then a call is inserted before the loop
and at the end of each iteration. This call contains all the
information required to identify the controlled operation
and allow the handler to extract the identity of the object.

2These are COMPONENT REF nodes where the resultant type of
the first operand is a mediated type.

A couple of accesses cause problems for this approach.
First, it is possible to modify a structure member by tak-
ing the address of a member, storing it to a pointer, and
changing the member via the pointer. Since the initial
access is a read into the pointer variable, it is possible
that we may miss the subsequent write. Rather than per-
forming more extensive source analysis to identify these
cases, we simply detect when aliasing occurs. Second,
it is also possible that we miss accesses to controlled
data structures when they are cast to a non-controlled
type. This is also detected. Our initial analysis shows
that these cases occur in a small number of ways (al-
though for the first, a large number of times), so they
can be handled as special cases.

4.1.5 Control Flow

Control flow information is generated by compiling the
kernel with the -finstrument-functions switch
provided by GCC-3.0. This option causes the compiler
to insert calls to handler functions at the entry and exit
of every function. These handler functions then pass the
information to the appropriate module.

4.1.6 Context Information

As there may be multiple execution contexts in the ker-
nel at anytime, all log entries must contain a context
ID, so the analysis can tell which entries relate to one
another. Unfortunately, no key is available that will
uniquely identify a single execution context, therefore,
we must choose a non-unique key and define an ap-
proach to distinguish contexts with the same key.

We chose the base of the current kernel stack as the non-
unique key as we need a key that is at least unique among
concurrently active executions, and it would seem im-
possible for this property to be violated for the stack.
While it is unique among concurrently active executions,
the kernel stack is not unique per-context for three rea-
sons: all system-calls from the same process use the
same kernel stack, once a process dies its kernel stack
may be allocated to a new process, and interrupts exe-
cute with the kernel stack of the process they interrupt.
The critical property here is that although the context
key is not unique, contexts with the same key are never
interleaved. Therefore, by recording the beginning and
end of a context (and the associated key), we can unam-
biguously assign log entries to contexts.

Fortunately, there are only a few points where a con-
text can begin (all located in entry.S), and a roughly

equal number of places that contexts can end. The exit
system call is an exceptional case since it never returns,
therefore, the schedule() call in do_exit() is also
identified as a context exit point. To generate this infor-
mation at run time, the context filter inserts breakpoint
instructions into the (memory-image of the) kernel at all
entry and exit points. When a breakpoint is executed,
the context filter creates a log entry containing the con-
text key, and whether this is the beginning or end of a
context.

4.1.7 Performance

We did a simple performance check to determine the per-
formance degradation in the instrumented kernel. On
an unmodified Linux kernel, LMBench configured for a
“fast benchmark” took 3 minutes and 4 seconds to run.
The instrumented kernel took 3 minutes and 24 seconds
to run the same benchmark for a degradation of slightly
over 10%. We believe that this overhead is quite accept-
able for such analyses. In this test, as in the results col-
lection described above, we sample 1 out of 20 system
calls. The reason for this is to keep the log growth rate
lower than the disk throughput rate. Since these bench-
marks perform the same system calls many times, we
did not notice that we “lost” any security-relevant infor-
mation. If necessary, a policy for determining when to
drop a log entry can be devised.

4.2 Log Analysis

We have also built a tool that enables log analysis for
identifying sensitivities in authorization requirements as
described in Section 3.1. The tool enables specifica-
tion of rules for extracting the desired log entries, called
log filtering rules, and computes the authorization sen-
sitivities given the extracted entries. We can generate
two types of displays for sensitivities: (1) authorization
graphs that show the sensitives between each authoriza-
tion and controlled operation and (2) sensitivity class
lists that show the aggregation of controlled operations
by authorizations and sensitivity attribute.

