
GRIFFIN: Guarding Control Flows Using Intel Processor Trace

Xinyang Ge
Microsoft Research
xing@microsoft.com

Weidong Cui
Microsoft Research

wdcui@microsoft.com

Trent Jaeger
The Pennsylvania State University

tjaeger@cse.psu.edu

Abstract
Researchers are actively exploring techniques to enforce
control-flow integrity (CFI), which restricts program exe-
cution to a predefined set of targets for each indirect con-
trol transfer to prevent code-reuse attacks. While hardware-
assisted CFI enforcement may have the potential for ad-
vantages in performance and flexibility over software in-
strumentation, current hardware-assisted defenses are either
incomplete (i.e., do not enforce all control transfers) or less
efficient in comparison. We find that the recent introduction
of hardware features to log complete control-flow traces,
such as Intel Processor Trace (PT), provides an opportunity
to explore how efficient and flexible a hardware-assisted CFI
enforcement system may become. While Intel PT was de-
signed to aid in offline debugging and failure diagnosis, we
explore its effectiveness for online CFI enforcement over un-
modified binaries by designing a parallelized method for en-
forcing various types of CFI policies. We have implemented
a prototype called GRIFFIN in the Linux 4.2 kernel that en-
ables complete CFI enforcement over a variety of software,
including the Firefox browser and its jitted code. Our ex-
periments show that GRIFFIN can enforce fine-grained CFI
policies with shadow stack as recommended by researchers
at a performance that is comparable to software-only instru-
mentation techniques. In addition, we find that alternative
logging approaches yield significant performance improve-
ments for trace processing, identifying opportunities for fur-
ther hardware assistance.
CCS Concepts •Security and privacy→ Operating sys-
tems security
Keywords Intel Processor Trace, Control-Flow Integrity

1. Introduction
Control-Flow Integrity [7] (CFI) is a runtime security de-
fense that limits a program’s indirect control transfers to a

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17 April 08–12, 2017, Xi’an, China

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037716

specified control-flow graph (CFG). CFI defenses were iden-
tified as the foundation of defenses against code-reuse at-
tacks [41], as such attacks fundamentally aim to exploit com-
promised programs by executing adversary-chosen control
flows. While attacks are still possible even when restricting
program execution to a restrictive CFG [11], CFI can greatly
reduce the attack surface available to adversaries.

To date, researchers have focused on software-only im-
plementations of CFI. Such approaches can be divided into
three categories: compile-time instrumentation, static binary
instrumentation, and runtime instrumentation. The main ad-
vantage of compile-time instrumentation [9, 15, 19, 29, 32,
34, 36, 43, 46, 50] is that it has better performance than other
approaches. However, it has two main limitations. First, such
techniques can only instrument programs supported by that
compiler. Second, they “fix” the CFI defense for resultant
software, preventing systems from customizing their CFI de-
fenses at runtime (e.g., to tighten security or balance perfor-
mance). Static binary instrumentation [7, 45, 51, 53] could
instrument programs written in a variety of languages and
legacy binaries, but as yet cannot enforce as accurate CFGs
as compile-time, cannot apply some compile-time optimiza-
tions (e.g., safe stack [31]), and also fixes the instrumen-
tation. Runtime instrumentation [18, 40] has the flexibility
of turning the protection on and off, but the overhead is far
higher than for fixed instrumentation.

Hardware-assisted CFI enforcement avoids the limita-
tions above by using hardware-generated logs to check in-
direct control transfers. But current methods either fail to
provide a complete CFI defense or incur unacceptable over-
heads when applied completely. For example, researchers
have applied the Last Branch Record (LBR) [5, Sec. 17.4]
feature to enforce CFI defenses using its ability to store 8-16
control transfers [12, 37, 44] to improve performance. While
researchers have shown that LBR traces may be augmented
by heuristics [12, 37], others have shown that adversaries can
evade these heuristic defenses [10]. To achieve complete en-
forcement, researchers have explored using the Branch Trace
Store (BTS) [5, Sec. 17.4.5] to record control transfers [48]
and the Performance Monitoring Unit (PMU) [5, Chap. 18]
to trigger interrupts when the LBR fills [49]. Some have es-
timated that the BTS incurs a significant performance slow-

down (20x-40x) [44], and the PMU will trigger interrupts
after every 16 indirect control transfers.

In this paper, we explore the effectiveness of a CFI en-
forcement based on a new, commercially available hardware
feature called Processor Trace (PT) on Intel CPUs [5, Chap.
36]. Intel PT was designed to aid in debugging and failure
diagnosis by recording the minimal information necessary
to reconstruct complete control-flow traces. For instance, re-
searchers have previously developed offline techniques that
are able to diagnose complex failures using Intel PT [30].
Given Intel PT’s ability to record control flow traces, we in-
vestigate using Intel PT for online enforcement of CFI poli-
cies. We design and implement GRIFFIN, an operating sys-
tem mechanism that leverages the Intel PT feature to en-
force CFI policies over unmodified binaries. When a binary
is run on GRIFFIN, GRIFFIN restricts the binary’s execution
by comparing each indirect control transfer in the binary’s
execution trace captured using Intel PT to a CFI policy for
the binary. GRIFFIN may enforce CFI policies produced by
executing the binary program (e.g., shadow stack) or lever-
age CFI policies produced elsewhere. In addition, GRIFFIN
may change the CFI policies being enforced dynamically to
manage performance and/or customize enforcement.

Our goal is to build a high performance CFI enforcement
mechanism that is capable of enforcing a variety of CFI poli-
cies over unmodified binaries. Implementing online CFI en-
forcement using Intel PT to meet this goal presents several
challenges. Intel PT logs the information necessary to recon-
struct a complete control-flow trace, but leaves the recon-
struction of the trace to post-processing. To enforce some
CFI policies, we need to know the call sites executed at run-
time, but Intel PT does not record call sites, as they can be
inferred from other information. Thus, we must disassemble
the binary and interpret the logged trace buffers to recover
the program’s control-flow trace necessary for CFI enforce-
ment. We explore design choices that optimize the efficiency
of trace processing and CFI enforcement. First, we design a
data structure for fast lookup of basic block information for
control-flow reconstruction that works efficiently for current
programs of all sizes. Second, GRIFFIN leverages idle cores
to run disassembly, trace processing, and CFI enforcement
in parallel. The GRIFFIN design carefully prevents the need
for synchronization delays among these parallel activities.
While sequential processing may be necessary for enforc-
ing some CFI policies, we retain the parallel processing of
trace buffers and only perform CFI checks that require trace
information from multiple buffers in a sequential manner.

We have implemented a prototype of GRIFFIN in the
Linux 4.2 kernel that controls the execution of unmodified,
user-space binaries and dynamically generated (i.e., jitted)
code. We show that GRIFFIN is capable of enforcing three
types of CFI policies, coarse-grained CFI, fine-grained CFI,
and stateful CFI (see Section 4), on both forward edges
(i.e., calls and jumps) and backward edges (i.e., returns).

This allows GRIFFIN to enforce restrictive CFI policies rec-
ommended by researchers [7, 11] and to balance security
with performance. GRIFFIN marks a significant improve-
ment in hardware-assisted CFI enforcement mechanisms by
providing complete and flexible CFI enforcement that per-
forms comparably to software-only instrumentation meth-
ods. When enforcing a fine-grained CFG on forward edges
and a shadow stack [7] on backward edges, GRIFFIN in-
curs an overhead of 11.9% on the SPECint benchmarks and
6.2% on SPECfp benchmarks, as compared to 11.6% and
6.0% overhead, respectively, for software-only shadow stack
enforcement alone [17]. Since we utilize memory and idle
core resources to achieve this performance, we evaluate the
impact of such resource usage. Our experiments show that
GRIFFIN’s memory usage depends mainly on the program’s
size and processing backlog and its performance degrades
gracefully with fewer cores.

