Pileus: Protecting User Resources from
Vulnerable Cloud Services

Yugiong Sun, Giuseppe Petracca, Xinyang Ge* and Trent Jaeger
Department of Computer Science and Engineering
The Pennsylvania State University

yus138, gxp18, xxg13, tjaeger@cse.psu.edu

ABSTRACT

Cloud computing platforms are now constructed as distributed, mod-
ular systems of cloud services, which enable cloud users to manage
their cloud resources. However, in current cloud platforms, cloud
services fully trust each other, so a malicious user may exploit a
vulnerability in a cloud service to obtain unauthorized access to
another user’s data. To date, over 150 vulnerabilities have been re-
ported in cloud services in the OpenStack cloud. Research efforts in
cloud security have focused primarily on attacks originating from
user VMs or compromised operating systems rather than threats
caused by the compromise of distributed cloud services, leaving
cloud users open to attacks from these vulnerable cloud services. In
this paper, we propose the Pileus cloud service architecture, which
isolates each user’s cloud operations to prevent vulnerabilities in
cloud services from enabling malicious users to gain unauthorized
access. Pileus deploys stateless cloud services “on demand” to ser-
vice each user’s cloud operations, limiting cloud services to the per-
missions of individual users. Pileus leverages the decentralized in-
formation flow control (DIFC) model for permission management,
but the Pileus design addresses special challenges in the cloud en-
vironment to: (1) restrict how cloud services may be allowed to
make security decisions; (2) select trustworthy nodes for access en-
forcement in a dynamic, distributed environment; and (3) limit the
set of nodes a user must trust to service each operation. We have
ported the OpenStack cloud platform to Pileus, finding that we can
systematically prevent compromised cloud services from attacking
other users’ cloud operations with less than 3% additional latency
for the operation. Application of the Pileus architecture to Open-
Stack shows that confined cloud services can service users’ cloud
operations effectively for a modest overhead.

1. INTRODUCTION

Cloud computing has revolutionized the way we consume com-
puting resources. Instead of maintaining a locally-administered
data center, cloud users obtain resources on demand from a pub-
lic cloud platform [3, 32]. Cloud vendors often construct their
cloud platforms as a set of cloud services that implement users’

*Now at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ACSAC ’16, December 05-09, 2016, Los Angeles, CA, USA
© 2016 ACM. ISBN 978-1-4503-4771-6/16/12...$15.00
DOI: http://dx.doi.org/10.1145/2991079.2991109

operations. For example, in the OpenStack cloud platform, cloud
services authenticate users, provision VMs, manage storage, etc.
Often multiple cloud services collaborate to process a user’s oper-
ation, forming a distributed, cloud computing environment.

One significant problem with this distributed computing environ-
ment is that cloud services themselves are complex software com-
ponents prone to vulnerabilities. In the OpenStack, over 150 vul-
nerabilities have been reported in its cloud services, ranging from
resource misuse [12] to authorization bypass [10] to the complete
compromise of cloud nodes [1]. Further, current cloud platforms
assume a flawed design where distributed cloud services fully trust
each other [43]. Consequently, security breach in a single cloud
service may allow adversaries to propagate attacks to other cloud
services, producing security risks for any user’s cloud resources.

Current defenses against cloud service vulnerabilities are often
limited. First, OpenStack provides defenses to protect commu-
nications among services [28] and mechanisms for reducing user
token privilege [2], but neither defense prevents a compromised
cloud service from misbehaving or propagating attacks. Second, re-
searchers have explored defenses to protect data security in clouds,
including data encryption [31], data sealing [34] and protection
against adversarial hypervisors and privileged domains [53, 9, 6,
46]. However, these systems aim to block cloud components from
unauthorized access to user data, but cloud services often need ac-
cess to user data to perform operations. Third, researchers have
explored defenses to mitigate compromises of certain cloud com-
ponents [45]. These systems often only address compromised com-
pute services and require all other cloud services to be trustworthy.
Finally, researchers have explored approaches to better protect dis-
tributed web applications deployed on PaaS clouds [29, 5]. These
systems focus on protecting data security for cloud-hosted applica-
tions, relying on the cloud platform, including the underlying cloud
services to be trustworthy.