While the analysis tool enables flexible analysis, we
have found that an optimistic approach is the easiest to
manage. That is, we write rules to identify sensitivities
at the highest level attribute, system call. If all the con-
trolled operations in the system call execution have the
same authorizations (i.e., are system call sensitive), then
we only have to verify that the authorizations are cor-
rect. If not, we examine whether system call inputs are
responsible for the sensitivity. Analysis for system call
input sensitivity is somewhat ad hoc, since there are a

large number of possible inputs, but very few have an
effect on authorizations. Authorization graphs are use-
ful for this task because they give an overall view of the
authorization status. After tuning the log filtering rules
to handle system call input sensitivities, we then gener-
ate partitions (i.e., sensitivity class lists) for controlled
operations to do the remaining sensitivity analysis.

4.2.1 Log Filtering Rules

The log filtering tool takes an execution log and set of
filtering rules as input, and outputs the log entries that
match the rules. The rule language is currently rather
low-level, as we have been concerned more with demon-
strating feasibility rather than creating a nice high-level
rule language. However, we demonstrate the rule lan-
guage to give a sense of the types of analyses that are
possible.

A rule base is defined by a set of rules that define match-
ing requirements. A rule consists of: (1) an index; (2)
a dependency specification; (3) a set of statements. The
index identifies the rule within the rule base. The depen-
dency states relationships to other rules by index. We
can state that a rule can only match entries that are also
matched by another rule,

��� ��� �
, where

�
is the index of

the other rule. Also, we can state that a dependency that
a rule does not include entries matched by another rule
�
, as
������ �

. Lastly, the statements describe the matching
conditions for entries. These are specified by identifying
the entry type (id type), and then matching type-specific
attributes. Entry types include: events (CONTEXT), au-
thorizations (SEC_CHK), functions (FUNC), and con-
trolled operations (CNTL_OP).

Figure 4 shows some example rules. The path sensi-
tive rule finds all authorizations in the context of a read
system call when a controlled operation at the specified
address is run. The first line collects all context entries
for a read system call (i.e., the start of the system call).
The second line collects all entries of controlled opera-
tions at the specified location. The (D,1) means that
this statement is dependent on statement 1, so only en-
tries within the read system call context will be col-
lected. The third line collects all authorizations within
the read system call context. In this case, each exe-
cution of this controlled operation should have the same
authorizations or there is a violation of the path insensi-
tivity invariant that prohibits a controlled operation from
having multiple sets of legal authorizations.

The function sensitive rule collects all authorizations and
controlled operations of “read inode member i flock”
within a read system call context. The specification

Path sensitive rule for operation at

0xc014f046

1 = (+,id type,CONTEXT) (+,di cfm eax,READ)

2 (D,1) = (+,id type,CNTL OP)

(+,di dfm ip,0xc014f046)

3 (D,1) = (+,id type,SEC CHK)

Member sensitive rule for inode member

i flock read access

1 = (+,id type,CONTEXT) (+,di cfm eax,READ)

2 (D,1) = (+,id type,CNTL OP)

(+,di dfm class,OT INODE)

(+,di dfm member,i flock)

(+,di dfm access,OP READ)

3 (D,1) = (+,id type,SEC CHK)

Input sensitive rule for open for read ac-

cess, but not path walk

1 = (+,id type,CONTEXT) (+,di cfm eax,OPEN)

(+,co ecx,RDONLY)

2 (D,1) = (+,id type,FUNC)

(+,di ffm ip,path walk)

3 (D,1)(N,2) = (+,ALL,0,0)

Figure 4: Example authorization sensitivity filtering
rules

of (D,1) on the second line means that all controlled
operations of this type within a read system call will
be extracted. If the authorizations associated with this
controlled operation are not the same, then the member
access is sensitive to its location.

The system call input sensitive rule collects all the log
entries in each open system call for read-only access.
The authorizations of the open system call depend on
the access for which the file is opened, so open is sys-
tem call input sensitive. Further, we also show a nega-
tive filter in this rule that eliminates all entries within the
scope of the path_walk function. The authorizations
for file lookup, including any link traversal, can be sep-
arated from those for authorizing the open of this file.
Such filtering capabilities enable us to choose our anal-
ysis scope flexibly.