Despite a highly-optimized GRIFFIN implementation that
achieves performance comparable to software-only instru-
mentation techniques, such performance is generally consid-
ered insufficient for widespread adoption. We propose two
modifications to Intel PT logging that have the potential to
improve performance and reduce memory usage for CFI en-
forcement on forward edges. First, by logging the indirect
call sites as well as indirect call targets, GRIFFIN can en-
force fine-grained CFI policies without performing control-
flow reconstruction, resulting in a 90% improvement in trace
processing on average for SPEC benchmarks. We no longer
need to log the conditional branches for this approach, re-
sulting in a 60% reduction in trace size on average (although
some traces may increase in size slightly). However, this first
approach undermines our ability to enforce stateful CFI poli-
cies because we lack the information to reconstruct control
flows to determine states. We propose a second approach that
applies selective logging of conditional branches to collect
the control-flow information necessary to evaluate stateful
policies. For one stateful CFI policy [44], we find that the
trace size for the worst case program increases from 0.9%
of its original trace size after the first modification to 1.4%
after enabling selective logging.

In particular, we make the following contributions:

• Repurpose commercially available Intel PT hardware for
an online CFI defense to protect unmodified, user-space
binaries, including jitted code.

• An operating system CFI mechanism for enforcing coarse-
grained policies, fine-grained policies, and stateful poli-
cies, enabling enforcement of recommended CFI policies
and balancing security and performance.

• A GRIFFIN implementation on Linux, finding that per-
formance is comparable to software instrumentation for
SPEC CPU2006 benchmarks.

• A study of two alternative logging approaches that im-
prove trace processing performance for fine-grained and
stateful CFI enforcement.

Packet Size Usage
PGE ≤8 Packet Generation Enable packets provide

the IP at which the tracing begins
PGD ≤8 Packet Generation Disable packets mark

the end of tracing
TNT 1 Taken/Not-Taken packets indicate the di-

rection of conditional branches
TIP ≤8 Target IP packets provide the target for

some control-flow transfers
FUP ≤8 Flow Update packets provide the source ad-

dress for asynchronous events
PSB 16 Packet Stream Boundary packets are unique

patterns in the output log to serve as sync
points for software decoders

Table 1: Trace packets and their usage in Intel PT. For
brevity, we omit the packets that are not related to this work.

2. Intel Processor Trace
In this section, we provide the background on Intel Proces-
sor Trace (PT) [5, Chap. 36]. Intel PT is a recent hardware
feature that enables the recording of complete control flows
with low overhead. When properly configured, Intel PT gen-
erates trace packets that encode control-flow information
such as branch targets and branch taken indications. A soft-
ware decoder can reconstruct the exact control flow when
combining the recorded packets with program binaries.

To understand how Intel PT enables control-flow tracing,
we show the main types of its generated data packets in Ta-
ble 1. Intel PT records the beginning and the end of trac-
ing through PGE and PGD packets, respectively. Throughout
the program execution, Intel PT generates TNT packets to log
whether conditional branches are taken (e.g., jcc) and TIP

packets to log the targets of indirect branches (e.g., call*
and ret). With such information and the disassembled bi-
nary, a software decoder can reconstruct the complete con-
trol flow. It is worth mentioning that direct branches (e.g.,
call) do not trigger any packets because of their determin-
istic effects on control flows.

Intel PT employs various techniques to minimize the size
of generated packets. For instance, TNT uses one bit to indi-
cate the direction of a conditional branch, and a one-byte TNT
packet can log up to six executed branches. Additionally,
Intel PT compresses a return into a bit in the TNT if the re-
turn target can be determined from a previous matching call.
To reduce the size of TIP packets, Intel PT compresses the
target address if the upper address bytes match the previous
address logged, suppressing up to six bytes. All these fea-
tures require a stateful processing of the logged trace pack-
ets, which presents a challenge for parallel processing.

Intel PT outputs packets directly to physical memory to
avoid the cost of address translation. For flexibility, it can
be configured to use multiple buffers that are not contiguous
in the physical address space through a table-like data struc-
ture. An interrupt can be triggered when a buffer becomes

full, but the interrupt is not precise. Writes to the next buffer
may have occurred when the interrupt is signaled. So one
must ensure that all writes are accounted for.

Intel PT supports both user-level and kernel-level tracing
of selected processes and/or threads. In GRIFFIN, we employ
user-level tracing of threads of selected processes.

3. Threat Model
When designing GRIFFIN, we focus on defending against
user-space code-reuse attacks based on the following threat
model. We run GRIFFIN in the kernel. We assume adver-
saries have no control over the operating system kernel,
which prevents such adversaries from directly tampering
with GRIFFIN. We assume that each protected program is
benign but may contain memory safety errors (e.g., buffer
overflow and/or use-after-free bugs) that would enable ad-
versaries to write to arbitrary memory locations within the
running program’s address space. In particular, adversaries
can corrupt control data (e.g., return addresses on the stack
or function pointers on the heap) to subvert the program’s ex-
pected control flow to launch code-reuse attacks. We assume
the protected programs apply W⊕X defense [8, 38]. That is,
programs are prevented from modifying their own code or
mapping a code page as both writable and executable under
legitimate execution.

4. Design Overview
In this section, we provide an overview of GRIFFIN’s design.
GRIFFIN is a hardware-assisted CFI enforcement system for
defending against user-space code-reuse attacks. GRIFFIN
leverages Intel PT to record the complete user-level execu-
tion of a monitored program and performs online control-
flow checks based on the recorded execution trace. GRIFFIN
checks indirect control transfers both for forward edges (i.e.,
indirect calls and jumps) and backward edges (i.e., returns).
The GRIFFIN system design focuses on enforcement, assum-
ing that CFI policies are given.

We design GRIFFIN to support multiple types of CFI poli-
cies to enable flexible tradeoffs between security and perfor-
mance. The simplest but least secure CFI policies GRIFFIN
supports are the coarse-grained policies. Under this class
of policies, GRIFFIN checks only if the destination of an
indirect control transfer is legitimate (i.e., is a legal target
of any call or return). GRIFFIN also supports fine-grained
policies which are more secure than the coarse-grained poli-
cies because GRIFFIN checks whether the destination is a le-
gal target for the source for each source-destination pair. To
achieve the best security offered by CFI, GRIFFIN supports
stateful policies. Under such policies, GRIFFIN addition-
ally uses execution state to restrict forward and/or backward
edges. For example, we show how GRIFFIN enforces a state-
ful shadow stack [7] policy on backward edges, which re-
stricts return targets to their corresponding call sites. In Sec-
tion 7, we evaluate the performance of a type of policy we

call the combination policy. It enforces a fine-grained policy
on forward edges and a shadow stack on backward edges,
as recommended by researchers [7, 11]. Stateful forward-
edge policies are a relatively new area of research. We de-
sign GRIFFIN to enforce a proposal to restrict indirect call
sites to different sets of legal targets depending on the pro-
gram’s runtime control flow [44].

The goal of the GRIFFIN design is to optimize the perfor-
mance of CFI checking when leveraging Intel PT traces. To
do so, GRIFFIN performs both non-blocking and blocking
control-flow checks to achieve better performance without
sacrificing security. Non-blocking checks are triggered when
an Intel PT trace buffer becomes full. During such checks,
the program continues to execute. Blocking checks are done
when the monitored program makes a security-sensitive sys-
tem call. Since such a call may impact the integrity of the
system, GRIFFIN intercepts those system calls and performs
checks of all the control transfers that have not yet been
checked before passing the calls to the kernel.

Today’s computers rarely run at 100% CPU utilization
on all cores. GRIFFIN leverages idle cores on a multi-
core system for security checks by having multiple worker
threads perform control-flow checks simultaneously. To en-
able worker threads process Intel PT trace buffers simulta-
neously, we force a Packet Stream Boundary (PSB) packet at
the beginning of each Intel PT trace buffer.

5. System Design
In this section, we present GRIFFIN’s design in detail. The
design is motivated by the types of policies GRIFFIN can
enforce. We begin with the simplest policies, the coarse-
grained policies, then describe the extensions necessary to
support fine-grained and stateful policies. We focus on the
processing of a single user thread without jitted code. We
will discuss the implementation details for multiple threads
and jitted code in Section 6.