The goal of this work is to prevent malicious users from gaining
unauthorized access to other cloud users’ resources by exploiting
vulnerabilities in cloud services. To achieve this goal, we lever-
age the following insights. First, we find that many cloud services
in the OpenStack cloud platform run in a stateless manner, where
cloud services do not maintain internal state across user operations.
Thus, we propose converting cloud services into a set of stateless
event handlers [15] that are spawned on demand to process indi-
vidual user’s operations with only that user’s permissions. Second,
by applying decentralized information flow control (DIFC) [24]
model, we localize the security decisions made by cloud services
to a few trusted services, thereby preventing adversaries from ex-
ploiting vulnerabilities that may be present in those cloud services
to access users’ data. While the DIFC model has been applied
to distributed systems [52] and even to control user VMs on the

http://dx.doi.org/10.1145/2991079.2991109

cloud [29, 5], a cloud platform based on spawning event handlers
on demand to service user operations presents special challenges
to: (1) restrict how cloud services may be allowed to make security
decisions; (2) select trustworthy nodes for enforcing access con-
trols properly in a dynamic, distributed environment; and (3) limit
the set of nodes a user must trust to service each operation.

We address these challenges by designing the Pileus cloud ser-
vice architecture, which governs the execution of users’ cloud op-
erations across a distributed cloud platform. When a user performs
a cloud operation, a Pileus initiator configures access control for
the operation’s execution in the cloud, only allowing approved pro-
grams when invoked in an operation-specific manner to exercise the
user’s authority (e.g., declassify or endorse user data). To enforce
the user’s access control across cloud nodes throughout the opera-
tion, the Pileus ownership registry selects the cloud nodes deemed
most capable of enforcing the user’s access control throughout op-
eration execution. On each node, a Pileus daemon configures ac-
cess control enforcement to manage the spawned event handlers.
We demonstrate Pileus by porting OpenStack to the Pileus cloud
architecture. We show how the OpenStack cloud services naturally
comply to the Pileus cloud architecture, and how we implement
OpenStack cloud operations in Pileus OpenStack. Results show
that we can improve the security of OpenStack in a systematic way
by factoring existing OpenStack services into event handlers, re-
sulting in no more than 3% additional latency on operation execu-
tion as perceived by cloud users.

We highlight the following contributions of this paper:

e We define the Pileus cloud architecture for preventing mali-
cious users from exploiting vulnerabilities in cloud services
to obtain unauthorized access to other users’ resources by
spawning a set of stateless event handlers to process each
user’s operation with only that user’s permissions.

e Pileus confines event handlers where: (1) a Pileus initiator
configures access control at operation initiation; (2) a Pileus
ownership registry selects cloud nodes to run event handlers
that are deemed most capable of enforcing user’s access con-
trol; and (3) Pileus daemons on each cloud node spawn event
handlers and govern their execution.

e We have ported OpenStack cloud services to Pileus. We
show how Pileus OpenStack systematically prevents the ex-
ploitation of cloud service vulnerabilities in OpenStack to
protect cloud user data for low overhead.

2. PROBLEM DEFINITION
2.1 Security Problems in Cloud Services

Consider a simplified cloud with only the cloud services running
as shown in Figure 1. In this example, user Alice and user Bob
share the same cloud platform (i.e., same set of cloud services), but
are mutually distrustful. Consider the following cloud operations
performed by Alice and Bob.

1. Alice takes a snapshot of her running VM, then terminates
the VM. The used volume of the VM is returned to the vol-
ume store. The snapshot is saved to the image store.

2. Bob requires a new volume from the volume store and at-
taches it to his running VM.

3. Alice requires an image from image store and launches a new
VM based on it.

Below, we identify some security problems that may occur when
performing these cloud operations on current cloud platforms, us-
ing the OpenStack cloud platform [27] as the example.