4.2.2 Graphical Log Analysis

The analysis tool can also generate graphs that enable
visual analysis of the filtered data. Using these graphs,
it is possible to verify the authorization sensitivities by
inspection, as we will describe below. An authoriza-
tion graph consists of two sets of nodes in a filtered log:

SCN_FILE_FCNTL(0x400)(sys_fcntl64)

SCN_FILE_FCNTL(0x8)(sys_fcntl64)

SCN_FILE_SET_FOWNER(0x0)(do_fcntl)

(lease_modify, locks.c, 1198) (OT_FILE, 480, read)

(lease_modify, locks.c, 1199) (OT_FILE, 480, read)

(lease_modify, locks.c, 1200) (OT_FILE, 480, read)

(lease_modify, locks.c, 1201) (OT_FILE, 480, read)

(fput, file_table.c, 109) (OT_FILE, 64, read)

(fput, file_table.c, 111) (OT_FILE, 96, read)

(do_fcntl, fcntl.c, 332) (OT_FILE, 480, read)

(do_fcntl, fcntl.c, 369) (OT_FILE, 480, read)

(do_fcntl, fcntl.c, 369) (OT_FILE, 480, read)

Figure 5: Authorization graph for fcntl calls
for F SETLEASE (controlled operations in
lease modify and fput) and F SETOWN (con-
trolled operations in do fcntl and put). When
command is F SETOWN both FCNTL and SET OWNER
are authorized, but only FCNTL is authorized for
F SETLEASE.

(1) the controlled operations and (2) the authorizations
made. Edges are drawn from each controlled operation
to the authorizations that have been satisfied when it is
run. There are two types of edges: (1) always edges
mean that the associated authorization is satisfied every
time the controlled operation is run and (2) sometimes
edges mean that the associated authorization is satisfied
at least once when the controlled operation is run.

An always edge (as well as the lack of an edge) means
that the authorization is not sensitive to lower-level at-
tributes. A sometimes edge indicates a sensitivity. The
lack of an edge where an edge would be expected would
indicate a missing authorization.

Figure 5 shows an example authorization graph.
The example graph is displayed using the daVinci
graph visualization tool 3 [14]. In this case, the
authorization graph shows the controlled operations
and the authorizations for two types of fcntl

3daVinci is only a temporary solution. It has been taken out of the
freeware domain, so we are planning on switching to another graph
visualization tool before any final publication. Therefore, these graphs
are included to show what an authorization graph looks like, and we
will include graphs based on another tool at publication.

calls: (1) fcntl(fd, F_SETOWN, pid_owner)
and (2) fcntl(fd,F_SETLEASE,F_UNLCK). The
controlled operation nodes include location (function
name, file name, line number) and operation (data type,
member offset, operation type) information. The autho-
rization nodes include the authorization, command, and
function containing the authorization. Always edges are
indicated by a solid line and sometimes edges are indi-
cated by a dashed line. If no edge exists between a con-
trolled operation and an authorization, then that autho-
rization is never performed for that operation.

By visually analyzing this graph we can identify whether
the invariants described in Section 3.2.1 hold for the cur-
rent graph or not. In this case, the sometimes relation be-
tween fput and its authorizations may indicate a prob-
lem. Also, the fact that different sets of authorizations
are made for the same field (member offset 480 which
happens to be f_owner) may be indicative of a prob-
lem. Manual investigation is then required to identify
whether any inconsistency is due to an error or a legiti-
mate sensitivity.