5.1 Coarse-Grained Policies
To enforce coarse-grained policies, we do not need to re-
construct the control flow because the destinations of indi-
rect control transfers are given in TIP packets. To quickly
check if an indirect control transfer is legitimate, GRIFFIN
maps a page at a constant offset from each code page to
store whether a code location is legitimate. We refer to it as
a coarse-grained policy page. The distance between a code
page and a policy page is a constant for fast lookup. We ex-
plain how this constant is chosen in Section 6.1. If a code
location is legitimate for indirect control transfers, then the
corresponding location on the policy page is set to 1; other-
wise, it is 0. To support dynamic libraries, GRIFFIN monitors
library loading in each monitored process. When a library
is loaded, GRIFFIN sets up a coarse-grained policy page for
each code page in the library. It is worth noting that we do
not need to disable return compression since a compressed

PGE A

End

TIP F

Trace Packets

A

B

C

D

E

Basic Blocks

jmp D

jcc B

jcc E

call *rax

F

ret

syscall

PGD 0

(1)

(2)

(3)

(4)TNT
Taken

Not Taken

Figure 1: Following control flows using trace packets.

return is guaranteed to be legitimate as it matches with its
corresponding call. The returns that are not compressed are
recorded with TIP packets.

5.2 Fine-Grained Policies
Unlike the support for coarse-grained policies, we encode
fine-grained policies as a bitwise matrix (referred to as the
policy matrix). Each row of this matrix corresponds to a
possible source for indirect control transfers, and each col-
umn corresponds to a possible destination for indirect con-
trol transfers. An entry in the matrix is set to 1 if the source-
destination pair is legitimate; otherwise, it is set to 0. The
matrix is stored at a constant virtual address for a monitored
process. We grow this matrix dynamically by adding rows
and columns when a library is loaded.

To enforce fine-grained CFI policies, we need to know
the source and destination of each indirect control trans-
fer. However, the source address is not directly available in
Intel PT’s trace. To recover it, we need to reconstruct the
control flow so that we know the source address when an
indirect control transfer occurs. Next, we first use an exam-
ple to explain how to reconstruct the control flow based on
Intel PT’s trace packets and program binaries. Then, we de-
scribe how we make the procedure efficient.

To reconstruct the control flow, we take as input Intel PT’s
trace packets and program binaries. The basic idea is to dis-
assemble the binary and follow the execution by tracking
the trace packets. We illustrate this process with an example
shown in Figure 1. The initial PGE packet identifies that the
execution begins at block A. Then, the direct jmp instruction
at the end of block A leads the control to block D. Note that
direct branches do not generate any trace packet due to their
deterministic effects. The first “Taken” bit in the TNT packet
indicates that the next conditional branch (i.e., the one at the
end of block D) is taken, thus the control is transferred to
block B. The conditional branch at the end of block B is not
taken according to the next entry (“Not Taken”) in the same

a code page 8 basic block pointer pages heap data structures

via predictable offset via pointer derefence

Figure 2: Relationship among basic blocks, pointers on the
basic block pointer pages, and their heap data structures.

TNT packet, and the control falls through to the next block C.
It ends with an indirect call to block F as logged by the TIP
packet. When a system call is invoked at the end of block
F, the trace is marked as disabled by a PGD packet since we
only trace user-level execution.

The process for reconstructing the control flow is straight-
forward, but the design challenge is how to make it effi-
cient in GRIFFIN’s online processing. Instructions, blocks, or
functions tend to execute many times during a program’s ex-
ecution. Disassembling the same instructions over and over
again is not efficient since we only need the information
about the basic blocks for control-flow reconstruction. The
key design question is how to store and look up such infor-
mation in an efficient way.

Previous researchers have proposed several approaches to
enable fast store and lookups. MCFI uses an array to store in-
formation for each code address [34]. However, in practice,
program code can be scattered in the address space (e.g., dy-
namic libraries), and MCFI leverages sandboxing techniques
to restrict the program to use the first 4GB memory region.
This requires modifying the system loader and potentially
undermines other defenses such as address space layout ran-
domization (ASLR). fastBT uses a simple hash table to map
an original basic block to the translated block and reports a
low conflict rate for SPEC benchmarks [39]. However, hash
conflicts are inevitable when the program binaries are large
(over 1MB). Furthermore, the hash table schema requires
heavyweight locking for certain operations (e.g., code un-
loading), which slows both store and lookup operations that
may happen in parallel.

To tackle these problems, we trade memory efficiency for
lookup performance. Specifically, for each basic block, we
allocate a heap data structure to store its information. Then,
we allocate eight pages at predictable offsets from each code
page to store pointers to their heap data structures. We refer
to such pages as the basic block pointer pages. We use eight
basic block pointer pages because every byte in the code
page can lead a basic block and the pointer to its heap data
structures takes eight bytes. We show the conceptual layout
in Figure 2 and explain how we pick the offset in Section 6.1.

When a worker thread looks up the information of a basic
block, it reads the pointer from the basic block pointer page.
If the pointer is NULL, then the basic block has not been dis-
assembled yet. In this case, the worker thread disassembles

the block, allocates a heap data structure to store the dis-
assembled information, and updates the basic block pointer
page with the new pointer. Since multiple worker threads
may perform read and write to the same pointer on a basic
block pointer page, we use the compare-and-swap primi-
tive to make sure the pointer write is atomic and occurs only
when the present pointer is NULL.

In a basic block’s heap data structure, we also store a row
and column index if it may be the source and/or destina-
tion of an indirect control transfer. This enables GRIFFIN to
quickly locate an entry in the policy matrix.

5.3 Stateful Policies
A stateful policy constrains the targets of indirect control
transfers based on the program execution state (e.g., a call
stack). Consequently, to enforce the stateful policy, we need
to sequentially process the control-flow trace. This is seem-
ingly in conflict with the goal of parallel processing. A key
observation is that most computation in GRIFFIN is on pars-
ing Intel PT trace buffers and reconstructing the control flow.
The amount of time spent on checking CFI policies is actu-
ally small. This observation motivates us to split our trace
processing into two phases: the parallel phase and the se-
quential phase. In the parallel phase, multiple trace buffers
of a single user thread can be processed by multiple worker
threads simultaneously. For shadow stack enforcement, the
output of each worker thread is a list of calls and returns en-
countered in a trace buffer. In the sequential phase, the list of
calls and returns is processed in the order of execution. This
two-phase design provides the desired in-order processing
while keeping GRIFFIN highly parallelized.

To enforce the shadow stack check on returns (i.e., back-
ward edges), we simply check if a return matches the call
on the top of the call stack. Exceptional cases in the shadow
stack enforcement are described in Section 6.5. To enforce
stateful checks on indirect calls (i.e., forward edges), we
adapt the design for fine-grained policies with two main
changes. First, we extend the policy matrix to store a stateful
policy. Specifically, we allocate additional rows in the ma-
trix for sources that have multiple states to store acceptable
destinations. Each new row is associated with a source and
one of its states. Second, we store the row indices in heap
data structure of the source for fast lookup.

6. Implementation
We implemented a prototype of GRIFFIN on Debian 8 with
a 64-bit 4.2 Linux kernel running on an Intel i7-6700K
quad-core processor (a 6th-generation Skylake processor).
To implement online disassembling, we ported an open-
source disassembling library for x86 called distorm [16]
(12,497 SLoC). We made a few changes in distorm, such as
adding support for Intel TSX instruction set. We also merged
our code for TSX support into the mainstream version 3.3
of distorm. When disassembling a binary, we leverage MODE

128TB

0TB

8TB

executable

library

16TB

coarse-grained policy pages (executable)

coarse-grained policy pages (library)

basic block pointer pages (executable)

basic block pointer pages (library)

80TB policy matrix

72TB
basic block pointer pages (executable)

basic block pointer pages (library)

8 basic block pointer
pages per code page

coarse-grained policy pages (library)

wraparound

end of
userspace

Figure 3: The user-level address space layout in GRIFFIN.

packets in an Intel PT trace to decide if it is x86 or x86-64.
This allows GRIFFIN to support 32-bit programs running on
a 64-bit kernel. Excluding the distorm code, our prototype
consists of 1,625 SLoC in C.

In our prototype, we leverage prior work to iden-
tify the set of security-sensitive system calls [12, 44]:
mmap, mremap, remap file pages, mprotect, execve,
execveat, sendmsg, sendmmsg, sendto, and write. This
list is motivated by the observation that many exploits dis-
able DEP to run injected code after hijacking the control.
The last four calls are used to confine network daemons from
sending information after being compromised. The list is
configurable and can be extended to include other system
calls. Below, we describe the implementation choices we
made to enable GRIFFIN to support multiple, multi-threaded
processes, including jitted code, for the binaries we ran.