) Bob
i< . ,,-VM
e : --->[Compute :
Bob API Service ’ Allice
s R
ﬂ '1‘ Allice
Al

.2

Volume || Image
Service)| Service

Figure 1: A simplified cloud platform. Rounded rectangles
represent cloud services, rectangles represent cloud resources.
Solid arrows represent information flows as a result of Al-
ice’s cloud operations and dashed arrows represent informa-
tion flows as a result of Bob’s cloud operations.

A basic data security policy is cloud user isolation. For exam-
ple, VMs owned by Alice and Bob should be kept secret from each
other. However, users may exploit vulnerabilities in cloud services
to bypass even this basic policy. As an example, a vulnerability in
the OpenStack API service [10] allows Alice to bypass the autho-
rization and take a snapshot of Bob’s VM in operation #1 above.
Several similar vulnerabilities [39, 40] were found in OpenStack
cloud services, leading to unauthorized access to cloud resources
of various kinds.

Cloud services also fail to enforce data secrecy over users’ re-
sources. For example, when Alice returns an used volume, the vol-
ume service should ensure that sensitive data on the volume is re-
moved. However, vulnerabilities [12, 13] were found in cloud ser-
vices that may cause the volume erasure to be omitted or bypassed.
Thus, when Bob obtains a volume used by Alice previously, as in
operation #2, he may learn some of Alice’s sensitive data.

In addition, cloud services may fail to enforce data integrity over
users’ critical cloud resources. For example, cloud platforms en-
able their users to specify an image list, listing images that users
have approved for use (i.e., approved the integrity of). Such in-
tegrity protection aims to prevent users from accidentally using cor-
rupted images provided by adversaries. Unfortunately, vulnerabili-
ties were found in cloud services that would subvert this protection.
For example, a vulnerability [41] in the image service allows Bob
to manipulate Alice’s image list to insert his maliciously-crafted
VMs. As a result, when Alice performs operation #3, she may be
tricked into launching a VM using Bob’s malicious image.

Other security issues may stem from the insecure design of the
cloud platform at large. Current cloud platforms assume a trusted
computing base that includes all cloud services. Thus, if a single
cloud service becomes compromised such that an adversary can
control the messages produced by the service, it can easily propa-
gate attacks to other services. For example, multiple attacks [43,
44, 45] were shown that enable adversaries to cause a cloud ser-
vice to forge requests to other cloud services to perform operations
specified by the adversaries.

2.2 Problem Definition

From the above analysis, we identify three main problems of
current cloud platforms: First, cloud services run with too many
permissions. Current cloud services can act on behalf of any and
all cloud users. Consequently, vulnerabilities in these cloud ser-
vices enable confused deputy attacks [17]. Second, cloud services
make security decisions. Current cloud services perform a variety
of access control checks and even define the access control policies
to be enforced in some cases. Such checks can often be bypassed
or omitted and policies may not reflect user requirements, leading
to unauthorized data access. Third, cloud services fully trust each
other. An adversary can forge requests to other cloud services via

cloud service messaging and trick them into performing arbitrary
operations. From a user’s perspective, every cloud service must be
trusted to protect the user’s security, even if the user is not using
that cloud service.

Previous cloud defenses do not address these problems. Systems
such as CloudVisor [53], Self-Service Clouds [9] and Haven [6]
focus on protecting user data against adversarial hypervisors and
privileged domains. Systems such as Cloud Verifier [35] and Ex-
calibur [34] ensure that only cloud nodes that satisfy certain prop-
erties may access user’s data. In both cases, such defenses pre-
vent untrusted code from accessing security-critical data, but cloud
services must process user requests while protecting each user’s
data. Thus, these defenses do not prevent cloud services from be-
ing leveraged as confused deputies nor do they prevent adversary-
controlled cloud services from propagating attacks.

These problems represent some of the core challenges in build-
ing secure systems in general. For example, Asbestos [15] studied
how multi-user programs (e.g., web servers) can be confined to run
with least privilege. DStar [52], Fabric [23] and Mobile-fabric [4]
studied how distributed computation can be carried out in a system
where its components do not trust each other. The decentralized
information flow control (DIFC) model [24] and systems [51, 21,
15, 33, 11], as a general approach, show how security of complex
applications can be factored into small and simple programs.