4.2.3 Sensitivity Class Lists

The sensitivity class lists show the partition of the con-
trolled operations by sensitivity level in which authoriza-
tions are consistent and the authorization requirements
at those levels. This partition is computed using the
algorithm described in Section 3.2.2. The sensitivity
class lists provide a different view than the authoriza-
tion graphs of the same authorization results. Whereas
an authorization graph shows the relationship between
each individual controlled operation and authorization,
the sensitivity class lists show the collection of con-
trolled operations with the same authorization require-
ments. The sensitivity class lists makes more obvious
the number of different authorization cases that exist in
the data. Also, the sensitivity class lists are easier to use
in regression testing since they are textual [8].

Figure 6 shows the partition of controlled operations for
the read system call. This partition is used as the ex-
ample in Section 3.2. As described there, the sensitiv-
ity class list shows two classes that are sensitive at the
datatype level: one for tasks and superblocks with no
authorizations and one for files with read authorization.
Then, the sensitivity class list has two classes that are
object-sensitive: one for the inode that is read autho-
rized and one for its directory that has no authorizations.
Ultimately, we expect to annotate current task, file’s di-
rectory, and file’s superblock as read authorized which
will result in all controlled operations having the same

DFN d 0 FILE f dentry -1

DFN d 0 FILE f dentry 1

DFN d 0 FILE f vfsmnt -1

DFN d 0 FILE f op -1

...

SFN(ALWAYS) d 0 FILE READ

DFN d 1 SUPERBLOCK s blocksize -1

DFN d 1 SUPERBLOCK s type -1

...

DFN d 1 TASK state -1

DFN d 1 TASK state 0

DFN d 1 TASK flags -1

...

SFN() NONE

DFN o 0 INODE i blocks -1

DFN o 0 INODE i blocks 1

DFN o 0 INODE i version -1

...

SFN(ALWAYS) o 0 FILE READ

DFN o 1 INODE i dnotify mask -1

SFN() NONE

Figure 6: Sensitivity class list for read system call with
the following fields: (1) entry type (DFN or SFN); (2)
sensitivity (� for datatype and � for object); (3) class
number; (4) datatype; (5) member; (6) access identifier.

fcntl for F SETOWN with just the field

f owner

1 = (+,id type,CONTEXT) (+,di cfm eax,fcntl)

(+,co ecx,F SETOWN)

2 (D,1) = (+,id type,SEC CHK)

3 (D,1) = (+,id type,CNTL OP)

(+,di dfm member,f owner)

fcntl for F SETLEASE with just the field

f owner

4 = (+,id type,CONTEXT) (+,di cfm eax,fcntl)

(+,co ecx,F SETLEASE) (+,co edx,F UNLCK)

5 (D,4) = (+,id type,SEC CHK)

6 (D,4) = (+,id type,CNTL OP)

(+,di dfm member,f owner)

Figure 7: Rules for finding the f owner anomaly.

authorization (i.e., being system call sensitive).

Most of our experience is with the file system although
we have also examined task authorizations. Most objects
have either one or no authorizations, so the sensitivity
class lists are not too complex. The system call unlink
is one of the few where an object has multiple authoriza-
tions. Using sensitivity class lists it is easy to see that
the directory inode has three authorizations (exec, write,
unlink dir) and the inode being removed has one (un-
link file) because they are object-sensitive and placed in
different classes. Thus, for the file system and the task
operations we have examined, authorization graphs and
sensitivity class lists have been sufficient to verify au-
thorizations.

4.2.4 Sample Analysis

We briefly demonstrate a sample analysis for an anomaly
that we found. While the approach to finding anomalies
was developed concurrently to actually finding anoma-
lies, we used roughly the same approach as described
although some of it was not automated. This anomaly
occurs in the fcntl system call. The sensitivity class
list for fcntl shows that its authorizations are system
call input sensitive. The values of the cmd and arg pa-
rameters to fcntl can change the authorizations that
are required. We use authorization graphs to look at the
authorizations under the different inputs since it is eas-
ier to see coarse-grained problems – lots of sometimes
edges occur.