6.1 Memory Management
GRIFFIN runs inside the Linux kernel. When it parses the
trace buffers and performs control-flow checks for a moni-
tored process, it runs in that process’s context. We use both
kernel and user memory pages in GRIFFIN. We use kernel
pages for two purposes. First, the buffers given to Intel PT
for tracing are kernel pages. Second, the heap data struc-
tures for storing basic block information are also allocated
from kernel memory.

We store the coarse-grained policy pages, the basic block
pointer pages, and the policy matrix in the user-level address
space. The motivation here is that these pages are so fre-
quently accessed that a fast lookup mechanism is the key
to GRIFFIN’s runtime efficiency. Therefore, we map these
pages either at some constant offset from the corresponding

code page (i.e., the coarse-grained policy pages and the ba-
sic block pointer pages), or at a fixed location (i.e., policy
matrix). The user-level address space is private to each pro-
cess, enabling GRIFFIN to use the same offset and the fixed
location for different processes.

To store these pages in the user-level address space, we
use the memory layout as shown in Figure 3. Note that the
Linux kernel currently locates the main executable of a pro-
cess at the bottom of the user-level address space, and lo-
cates other libraries at the top. The goal is then to find a
way to map these pages so that no two pages would over-
lap each other. Conceptually we divide the 128TB user-
level address space into 16 identical ranges of 8TB. We
choose the constant offset to be 8TB. So, for each code
page, we map its coarse-grained policy page and 8 ba-
sic block pointer pages in the subsequent 9 ranges. For
libraries, we let the address of these pages wrap around
the user-level address space as shown in Figure 3. Thus,
for a basic block at addr, we store its basic block pointer
at ((addr&∼0x7)+((addr&0x7)+2)*8TB)&(128TB-1).
One concern is that the coarse-grained policy page and the
basic block pointer pages of the executable could overlap
those of a library. Fortunately, the executable and the li-
braries are mapped at different portions of a range, hence
those pages will not overlap. It is worth noting that the
coarse-grained policy pages and the basic block pointer
pages are position-independent. This allows us to share them
between monitored processes. We only need one physical
copy for each binary, and they are lazily populated when a
code page is accessed.

We store the policy matrix at 80TB. We map a 216 × 216

bitwise matrix at this location. The matrix uses up to 512MB
of the process’s virtual address space but is lazily populated
when dynamic libraries are loaded.

To prevent the monitored program from modifying these
user-level memory pages, we map them as read-only user
pages in our current prototype. To enable our kernel worker
threads to write to these pages without triggering page faults,
we set the AC bit in the EFLAGS register to override the
SMAP protection, and clear the WP bit in the CR0 register.
This enables memory writes to read-only pages from the
kernel. We acknowledge that a more principled approach is
to map these pages as supervisor pages in the user address
space. This requires modification to the memory manager
and the page tables. We leave it to future work.

6.2 Context Switch
In GRIFFIN, we trace each thread separately. This requires
changing the Intel PT configuration state during context
switches. We follow the suggestion made in the Intel man-
ual [5, Sec. 36.3.5.2] to use XSAVES and XRSTORS instruc-
tions to save and restore the configuration state at context
switch. We enabled these two instructions in Linux 4.2 ker-
nel by adding 30 SLoC to its context switch code.

6.3 Fork
The clone system call is a UNIX primitive to create a new
task (i.e., thread or process). We hook the clone system
call to notify GRIFFIN on task creations. GRIFFIN allocates
a trace buffer for each new task and initializes its Intel PT
configuration state accordingly. We directly write to the new
task’s XSAVES area so that the initialized state will be loaded
into the processor’s registers when its context is switched in.

To support stateful checking for a new process, GRIFFIN
follows the semantics of fork and makes the child process
inherit the call stack state from its parent process. Specifi-
cally, GRIFFIN flushes the current trace buffer of the parent
process and informs the sequential phase to duplicate the call
stack state after processing the buffer. The sequential phase
of the child process is blocked until the duplication is done.
However, the execution of the child process and its parallel-
phase trace processing are not.

6.4 Just-In-Time Compilation
Managed languages such as JavaScript often leverage a Just-
In-Time (JIT) compiler to transform the byte code into native
code at runtime for faster execution. Protecting programs
that have JIT engines such as a browser is non-trivial for
GRIFFIN. The key challenge is that jitted code can change
over time. This may cause GRIFFIN to use obsolete basic
block information when reconstructing the control flow of
the changed code, which leads to undefined behaviors. A
simple flush of the basic block information upon changes
to jitted code does not work in practice because pending
trace buffers may rely on the old basic block information.
Keeping a history of code changes and precisely matching
trace packets with the right code version can be both difficult
and expensive.

To tackle this challenge, we propose to refactor the JIT
engine so that it never modifies existing code in place. As
a proof-of-concept, we refactored Firefox’s baseline JIT en-
gine to eliminate in-place code updates that alter the original
control flows. Specifically, we made the following changes.

Code Retirement. When the jitted code is no longer
needed, Firefox will poison the code by converting it to no-
ops, and unmap the pages via the munmap system call. We
modified the JIT engine to skip poisoning. When Firefox
unmaps an executable page, we mark the page and defer the
actual page reclaim until there is no pending trace buffer that
was generated before the munmap system call.

Incremental Garbage Collection. Firefox uses an incre-
mental garbage collector that divides the mark-and-sweep
process into time slices for better responsiveness. The in-
cremental garbage collector has to account for new object
allocations between slices of the mark-and-sweep process.
Thus, the JIT engine dynamically inserts jump instructions
in object allocators to execute a piece of code that marks
newly allocated objects during the mark-and-sweep process.
We made these jump instructions persistent in object alloca-

tors and changed the piece of code to mark newly allocated
objects only if the mark-and-sweep process is under way.

6.5 Shadow Stack
When implementing the shadow stack, we have to handle a
few corner cases. We omit the discussion of setjmp/longjmp,
C++ exceptions and UNIX signals since we handle them in
a way similar to previous work [17, 18].

Intel TSX. Intel Transactional Synchronization Exten-
sion (TSX) is a hardware mechanism that exposes and ex-
ploits hidden concurrency in multi-threaded applications.
Intel PT logs TSX events when a transaction begins, com-
mits or aborts. To support TSX, we store these events to-
gether with calls and returns. If a transaction aborts, the calls
and returns in the aborted transaction are skipped.

On-Stack Replacement. On-Stack Replacement (OSR)
is a runtime technique commonly used by JIT engines to
switch between different implementations of the same func-
tion [27]. It works by trapping the execution and replacing
the stack frame with a new one as if the process was run-
ning in a different function. We modified Firefox to inform
GRIFFIN of the OSR entries, and forgive an unmatched re-
turn if it targets a valid OSR entry.

Switch Table. Due to the dynamic nature of object com-
parisons for a switch statement in JavaScript, Firefox im-
plements the object comparion code in functions different
from the one that contains the switch statement. For better
performance, the object comparison code modifies its return
address to directly return to the code of the matching case in
the switch statement. This leads to a mismatching call and
return pair. We modified Firefox’s JIT compiler to replace
the return instruction in the object comparison code with a
semantically equivalent indirect jump instruction.

6.6 Stateful Forward-Edge Policy
GRIFFIN is capable of restricting indirect calls based on the
control-flow paths led to them. We implemented the stateful
policy approach proposed in PathArmor [44] that restricts
invocation of constant callbacks passed from callers. This
effectively limits those indirect calls to a single target based
on the current call stack. We develop an LLVM pass and
apply the analysis to the program source to identify those
indirect calls as well as the passed constant callbacks from
different callers. Since GRIFFIN already maintains a shadow
stack, it can easily identify the caller and enforce stateful
forward-edge checks accordingly.

7. Evaluation
In this section, we evaluate the effectiveness and perfor-
mance of GRIFFIN. We run the RIPE benchmark [47], a col-
lection of exploits, as a sanity check of the effectiveness of
GRIFFIN for CFI enforcement. For the performance evalu-
ation, we test GRIFFIN when enforcing coarse-grained and
combination policies on the SPEC CPU2006 benchmarks

used in most CFI research [17, 34, 36, 40, 43, 44, 52]. We
also examine how GRIFFIN performs on real-world appli-
cations including a browser (Firefox 45), a web server (ng-
inx 1.6.2), an FTP server (vsftpd 3.0.2), and an email server
(exim 4.84). When evaluating coarse-grained policies, we
disassembled the binaries based on their debug information
to uncover all legitimate targets for indirect control trans-
fers. We compute fine-grained policies by matching function
signatures as previous works do [34, 43, 45]. Additionally,
we evaluate a stateful forward-edge policy on SPEC bench-
marks [44]. Finally, we explore how more targeted logging
can impact the efficiency of control-flow checking.