However, the problem for cloud services is that a set of cloud
services need to work together to implement individual operations
on demand isolated from the rest of the system. In a sense, we need
to construct assured pipelines [7] with operation-specific restric-
tions on each pipeline. In addition, these assured pipelines may
leverage arbitrary cloud nodes chosen dynamically, and we need
to ensure that the cloud nodes chosen are capable of enforcing the
access control requirements. DIFC systems do not enforce either
operation-specific constraints nor evaluate the trustworthiness of
nodes based on their workloads.

3. DIFC MODEL BACKGROUND

Pileus adopts its definitions of security labels and ownerships
from the DIFC model in Flume [21] and its definition of message
labels from DStar [52]. Readers who are familiar with DIFC may
skip this section.

Security Labels. DIFC models define security labels in terms of
sets of tags. Tags are random identifiers with no inherent meaning
until they are assigned to labels. Each process runs with two labels,
S for secrecy and [for integrity. If tag as € S for a process
(e.g., cloud service), the process is assumed to hold secrets only
accessible to processes with security labels containing the tag as.
Similarly, if tag a; € I, then that process is endorsed by the creator
of tag a;. Labels form a lattice under the partial order of the subset
relation among tags [14]. Data objects in the cloud (e.g., images,
VMs) are also assigned security labels.

Consider an information flow from a source p to a destination ¢'.
The DIFC constraint that protects the secrecy and integrity of any
information flow p — q is:

Sp C Sgand I, C I, (3.1)

Ownerships. DIFC models may express trust in processes to make
some security decisions on behalf of tags, calling the set of tags in
which a process is trusted ownerships. Functionally, an ownership
allows a process holding the ownership to adjust its security la-
bel by adding and removing such tags. For example, ownership

I'p and ¢ can be processes or data objects, but they cannot be data objects at
the same time.

of secrecy tag a allows a process to remove a from its secrecy la-
bel, trusting the process to declassify its data associated with tag a.
Ownership of integrity tag b allows a process to add b to its integrity
label, effectively trusting the process to endorse data (e.g., input
messages) to satisfy the integrity requirements associated with tag
b. Note that ownerships may be transferred between processes, al-
lowing one process to delegate authority to another.

For secrecy, p would get the maximum latitude in sending data
to g if it lowers its secrecy label to S, — O, and q raises its se-
crecy label to S; U Oy. In this case, the DIFC constraints for safe
information flows are:

S, —0, C SyUO0, and I,—0,CI,U0, (32

Message Labels. When p and ¢ run on different hosts (e.g., cloud
nodes), no single reference monitor can see the labels of p and ¢ at
the same time. In this case, information flow is transitively enforced
using messages labels. Say m is a message sent from p to q. By
attaching a message label to m, the information flow constraint 3.2
thus becomes the following:

Sp— 04 C S € S,U 0, (3.3)

The left half of above constraint S, — O, C S, is enforced on p’s
node and the right half S,,, C S, UQ, is enforced on ¢’s node. The
integrity constraint is similar. Thus two hosts can work collabora-
tively to enforce the information flow constraint.

Example. Figure 2 illustrates some uses of the DIFC model in ad-
dressing problems introduced in Section 2.1. Figure 2(a) shows that
by confining cloud services to their respective users’ secrecy labels,
Alice (S = {a}) and Bob (S = {b}) can only access their own
VMs. Such isolation would be end-to-end, restricting cloud service
interactions as well (e.g., Alice’s services cannot forge messages
for Bob’s services or modify Bob’s cloud resources). Figure 2(b)
shows that when Alice wants to release a used volume to public, the
volume must first be sanitized by a declassifier whose trust is con-
ferred by running with Alice’s ownership. Similarly, Figure 2(c)
shows when Alice wants to use a public image provided by Bob,
the image must first be verified by an endorser whose trust is con-
ferred by running with Alice’s ownership.