Figure 7 contains two sets of rules: (1) one
which collects all authorizations and controlled op-
erations of the file structure field f_owner in

a fcntl(fd, F_SETOWN, pid_owner) system
call and (2) one which collects all authorizations
and controlled operations on the field f_owner in
a fcntl(fd, F_SETLEASE, F_UNLCK) system
call. Note that this is same rule (less the fput controlled
operations) used to generate the graph in Figure 5.

In Figure 5, we see that some of the controlled opera-
tions are authorized for the fcntl and set_fowner
authorizations and some are only authorized for fcntl.
This is despite the fact that the controlled operations ac-
cess the same field, f_owner (offset 480). Given this
anomaly, we examined the kernel source to determine
whether an exploit of this anomaly is possible. We dis-
cuss the results of this analysis in the next section.

4.3 Results

We applied the December 10, 2001 LSM patch to the
Linux 2.4.16 source and compiled the kernel using our
modified version of GCC-3.0 4. To create an exe-
cution log to analyze, we executed in parallel three
instances of LMBench, the SAINT vulnerability tool
(www.wwdsi.com/saint/), a kernel compile, some reg-
ular usage, and some test programs that we wrote as we
became suspicious of anomalies. Since the effectiveness
of runtime analysis depends on running enough code, the
development of benchmarks that cover the enough of the
interesting paths must be developed. For example, LM-
Bench only runs about 20% of the kernel code. Also,
our static analysis tool finds some other potential errors
for which benchmarks should be written to determine if
they can be exploited.

We have instrumented the kernel to collect controlled
operations on the major kernel data structures: files, in-
odes, superblocks, tasks, sockets, and skbuffs. Thusfar,
we have only done a detailed analysis on the file system
authorizations, and an initial analysis on task authoriza-
tions. Since the file system is fairly well-understood,
we did not expect a large number of anomalies, but we
found some nonetheless.

� Member Sensitive (multiple system calls): We
found that there is no authorization hook in the
function setgroups16, but that we can reset the
task’s group set. An authorization protects this op-
eration in setgroups. This hook was missed be-
cause these backwards ABI-compatible 16-bit task
operations, such as setuid16 and setchown16

4Keeping up with kernel version is not a great deal of work. We
have the system running on Linux 2.4.18 now, and the only thing we
had to do was update our authorization filter to the current LSM inter-
face.

usually convert their 16-bit values to 32-bit values
and call the current versions that do contain autho-
rizations. However, since setgroups16 sets an
array, it is easier not to convert the array, so the
current version (that contains a hook) is not called.
Note that there is no setgroups16 call in the
current version of libc, so we had to write an as-
sembler program to perform this exploit.

� Member Sensitive (single system call): The
f_owner.pid member of struct file
tells the kernel which process to send signals
to regarding IO on this file. Setting this field is
authorized by security_ops->file_ops-
>set_fowner if the user tries to set it directly
via fcntl(fd, F_SETOWN, pid_owner).
However, if a user removes a lease from a file
via fcntl(fd, F_SETLEASE, F_UNLCK),
the owner is set to zero without the authoriza-
tion being performed. Furthermore, a process
can set the owner of a Universal TUN device
(drivers/net/tun.c) to itself without the authoriza-
tion being performed. To achieve this, the process
calls ioctl(fd, F_SETFL, FASYNC) on an
open, attached, TUN device.

� Member Sensitive (single system call): Dur-
ing our investigation of the sensitivity of
filp.f_owner described above, we we
found that access to filp.f_owner.signum
(the signal that should be sent upon IO com-
pletion) can be set without the authorization via
fcntl(fd, F_SETSIG, sig).

� System Call Sensitive (missing authorization):
A security_ops->file_ops->read()au-
thorization is performed at the beginning of every
read system call. This authorization is required
since the authorization performed when the file was
originally opened may no longer be valid, due to
the process changing its security attributes, the file
changing its security attributes, the file being used
by a new process, or a change in the security policy.
This authorization, however, is not performed dur-
ing a page-fault on a memory-mapped file. There-
fore, once a process has memory-mapped a file it
can continue to read the file regardless of changes
to security attributes or security policy.