7.1 Effectiveness Evaluation
We run the RIPE benchmark [47] as a sanity check of
GRIFFIN’s implementation as a working CFI enforcement
mechanism rather than a comprehensive security evaluation.
The RIPE benchmark consists of a vulnerable program and
a set of 850 exploits using various techniques, which can
be categorized by the type of code pointers (e.g., function
pointer or return address), the location of memory corrup-
tion (e.g., stack or heap). The RIPE benchmark was origi-
nally developed on Ubuntu 6.06. In our experiment, many
exploits failed because of built-in system protection mech-
anisms, such as DEP and ASLR, changes in the runtime
layout, as well as compatibility issues due to the usage of
newer-version libraries.

To make more exploits succeed on the vanilla Debian 8.2,
we disabled the ASLR and compiled the vulnerable program
without stack protection. We ended up with 82 working ex-
ploits. GRIFFIN can deterministically detect and prevent all
82 attacks under both coarse-grained and combination poli-
cies. This experiment shows that our prototype of GRIFFIN
works as expected. It does not mean that GRIFFIN can stop
all control-flow attacks. The security of GRIFFIN is deter-
mined by the control-flow policies deployed. We show that
GRIFFIN is capable of enforcing many known CFI policies.

7.2 Performance Evaluation
In this section, we evaluate GRIFFIN’s runtime performance
and memory overhead by running SPEC CPU2006 bench-
marks and a set of real-world applications. We allocate a
64KB buffer for Intel PT to trace each user thread, and an
additional 4KB buffer to prevent trace packet loss from the
interrupt skid issue (see Section 2). We discuss the perfor-
mance impact of different buffer sizes using SPEC CPU2006
benchmarks. We use six worker threads to parallelize trace
buffer processing. We evaluate the impact of applying differ-
ent numbers of worker threads on the nginx web server.

7.2.1 SPEC CPU2006
We run SPEC CPU2006 benchmarks compiled with GCC
4.9 under -O2 optimization level to evaluate GRIFFIN’s run-
time performance on CPU-intensive benchmarks. We run
all SPEC CPU 2006 benchmarks except for 447.dealII and

481.wrf because they cannot be compiled on current sys-
tems [40]. We used the “train” workload in all benchmarks.
The experimental results on SPEC CPU2006 benchmarks
are shown in Figure 4. For each benchmark, we make four
measurements: (1) the Intel PT hardware overhead mea-
sured by taking interrupts without processing trace buffers;
(2) total overhead for enforcing coarse-grained policies; (3)
control-flow reconstruction overhead for fine-grained and
stateful policies; and (4) total overhead for enforcing combi-
nation policies. Cases (2-4) all include hardware overhead.

On average, Intel PT tracing introduces a 4.7% slow-
down. The average slowdown under the coarse-grained pol-
icy is 5.6%. Control-flow reconstruction incurs a 8.3%
slowdown on average. The average slowdown under the
combination policy is 9.5%. The average overhead is sensi-
tive to outliers like perlbench. For medians, the slowdown
becomes 2.4% under the coarse-grained policy, and 5.6%
under the combination policy. We also checked the perfor-
mance impact of different Intel PT trace buffer sizes. We
found that using 64KB buffers is slightly better than using
either 4KB or 1MB buffers.

Finally, we examined the performance impact of stateful
forward-edge policies. We did not observe noticeable perfor-
mance differences because both the number of stateful indi-
rect calls and the number of associated states are limited, as
acknowledged by [44].

We compared GRIFFIN’s performance with prior solu-
tions in Table 2. The prior solutions are from three cat-
egories: compiler-based, binary-instrumentation-based, or
hardware-based. We chose these solutions because they are
representative in each category and they measured SPEC
CPU2006 benchmarks on Linux. To have direct compar-
isons, we further divided SPEC CPU2006 benchmark into
SPECint and SPECfp. In Table 2, four prior solutions,
MCFI [34], πCFI [36], ROPecker [12] and PathArmor [44],
have much better performance than GRIFFIN. However,
MCFI and πCFI do not support the shadow stack check, and
ROPecker and PathArmor are not complete (i.e., they do not
check all indirect control transfers). binCFI [52] only sup-
ports a coarse-grained policy but its performance is worse
than GRIFFIN mainly because it uses static binary instru-
mentation. Lockdown [40] supports a policy similar to the
combination policy, but its performance is much worse than
GRIFFIN because of its dynamic binary instrumentation. Fi-
nally, the shadow stack work [17] evaluated two compiler-
based shadow stack schemes: traditional shadow stack and
parallel shadow stack (i.e., maintain one stack pointer for
both the normal stack and the shadow stack). The perfor-
mance of the parallel shadow stack scheme is better than
the traditional shadow stack scheme, but it is vulnerable to a
recent attack [14]. GRIFFIN implements both the traditional
shadow stack scheme and the stateless forward-edge check
in the combination policy. GRIFFIN’s performance under this

pe
rlb

en
ch

bz
ip

2
gc

c
m

cf

go
bm

k

hm
m

er

sje
ng

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p
as

ta
r

xa
la
nc

bm
k

bw
av

es

ga
m

es
s

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
ADM

le
sli

e3
d

na
m

d

so
pl

ex

po
vr

ay

ca
lc
ul

ix

Gem
sF

DTD
to

nt
o

lb
m

sp
hi

nx
3

av
er

ag
e

m
ed

ia
n

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%
hardware w/ interrupts

coarse-grained policy

control-flow reconstruction

combination policy

Figure 4: The performance overhead for running SPEC CPU2006 benchmarks with different configurations.

Legacy Binary No Instru. Complete Policy
SPEC CPU2006

SPECint SPECfp
MCFI [34] × × X fine-grained 4.0 1.6
πCFI [36] × × X fine-grained 4.0 1.75

(incrementally growing CFG)
shadow stack [17] × × X shadow stack 11.6* 6.0

× × X parallel shadow stack 4.7 3.0
binCFI [52] X × X coarse-grained 9.6 6.5
Lockdown [40] X × X combination 47.18 20.55
ROPecker [12] X X × heuristics 2.3
PathArmor [44] X × × combination 3.3

(restrict constant callback)
GRIFFIN X X X coarse-grained 9.3 3.0

X X X combination 16.0/11.9* 6.2

Table 2: The comparison between different CFI techniques. The numbers with an asterisk exclude perlbench and gcc in
SPECint. We also exclude Fortran benchmarks evaluated in Lockdown and GRIFFIN from SPECfp.

more restricted policy is on par with the compiler-based im-
plementation of the traditional shadow stack scheme.

7.2.2 Applications
We evaluate GRIFFIN’s performance on real-world appli-
cations including three server programs and a client pro-
gram under both the coarse-grained and combination pol-
icy. There are two main differences between these applica-
tions and the SPEC CPU2006 benchmarks. First, they are
less CPU-intensive. The server programs are I/O-bound and
the browser is user-oriented. Second, they all use multiple
processes/threads. This could potentially impact GRIFFIN’s
performance because of the competition on CPU resources.

To benchmark the nginx web server, we create 32 concur-
rent connections and send 10,000 HTTP requests for files of
different sizes using ApacheBench [1]. To benchmark the
vsftpd server, we use pyftpbench [3] to request 10MB files
in 10 concurrent connections. To benchmark the exim email
server, we run the sendemail script [4] to repeatedly send

1KB emails. The chosen workloads are consistent with prior
work [44, 49]. We evaluate their throughput reduction.

To evaluate GRIFFIN’s performance on Firefox, we use
the SunSpider 1.0.2 benchmark. In our current prototype,
we do not enforce forward-edge policies for indirect control
transfers within jitted code but simply measure the overhead
while allowing all targets. We note that an actual policy may
be derived from the JIT compiler with additional engineering
effort [35]. For non-jitted code, we enforce checks on both
forward and backward edges as in other experiments.