4. PILEUS DESIGN

4.1 Pileus Overview

Based on the problems highlighted in Section 2.2, we identify
the following security goals for the Pileus design.

e Minimize Permissions: Restrict event handler permissions
to only those necessary for executing the handler for the spe-
cific operation, typically the permissions of the user request-
ing the operation.

e Minimize Security Decisions: Restrict security decisions to
only those cloud services that are trusted by the users to man-
age their data security.

o Eliminate Dependence on Untrusted Nodes: A users’ data
security should never depend on cloud nodes that the user
does not trust. Further, when performing an operation, a user
should delegate his trust to the node that has the least likeli-
hood of compromise.

To achieve these goals, we leverage the following insights. First,
we can spawn cloud services on demand as event handlers that run
with only the permissions necessary for that command. The event
handler abstraction was proposed for the Asbestos system [15],
where stateless services are launched with minimal permissions.

Alice-API - Alice-Compute - Alice-VM
[s {a} S={a}] S={a}

ﬂ_ _>[Alice-Volume}[Alice-Declassiﬁer]
S ={a} S ={(a}, O={a}

> Allce-Compute Alice-VM
I= {a} I ={a}

\®,’

N
Bob-API Bob-! Compute Bob-VM
S={b} S={b} S={b}

(a) Alice’s cloud services and data
are jsolated from Bob’s

(b) Cloud services cannot release Alice’s
data to public unless properly declassified

\

S

\
\

® Alice-Endorser
1

I ={a}, O={a}
Bob’s Image
| = {b}

(c) Cloud services cannot read public
data unless properly endorsed

|
1

|

|

1

1

1

1

i

|

Volumes Store :
S={}]

|

1

1

1

1

1

1

Figure 2: Decentralized information flow control examples in Pileus.

_op | Plleus Ownershlp .
ﬂ Reglstry OR mediates spawn

Alice
spawn
v spfwn spawn
API Compute Image
Event Handler Event Handler Event Handler
Plieus | DIFC Plieus | DIFC Plieus | DIFC

Daemon | Kernel Daemon | Kernel Daemon | Kernel

cloud node cloud node cloud node

Figure 3: Overview: a user operation performed on Pileus.

The Pileus design leverages this insight because we find that cloud
services are already architectured as stateless services, although
we need a platform to spawn such event handlers dynamically in
a manner that complies with the user’s security policy. Second,
researchers have proposed the decentralized security principle [4],
which states that the security of a principal must not depend on any
part of the system that it does not trust. The Pileus design targets
this goal by choosing nodes most capable of enforcing the user’s
security policy to run event handlers, and prevent nodes not trusted
by a user from tampering with the user’s data security. We leverage
prior work in secure capability systems to prevent depending on
nodes that would violate security constraints [16] (i.e., could be an
adversary). Third, the decentralized information flow control [24]
(DIFC) enables access control that expresses a subject’s (e.g., event
handler) authority over security decisions explicitly as ownerships
(see Section 3). The Pileus design leverages this insight to restrict
the security decisions to only event handlers that are trusted by the
user to manage their data security.

Pileus utilizes these insights to implement user operations as fol-
lows, shown in Figure 3. First, when a user submits an operation to
the cloud, the Pileus initiator validates the user’s identity and com-
putes the access control requirements for executing the operation,
as described in Section 4.3. Second, each user operation is exe-
cuted as a set of event handlers launched on-demand, correspond-
ing to the cloud services needed to complete the operation on the
old cloud platform. Starting with the Pileus initiator, requests to se-
lect nodes on which to spawn new event handlers are submitted to
the Pileus ownership registry, which selects a node that satisfies the
cloud security policy and minimizes the risk of attack from other
users, as described in Section 4.4. Third, each node is empowered
with the ability to enforce DIFC policies securely to govern the ex-
ecution of all event handlers. When a node receives a request to
spawn an event handler, it validates that it has been approved to run
the specific event handler by obtaining an authority token granting
such as capability from the OR. When a node completes the execu-
tion of its event handler, it no longer needs the authority to access
user data, as described in Section 4.5.