We engaged in a discussion with that resulted in a patch
to all the anomalies, except the one for reading memory-
mapped files. The community decided that a file that re-
quires read authorization must not be memory-mapped.
We are encouraged that we have been able to help find
and fix hook placement problems. We have found that

the analysis approach can document the current state of
an LSM kernel, so future LSM kernels can be regression
tested. Also, we are developing an approach that takes
into account both the static and runtime analyses. Lastly,
we are also encouraged that our initial assumption that
LSM is mostly correct appears valid, at least for the file
system.

5 Conclusions

In this paper, we presented tools for assisting the Linux
community in verifying the correctness of the Linux Se-
curity Modules (LSM) framework. The LSM framework
consists of a set of authorization hooks placed inside the
kernel, so it is more difficult to identify the complete
mediation points. We leveraged the fact that most of the
LSM hooks are properly placed to identify misplaced
hooks. We used structure member operations on ma-
jor kernel data structures as the mediation interface and
collected the authorizations on these operations. By ana-
lyzing the output of a runtime logging tool, we identified
the operations whose authorizations were inconsistent.
We have analyzed the file system and some task opera-
tions and found some anomalies that could have been ex-
ploited. Working with the LSM community, these prob-
lems have since been fixed. For example, we found that
some variants of fcntl enabled operations to be per-
formed that were authorized in other cases. Ultimately,
we found that runtime analysis is useful for verifying
systems where a inconsistencies from the norm are likely
to be errors. Further development of benchmarks for
runtime analysis remains an challenge.

References

[1] K. Ashcraft and D. Engler. Using programmer-written
compiler extensions to catch security holes. In Proceed-
ings of the IEEE Symposium on Security and Privacy
2002, May 2002.

[2] M. Bishop and M. Dilger. Checking for race conditions in
file accesses. Computing Systems, 9(2):131–152, 1996.

[3] A. Edwards, T. Jaeger, and X. Zhang. Verifying autho-
rization hook placement for the Linux Security Modules
framework. Technical Report 22254, IBM, December
2001.

[4] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the Fourth Sym-
posium on Operation System Design and Implementation
(OSDI), October 2000.

[5] J. Foster, M. Fahndrich, and A. Aiken. A theory of type
qualifiers. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’99),
pages 192–203, May 1999.

[6] P. Gutmann. The design and verification
of a cryptographic security architecture, Au-
gust 2000. Submitted thesis. Available at
www.cs.auckland.ac.nz/ pgut001/pubs/thesis.html.

[7] ITSEC. Common Criteria for Information Security
Technology Evaluation. ITSEC, 1998. Available at
www.commoncriteria.org.

[8] T. Jaeger, X. Zhang, and A. Edwards. Maintaining the
correctness of the Linux Security Modules framework. In
Proceedings of the 2002 Ottawa Linux Symposium, 2002.
To appear.

[9] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In Proceedings of the
Tenth USENIX Security Symposium, pages 177–190,
2001.

[10] NCSC. Trusted Computer Security Evaluation Criteria.
National Computer Security Center, 1985. DoD 5200.28-
STD, also known as the Orange Book.

[11] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Proceedings of
the 29th ACM Symposium on Principles of Programming
Languages (POPL02), January 2002.

[12] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. De-
tecting format string vulnerabilities with type qualifiers.
In Proceedings of the Tenth USENIX Security Sympo-
sium, pages 201–216, 2001.

[13] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer over-
run vulnerabilities. In Proceedings of Network and Dis-
tributed System Security Symposium (NDSS 2000), 2000.

[14] M. Werner. The graph visualization system
daVinci 2.1. Available at http://www.informatik.uni-
bremen.de/ davinci.

[15] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for
static analysis of authorization hook placement. In Pro-
ceedings of the 11th USENIX Security Symposium, 2002.
To appear.