We show the results in Figure 5. On average, GRIFFIN
incurs modest performance overhead for server programs
– 1.8% under the coarse-grained policy and 2.7% under
the combination policy. This is because server programs
are often I/O-bound. When they wait on I/O, no Intel PT
trace is generated, and GRIFFIN has more time to process
the control-flow trace. For Firefox, GRIFFIN incurs 7.5%
overhead under the coarse-grained policy and 13% under the
combination policy.

nginx-1KB nginx-512KB vsftpd exim firefox
0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%
coarse-grained policy
combination policy

Figure 5: Performance overhead of real-world applications.

1KB 8KB 64KB 256KB 512KB
0.0%

5.0%

10.0%

15.0%

20.0%
one worker
two workers
four workers
six workers

Figure 6: The impacts of different numbers of worker threads
on GRIFFIN’s performance for the nginx web server.

7.2.3 Worker Threads
GRIFFIN leverages multiple worker threads to speed up the
processing of trace buffers and CFI enforcement. To un-
derstand how different numbers of worker threads impact
the performance of real-world applications, we run the ng-
inx web server under the combination policy with the same
workload as discussed in Section 7.2.2.

From Figure 6 we can see that using fewer worker threads
affects GRIFFIN’s performance because of the decreased par-
allelization. However, the difference decreases as the file size
increases. This is aligned with our expectations on I/O bound
programs. When the program spends more time on waiting
for I/O, the performance slowdown will decrease.

7.2.4 Memory Usage
We measured GRIFFIN’s memory usage under coarse-
grained and combination policies for both SPEC CPU2006
benchmarks and real-world applications. GRIFFIN’s mem-
ory usage has two parts: control pages for policies and basic
blocks, and Intel PT trace buffers. Control pages are dynam-
ically populated at runtime and can be shared between pro-
cesses. We measured the actually populated control pages.
The size of Intel PT trace buffers changes dynamically de-
pending on the rates of Intel PT generating new trace pack-
ets and GRIFFIN processing existing trace packets. We mea-
sured the peak size of Intel PT trace buffers.

coarse-grained combination
control pages buffers control pages buffers

perlbench 1.2 5.2 7.3 356.5
bzip2 0.4 2.0 1.4 7.6
gcc 2.2 2.8 16.4 11.6
mcf 0.4 2.3 1.4 3.0
gobmk 1.0 1.0 6.0 445.2
hmmer 0.7 1.1 2.3 1.0
sjeng 0.5 1.8 1.7 113.4
libquantum 0.5 2.0 1.5 21.1
h264ref 0.8 2.5 4.2 3.9
omnetpp 1.2 2.3 4.9 2.7
astar 0.5 1.4 1.7 1.0
xalancbmk 3.3 4.7 13.7 202.6
bwaves 0.1 1.4 3.5 32.8
gamess 4.5 2.7 55.2 3.1
milc 0.5 1.0 2.2 0.8
zeusmp 0.1 1.0 5.3 1.2
gromacs 0.7 5.3 5.7 6.6
cactusADM 0.3 2.0 5.1 2.1
leslie3d 0.1 0.4 4.4 0.5
namd 0.7 2.6 2.6 7.3
soplex 1.1 2.5 4.6 1.9
povray 1.3 1.6 4.6 2.1
calculix 0.9 3.8 8.6 8.9
GemsFDTD 0.1 3.8 6.7 9.7
tonto 2.7 3.6 15.5 8.7
lbm 0.4 2.5 1.4 2.1
sphinx3 0.6 1.1 3.1 1.7
nginx 0.6 1.0 10.0 1.0
exim 0.1 0.8 8.6 0.8
vsftpd 0.1 0.5 6.0 0.6
firefox 103.7 9.8 377.4 84.1

Table 3: Peak memory usage (MB) for control pages and
trace buffers for the coarse-grained and combination policy.

The results are shown in Table 3. The memory usage for
control pages is determined by the enforced policy and pro-
gram code size. The combination policy uses more control
pages than the coarse-grained policy because of the need for
control-flow reconstruction. Firefox has a much larger code
base than other programs (>100MB) and incurs the highest
use of control pages. The peak memory usage for Intel PT
trace buffers is determined by two factors: the difference be-
tween trace generation and consumption rate and the time a
program executes.

We explored using one control page per code page by
compressing the basic block information into a one-byte data
structure. However, the reduction in control pages was less
than the increase in Intel PT trace buffers incurred by the
slowdown in our trace processing. Thus, we speculate that
further performance improvements may significantly reduce
Intel PT trace buffer sizes for programs of higher overhead.

7.2.5 Runtime Policy Change
By the design of separating the CFI enforcement from
the policy, GRIFFIN naturally supports changing the en-
forced policy at runtime. We demonstrate one approach
that strikes a balance between the performance and secu-
rity using coarse-grained policies and combination policies.

Specifically, GRIFFIN monitors the memory usage for each
program by the number of outstanding trace buffers to pro-
cess. If the number of outstanding trace buffers surpasses
a threshold, GRIFFIN switches to a coarse-grained policy.
Once it catches up, GRIFFIN switches back to a fine-grained
policy. Note that enforcement cannot be resumed for some
stateful policies, such as the shadow stack. In this case, we
fall back to a fine-grained policy instead.

Given that perlbench incurs the highest runtime overhead
in our evaluation for SPEC CPU2006 benchmarks, we use it
to evaluate the effectiveness of dynamic policy change. We
use three different thresholds – 256MB, 128MB and 64MB.
A lower threshold will have a better performance but weaker
security because GRIFFIN will enforce the coarse-grained
policy for a longer period of time. In our experiments, we
observed 1.0%, 1.7% and 3.0% of the trace is checked by
the coarse-grained policy under the three thresholds, respec-
tively. Compared to enforcing the combination policy for the
whole execution of perlbench, the incurred overhead are re-
duced by 8.8%, 17.6% and 23.5%, respectively.

7.2.6 Hardware Enhancements
Current Intel PT hardware does not encode branch source
addresses, but instead requires GRIFFIN to reconstruct the
control flow to determine such information. As shown in
Figure 4, GRIFFIN spends a significant amount of time on
control-flow reconstruction while CFI checking is done with
little additional cost. Thus, a natural optimization is to aug-
ment the trace with addresses of indirect branches to elim-
inate the requirement for control-flow reconstruction when
enforcing stateless policies.

We manufacture traces that include branch addresses be-
fore every indirect control transfer and evaluate the impact
on the trace size and performance for fine-grained CFI en-
forcement. Specifically, we insert a FUP packet before ev-
ery TIP packet and remove all TNT packets. Our experiment
shows an average of 90% performance improvement on trace
processing and 60% trace size reduction when enforcing
a fine-grained stateless policy for SPEC CPU2006 bench-
marks. In the worst case, the performance still improves by
62% and the trace size increases by 19%.

However, the proposed enhancement undermines
GRIFFIN’s potential to enforce stateful policies because of
the lack of detailed control-flow information, such as condi-
tional and direct branches. We propose that future hardware
designs should consider adding the support for selectively
toggling the generation of the complete control-flow trace
(i.e., TNT packets) for the minimal execution necessary to
enforce stateful policies.

For forward edges, reconstructing only necessary control
flows enables GRIFFIN to enforce stateful checks based on
partial (but sufficient) execution state with little extra pro-
cessing. For example, to support PathArmor’s stateful pol-
icy, we modified the manufactured trace to include the com-
plete control-flow information for the period of execution

between when a constant callback is passed and the call-
back returns. For the program with the most stateful forward
edges (433.milc) in the SPEC benchmarks, its trace size in-
creases from 0.9% of its original trace size after removal of
all TNT packets to 1.4% after enabling selective logging.

For backward edges, enforcing a shadow stack requires
GRIFFIN to reconstruct the entire control flow to track all di-
rect calls. To improve the efficiency of the shadow stack en-
forcement, we likely need a different approach. Fortunately,
a recently introduced feature called Intel Control-flow En-
forcement Technology (CET) [2] enables shadow stack en-
forcement for unmodified binaries directly from the hard-
ware. We envision that GRIFFIN can leverage CET to do ef-
ficient shadow stack checking in the future.