The remainder of this section details the key design tasks for
building a Pileus system. The foundation of Pileus security is the
spawn protocol, described in Section 4.2, which determines how to
distribute the authority to enforce DIFC policies over every event
handler while preventing unauthorized access to user data. The

other design tasks involve best effort methods to restrict the event
handlers that may make security decisions (Section 4.3), to select
nodes that satisfy a cloud security policy while minimizing risk
(Section 4.4), and to enable individual cloud nodes to revoke au-
thority from their delegatees (Section 4.5).

Security Model. In Pileus, we assume the trustworthiness of two
global services: a Pileus initiator that authenticates users and com-
putes access control requirements for their operations, and a Pileus
ownership registry that manages the authority distribution. Since
these services are relatively static and simple, we expect them to be
fully trusted by any user in cloud. We trust the cloud vendor at the
organizational level.

The local enforcement mechanism on each cloud node consists
of a Pileus daemon and a DIFC kernel. A user trusts those services
on any cloud nodes that run her cloud services. However, we do not
assume the mutual trust between enforcement mechanisms on dif-
ferent cloud nodes; that is, we assume individual cloud nodes may
be under the complete control of an adversary. Thus, the TCB of
a cloud user will include the globally trusted services and the local
enforcement mechanisms to which the user has delegated her au-
thority. The attacks we aim to block are exemplified in Section 2.1.
We assume an adversary may launch confused deputy attacks or
gain complete control over cloud services by exploiting vulnerabil-
ities in them. He may further escalate his privilege on a cloud node
(e.g., by exploiting a kernel vulnerabilities). Pileus’s approach for
mitigating adversarial cloud services and nodes is to enforce the
decentralized security principle [4]: a user’s data security does not
depend on any components of the cloud platform that are not part
of her TCB.

4.2 Pileus Spawn Protocol

The execution of a user operation in a Pileus cloud is imple-
mented by spawning a sequence of event handlers for each program
necessary to complete the operation. Thus, the security of operation
execution is governed by the protocol to spawn event handlers to
execute user operations, the spawn protocol shown in Figure 4(a).
In the spawn protocol, a cloud node wishing to spawn an event han-
dler on another cloud node, the parent node, presents evidence of
its authority over a user operation (called an authority token below)
and the program to be spawned to the Pileus ownership registry
(OR). The OR completes the spawn protocol by choosing a farget
node to execute the specified event handler and producing evidence
that the target node can also act on behalf of the user operation (i.e.,
access user data on that node and make further spawn requests on
behalf of the user).

The aim of the spawn protocol is to prevent: (1) nodes that lack
a user’s authority from spawning event handlers that may access
that user’s data and (2) nodes that fail to satisfy a cloud security
policy (regarding the user’s trust in the node to enforce her access
control) from being selected (by the OR) as target nodes or given

Event /" Event Event 7 Event
Handler p \ Handler g | Handler p i Handler g
O] 10 ®f [®
Pileus ® Pileus Pileus @ Pileus
Daemon D, Daemon D, Daemon D, Daemon D,
e 9% N
X Y% D
Ownership Ownership
Registry Registry

(@) Spawning an event handler (b) Ownership revocation

Figure 4: Protocols of ownership delegation and revocation.

the authority to execute the user’s handler?.

In Pileus, authority over a user’s operation is distributed to cloud
nodes as authority tokens, t = {own,n, auth, sig}, where: (1)
own are the DIFC ownerships describing the authority of the to-
ken, usually the user’s DIFC label; (2) n is the node for which
the token applies; (3) auth describes the conditions under which
an event handler may obtain ownerships for this operation, which
we call ownership authorizations (see Section 4.3), to control how
ownerships may be used in execution of the operation; and (4) sig
is an OR signature over the first three elements that certifies the
token. In effect, when an OR grants an authority token to a target
node, this implies that the user trusts the node to protect her data
security requirements (i.e., enforce her DIFC policy) for the execu-
tion of this operation. Each cloud node runs a Pileus daemon which
obtains, propagates, and revokes (see Section 4.5) authority tokens
for each node.