8. Related Work
Control-Flow Integrity. In 2005, Abadi et al. introduced
Control-Flow Integrity (CFI) [7], which restricts a program’s
execution to its Control-Flow Graph (CFG). The initial im-
plementation of CFI labels indirect branches and target in-
structions, and allows an indirect control transfer at run-
time if the source and destination have the same label. Re-
searchers have applied the technique to a variety of pro-
grams including privileged software [15, 23, 32, 46]. How-
ever, many early implementations focus on reducing the run-
time overhead, enforcing coarse CFGs in practice (e.g., use
one or two labels) [9, 15, 19, 29, 46, 50–52].

Researchers proposed attacks that exploit the overapprox-
imation inherent in coarse-grained CFI policies [10, 11, 20,
24, 25, 42]. Therefore, researchers started developing fine-
grained CFI [34, 43] and context-sensitive CFI implementa-
tions [36, 44] to mitigate these attacks. However, Control-
Flow Bending attacks demonstrate techniques to bypass all
CFI implementations without a shadow stack [11].

Binary Rewriting. Researchers have also developed ap-
proaches to enforce CFI for legacy binaries without requir-
ing the source code. For instance, binCFI and CCFIR derive
the CFI policy directly from binaries and insert checks for
enforcement [51, 52]. TypeArmor improves the precision of
the computed CFI policy by taking high-level program se-
mantics into account [45]. However, like compiler-based ap-
proaches, static binary rewriting “fixes” CFI checks into the
program and does not allow adjusting the desired protection
to balance security and performance at runtime. In addition,
static binary rewriting needs to dynamically translate code
addresses of the original programs to the rewritten ones for
compatibility, incurring extra performance overheads [52].

Dynamic binary instrumentation has also been explored
to protect legacy binaries from control-flow hijacking at-
tacks. It has the flexibility to choose the protection at runtime
as GRIFFIN does. ROPdefender implements shadow stacks
and Payer et al. complements the protection by enforcing
fine-grained CFI policies for forward edges [18, 40]. How-

ever, the performance overhead is inherently high (up to 4x)
due to the cost of dynamic binary instrumentation.

Hardware-Assisted CFI. Researchers have proposed
various CFI defenses with hardware assistance, and most
of them do not require any instrumentation. CFIMon [48]
leverages Branch Trace Store (BTS) to record control trans-
fers and implement CFI checks. However, BTS incurs sig-
nificant performance slowdown (20x-40x) [44]. CFIMon has
only been evaluated on I/O-bound applications.

Researchers have explored using the Last Branch Record
(LBR) feature to build CFI defenses. LBR records a small
number of the most recent control transfers with mini-
mal overheads. Despite the performance benefits, defenses
built on LBR are fundamentally limited by the capacity
of the LBR stack. For instance, both kBouncer [37] and
ROPecker [12] rely on heuristics to detect attacks. A recent
proposal shows that an adversary can break these heuristics
by using long gadgets and/or launching history-flushing at-
tacks [10]. PathArmor [44] aims to enforce shadow stacks on
backward edges. However, PathArmor only checks a small
fraction of executed returns at runtime due to the LBR lim-
itation. According to a trace we collected from nginx, it
checks less than 0.1% of total returns.

To overcome the limited size of LBR, CFIGuard [49] pro-
poses to combine the LBR feature with the Performance
Monitoring Unit (PMU). The key idea is to program the
PMU to trigger an interrupt when the LBR stack fills. By
properly handling such interrupts, CFIGuard checks all exe-
cuted indirect branches. Though CFIGuard proposes to im-
prove the performance by only recording indirect control
transfers, triggering an interrupt on every 16 of them can
slow down programs significantly, particularly for CPU-
intensive programs. CFIGuard has only been evaluated for
I/O-bound server applications.

LMP [28] uses Intel Memory Protection Extension
(MPX) to implement the shadow stack. Compared to shadow
stack implementations through randomization, it does not
rely on information hiding and is immune to side-channel
attacks [22]. However, unlike GRIFFIN, LMP only protects
backward edges, requires program source for recompilation
and also fixes the instrumentation.

Several hardware CFI systems are proposed to check con-
trol flows directly by the hardware. Intel CET [2] protects the
forward edges using a coarse-grained policy and the back-
ward edges using a shadow stack. We propose how to in-
tegrate CET into GRIFFIN in Section 7.2.6. HCFI [13] and
HAFIX [21] modified the ISA to enforce CFI policies (e.g.,
shadow stack) directly from the hardware. Despite the per-
formance benefits, they are not as practical as GRIFFIN be-
cause GRIFFIN can run on unmodified commodity hardware.

Besides our work, there are two concurrent and inde-
pendent efforts that leverage Intel PT for CFI enforcement.
FlowGuard [33] and PT-CFI [26] both aim to accelerate their
trace processing and policy checking by avoiding recon-

struction of complete control flows in their fast processing
paths. Without the complete control flows, the source ad-
dresses of indirect branches are not available, so FlowGuard
and PT-CFI cannot enforce fine-grained, forward-edge CFI
policies like GRIFFIN. FlowGuard refines CFI policies us-
ing offline training on common paths, resorting to control-
flow reconstruction only for less frequent paths. PT-CFI re-
stricts control flows on backward edges by applying shadow
stack checking. We cannot directly compare GRIFFIN’s per-
formance with FlowGuard and PT-CFI because they did not
use the “train” workload in their SPEC CPU2006 bench-
marks. FlowGuard used the “test” workload, and PT-CFI
used a customized workload.

9. Conclusion
In this paper, we presented GRIFFIN, a hardware-assisted,
operating system CFI enforcement mechanism. GRIFFIN
uses Intel Processor Trace (PT) to protect user-space pro-
cesses (e.g., web browsers) from control-flow hijacking at-
tacks. GRIFFIN is capable of enforcing stateful CFI policies
on both forward and backward edges, enabling the strong
prevention for attacks on control flow. GRIFFIN also enables
tradeoffs between security and performance by supporting
a variety of control-flow policies. GRIFFIN is designed to
leverage Intel PT traces efficiently. When enforcing coarse-
grained CFI policies, it uses TIP packets in the trace di-
rectly. GRIFFIN reconstructs the complete control flow from
Intel PT traces in parallel to enforce fine-grained CFI poli-
cies. It also produces stateful information in parallel before
sequential checking for low overhead. As a result, GRIFFIN
can achieve comparable performance with software-only in-
strumentation defenses on the SPEC CPU2006 benchmarks,
showing that strong, hardware-assisted CFI enforcement can
be a viable alternative.

Acknowledgements
We thank the anonymous reviewers for their constructive
feedback to this work. Specially, we thank Mathias Payer
and Gang Tan for providing invaluable insights and sugges-
tions at various times of this project. We would like to thank
Graham McIntyre and Pedro Teixeira for their tremendous
help at the early stage of this project. We are also grateful
to Beeman Strong for his quick and detailed answers to our
questions about Intel Processor Trace. The work was sup-
ported by the National Science Foundation under grant num-
ber CNS-1408880. Research was sponsored by the Army
Research Laboratory and was accomplished under Coop-
erative Agreement Number W911NF-13-2-0045 (ARL Cy-
ber Security CRA). The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

References
[1] ApacheBench: a complete benchmarking and regression

testing suite. https://httpd.apache.org/docs/2.2/

programs/ab.html.

[2] Intel control-flow enforcement technology
(CET) preview. https://software.intel.

com/sites/default/files/managed/4d/2a/

control-flow-enforcement-technology-preview.

pdf.

[3] pyftpdlib. https://github.com/giampaolo/pyftpdlib.

[4] sendemail. http://caspian.dotconf.net/menu/

Software/SendEmail.

[5] Intel 64 and IA-32 architectures software developer’s manual.
Volume 3B: System Programming Guide, Part 2, 2016.

[6] Intel 64 and IA-32 architectures software developer’s manual.
Volume 3C: System Programming Guide, Part 3, 2016.

[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity. In Proceedings of the 12th ACM SIGSAC Con-
ference on Computer and Communications Security (CCS),
pages 340–353. ACM, 2005.

[8] S. Andersen and V. Abella. Data Execution Prevention.
Changes to Functionality in Microsoft Windows XP Service
Pack 2, Part 3: Memory Protection Technologies, 2004.

[9] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse at-
tacks with control-flow locking. In Proceedings of the 27th
Annual Computer Security Applications Conference (AC-
SAC), pages 353–362. ACM, 2011.