In Pileus, the OR produces authority tokens for a target node only
when the distribution of a user’s trust to that node complies with a
cloud security policy. Such cloud security policies could prevent
mutually distrustful users from running handlers on the same node
(i.e., conflict-of-interest policies), could prevent handlers from be-
ing deployed on nodes that ran privileged handlers on behalf of
other users (i.e., information flow policies), and could prevent the
use of nodes that have run too many handlers or handlers on be-
half of too many users (i.e., cardinality policies). Traditionally,
capability systems (like DIFC) allow the holders of authority to
choose how they propagate authority, but this may present prob-
lems in the cloud because a compromised or ignorant cloud node
may violate the cloud security policy that protects the user’s oper-
ation. This problem is analogous to the classic capability system
problem caused because the authority to exercise a capability also
permits the authority to delegate capabilities, leading to violations
of the x-property [49]. Thus, we leverage the solutions proposed
to solve the classical capability system problem [19, 38, 16], in
particular identity-based capabilities in the ICAP system [16] that
associate authority with individual nodes and validate the propaga-
tion of such authority.

Figure 4(a) shows how an event handler dynamically spawns an-
other event handler. When a handler p needs to spawn another
event handler, its request (i.e., event) will be proxied by its Pileus
daemon D, (Step 1). D, will send the spawn request to the OR
(Step 2). In its spawn request, D, must specify the authority token
t that it would like to delegate. This reflects the fact that spawn-
ing event handlers on a new node requires a user’s trust in that new
node. After receiving the spawn request, the OR checks in its own-
ership graph, a data structure that tracks the states of cloud nodes,
to see if D), actually holds the user’s ownership. If so, the OR will
select a target node by running the spawn scheduling algorithm as
discussed in Section 4.4 and update its ownership graph to mark the

2The OR may also prevent a node from being selected as a target node for
functional reasons.

ownership delegation. It will also produce a new authority token for
the target node that incorporates its identity. The OR then returns
a reference to the new authority token as well as the target node
identity to D,, (Step 3). Assume the Pileus daemon running on the
target is called D,. D, will then send p’s event, ¢’s security label
(inherited from p) and the authority token reference to D, (Step 4).
D, will query the OR to retrieve the authority token created for it
(Step 5 and 6). It then validates if the authority token is sufficient to
create ¢’s label. If so, D, launches g with specified label and may
or may not delegate ownerships to ¢ depending on whether or not ¢
meets the ownership authorizations specified in the authority token
(Step 7), as discussed in Section 4.3. As q is run, the Pileus kernel
and other Pileus enforcement mechanisms on ¢’s node ensure that
all ¢’s data accesses comply with the DIFC policy.

It is easy to prove that this spawn protocol satisfies the expected
security properties. First, it prevents a parent node that lacks a
user’s authority (per the OR) from spawning event handlers that
may access that user’s data. If a parent node provides an author-
ity token that does not correspond to the authority tokens stored
by the OR, then the delegation request will be rejected. Further,
since nodes can only access user data on their node or by spawn-
ing an event handler on another node, the parent node will not be
able to trick the target node into access user data on its behalf. This
ensures the decentralized security principle. Second, no node that
fails to satisfy a cloud security policy will obtain an authority token
for that user’s operation. The OR checks the cloud security policy
when selecting a target node and the OR validates the cloud secu-
rity policy when producing an authority token. This ensures that
cloud security policy will always be met. In addition, the OR uses
a best effort protocol to select targets to lower the risk of choosing
a compromised node, as described in Section 4.4.

As an optimization, the parent node needs not request the identity
of a target node from the OR each time. A parent node may cache a
set of approved nodes or reuse nodes from previous spawn requests
for that operation. In this case, the parent node may submit an event
and its authority token (in lieu of a reference to a new token) in a
spawn request to a target node optimistically to reduce messaging.
The target node will still only be allowed with the user’s authority
should an OR provide a authority token for that user to the target
node. In this case, the spawn request from the parent node must be
signed to enable the OR to verify the source and include a nonce
for replay protection.