[10] N. Carlini and D. Wagner. ROP is still dangerous: Breaking
modern defenses. In Proceedings of the 23rd USENIX Se-
curity Symposium (USENIX Security). USENIX Association,
2014.

[11] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-flow bending: On the effectiveness of control-flow in-
tegrity. In Proceedings of the 24th USENIX Security Sympo-
sium (USENIX Security). USENIX Association, 2015.

[12] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng.
ROPecker: A generic and practical approach for defending
against ROP attacks. In Proceedings of the 21th Network and
Distributed System Security Symposium (NDSS). ISOC, 2014.

[13] N. Christoulakis, G. Christou, E. Athanasopoulos, and
S. Ioannidis. HCFI: Hardware-enforced control-flow integrity.
In Proceedings of the 6th ACM Conference on Data and Ap-
plication Security and Privacy (CODASPY). ACM, 2016.

[14] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Ne-
gro, C. Liebchen, M. Qunaibit, and A.-R. Sadeghi. Losing
control: On the effectiveness of control-flow integrity under
stack attacks. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security (CCS),
pages 952–963. ACM, 2015.

[15] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
control-flow integrity for commodity operating system ker-
nels. In Proceedings of the 35th IEEE Symposium on Security
and Privacy (S&P), pages 292–307. IEEE, 2014.

[16] G. Dabah. diStorm - Powerful Disassembler Library for
x86/AMD64. https://github.com/gdabah/distorm.

[17] T. H. Dang, P. Maniatis, and D. Wagner. The performance
cost of shadow stacks and stack canaries. In Proceedings
of the 10th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), pages 555–566. ACM,
2015.

[18] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A
detection tool to defend against return-oriented programming
attacks. In Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS),
pages 40–51. ACM, 2011.

[19] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz,
R. Hund, S. Nürnberger, and A.-R. Sadeghi. MoCFI: A frame-
work to mitigate control-flow attacks on smartphones. In Pro-
ceedings of the 19th Network and Distributed System Security
Symposium (NDSS). ISOC, 2012.

[20] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitch-
ing the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In Proceedings of the 23rd
USENIX Security Symposium (USENIX Security), pages 401–
416. USENIX Association, 2014.

[21] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl,
D. Sullivan, O. Arias, and Y. Jin. HAFIX: Hardware-assisted
flow integrity extension. In Proceedings of the 52nd Annual
Design Automation Conference (DAC). ACM, 2015.

[22] I. Evans, S. Fingeret, J. González, U. Otgonbaatar,
T. Tang, H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and
H. Okhravi. Missing the point (er): On the effectiveness of
code pointer integrity. In Proceedings of the 36th IEEE Sym-
posium on Security and Privacy (S&P). IEEE, 2015.

[23] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained
control-flow integrity for kernel software. In Proceedings of
the 1st IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2016.

[24] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out of control: Overcoming control-flow integrity. In Pro-
ceedings of the 35th IEEE Symposium on Security and Pri-
vacy (S&P). IEEE, 2014.

[25] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and
G. Portokalidis. Size does matter: Why using gadget-chain
length to prevent code-reuse attacks is hard. In Proceedings
of the 23rd USENIX Security Symposium (USENIX Security),
pages 417–432. USENIX Association, 2014.

[26] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin. PT-CFI: Transparent
backward-edge control flow violation detection using intel
processor trace. In Proceedings of the 7th ACM Conference
on Data and Application Security and Privacy (CODASPY).
ACM, 2017.

[27] U. Hölzle, C. Chambers, and D. Ungar. Debugging op-
timized code with dynamic deoptimization. In Proceed-
ings of the ACM SIGPLAN’92 Conference on Programming
Language Design and Implementation (PLDI), pages 32–43.
ACM, 1992.

[28] W. Huang, Z. Huang, D. Miyani, and D. Lie. LMP: light-
weighted memory protection with hardware assistance. In
Proceedings of the 32nd Annual Conference on Computer
Security Applications (ACSAC). ACM, 2016.

[29] R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootk-
its: Bypassing kernel code integrity protection mechanisms.
In Proceedings of the 18th USENIX Security Symposium
(USENIX Security), pages 383–398. USENIX Association,
2009.

[30] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea.
Failure sketching: a technique for automated root cause diag-
nosis of in-production failures. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP), pages
344–360. ACM, 2015.

[31] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song. Code-pointer integrity. In Proceedings of the
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). USENIX Association, 2014.

[32] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating
return-oriented rootkits with return-less kernels. In Proceed-
ings of the 5th European Conference on Computer Systems
(EuroSys), pages 195–208. ACM, 2010.

[33] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan.
Transparent and efficient cfi enforcement with intel processor
trace. In Proceedings of the 23rd IEEE Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2017.

[34] B. Niu and G. Tan. Modular control-flow integrity. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI). ACM,
2014.

[35] B. Niu and G. Tan. RockJIT: Securing just-in-time compila-
tion using modular control-flow integrity. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), pages 1317–1328. ACM, 2014.

[36] B. Niu and G. Tan. Per-input control-flow integrity. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 914–926. ACM,
2015.

[37] V. Pappas, M. Polychronakis, and A. D. Keromytis. Trans-
parent ROP exploit mitigation using indirect branch trac-
ing. In Proceedings of the 22nd USENIX Security Sympo-
sium (USENIX Security), pages 447–462. USENIX Associa-
tion, 2013.

[38] PaX Team. Documentation for the PaX project - overall
description. https://pax.grsecurity.net/docs/pax.

txt, 2008.

[39] M. Payer and T. R. Gross. Generating low-overhead dynamic
binary translators. In Proceedings of the 3rd Annual Haifa
Experimental Systems Conference. ACM, 2010.

[40] M. Payer, A. Barresi, and T. R. Gross. Fine-grained control-
flow integrity through binary hardening. In Proceedings of
the 12th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), pages
144–164. Springer, 2015.

[41] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-
oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TIS-
SEC), 2012.

[42] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz. Counterfeit object-oriented programming: On

the difficulty of preventing code reuse attacks in C++ applica-
tions. In Proceedings of the 36th IEEE Symposium on Security
and Privacy (S&P), pages 745–762. IEEE, 2015.

[43] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Er-
lingsson, L. Lozano, and G. Pike. Enforcing forward-edge
control-flow integrity in gcc & llvm. In Proceedings of the
23rd USENIX Security Symposium (USENIX Security), 2014.

[44] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida. Practical context-
sensitive CFI. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security (CCS),
pages 927–940. ACM, 2015.

[45] V. van der Veen, E. Göktas, M. Contag, A. Pawlowski,
X. Chen, S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and
C. Giuffrida. A tough call: Mitigating advanced code-reuse
attacks at the binary level. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (S&P). IEEE, 2016.

[46] Z. Wang and X. Jiang. Hypersafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity. In Pro-
ceedings of the 31st IEEE Symposium on Security and Privacy
(S&P), pages 380–395. IEEE, 2010.

[47] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and
W. Joosen. RIPE: Runtime intrusion prevention evaluator. In
Proceedings of the 27th Annual Computer Security Applica-
tions Conference (ACSAC). ACM, 2011.

[48] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting
violation of control flow integrity using performance coun-
ters. In Proceedings of the 42nd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), pages 1–12. IEEE, 2012.

[49] P. Yuan, Q. Zeng, and X. Ding. Hardware-assisted fine-
grained code-reuse attack detection. In Proceedings of the
18th International Symposium on Research in Attacks, Intru-
sions, and Defenses (RAID), pages 66–85. Springer, 2015.

[50] B. Zeng, G. Tan, and G. Morrisett. Combining control-flow in-
tegrity and static analysis for efficient and validated data sand-
boxing. In Proceedings of the 18th ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 29–
40. ACM, 2011.

[51] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCa-
mant, D. Song, and W. Zou. Practical control flow integrity
and randomization for binary executables. In Proceedings of
the 34th IEEE Symposium on Security and Privacy (S&P),
pages 559–573. IEEE, 2013.

[52] M. Zhang and R. Sekar. Control flow integrity for COTS bina-
ries. In Proceedings of the 22nd USENIX Security Symposium
(USENIX Security). USENIX Association, 2013.

[53] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar. A platform
for secure static binary instrumentation. In Proceedings of
the 10th ACM SIGPLAN International Conference on Virtual
Execution Environments (VEE). ACM, 2014.