4.3 Restricting Security Decisions

In Pileus, security decisions, such as declassification and en-
dorsement of cloud objects, are localized to certain event handlers
that a cloud user trusts to manage their data security. For exam-
ple, Figure 2(b) shows that a volume declassifier is trusted by Al-
ice (e.g., Alice-Declassifier) to remove secrets before releasing the
volume to public, and to declassify the volume this declassifier
runs with Alice’s ownership. Since event handlers are dynamically
spawned, one way for a trusted event handler to obtain ownership
is by inheriting the ownership from its parent (e.g., Alice-Volume).
However, this defeats the purpose of DIFC, as we want to localize
the authority to make security decisions to only the event handlers
the user trusts. Other event handler are confined so that they cannot
violate the user’s data security either inadvertently or intentionally.
As a result, we need a mechanism in Pileus that authorizes the in-
vocation of event handlers with user ownerships.

This problem is analogous to the sefuid problem of UNIX sys-
tems, where certain programs (e.g., /ust/bin/passwd) are allowed
to escalate privileges on invocation (e.g., run as the root user),
whereas others are confined to user permissions. Current methods

to allow escalation of privileges on invocation are either inflexible
or fail to prevent a compromised parent process from exploiting
ownerships. One approach is to statically associate ownerships to
event handlers, as adopted by some DIFC systems [21, 11]. How-
ever, we do not want declassifiers to be able to run with ownerships
of all the users that have approved its use. Alternatively, systems
use the security labels of the parent process and/or the program to
be executed to determine its authority, such as SELinux [26] tran-
sition rules. However, simply checking the label of a program file
does not prevent a compromised event handler from running modi-
fied binaries, applying ownerships to the wrong objects, or invoking
programs with ownership for the wrong operations.

Pileus includes a mechanism for computing legal delegations
of a user’s ownership to an event handler by relating the invo-
cation of an event handler approved to hold such ownership to a
specific operation from that user. When an operation is received,
Pileus maps the operation to a set of authorized delegations that
are allowed for the operations execution. These authorized dele-
gations are called ownership authorizations, which are tuples of
the form auth = (h(e),own(e),args(e)), where: (1) h(e) is
the hash of the event handler e’s code; (2) own(e) are the own-
erships to be delegated to the event handler e; and (3) args(e) =
{(arg1,indy)...(argn,ind,)} is a specification of specific argu-
ment values arg; and index values ind; input to the event handler
e. Only if the program corresponding to the hash value h(e) is in-
voked by the user whose tags correspond to own(e) with the argu-
ments specified by arg(e) does the resulting event handler obtain
that user’s ownerships.

Pileus constructs ownership authorizations primarily from user
operations. When a user runs a operation, Pileus records the user’s
ownerships and maps the operation’s arguments to the expected ar-
guments for the specific invocations. Operation-specific rules are
necessary to define these mappings, but fortunately, there are not
a large number of event handler invocations that require owner-
ship. The identity of approved endorsers and declassifiers for par-
ticular operations must be provided ahead of time by the users,
but this decision may be aided by a trusted third party chosen by
each user. To return a volume as shown in Figure 2(b), Alice only
needs to specify the hash of the volume declassifier that she trusts,
h(vd). The secrecy label of the volume declassifier and the argu-
ment it is spawned with (in this case, the volume ID to release)
will be inferred from Alice’s operation submitted to the cloud,
producing a ownership authorization Ty, = (h(vd), {a}, {volume-
id[INDEX]}).

4.4 Selecting Nodes for Spawning Handlers

In Pileus, spawning an event handler on a node means that the
user trusts the chosen cloud node (i.e., its kernel and Pileus dae-
mon) to protect her data security. This trust may be misplaced if
the node is not capable of protecting the user’s data security be-
cause it may include adversarial code in its trusted computing base
or be compromised.

Since we do not assume the ability to detect adversarial nodes, in
Pileus, we devise a spawn scheduling algorithm that allows cloud
to act on behalf of users to select cloud nodes that are most likely
to be capable of protecting the user’s data security. This algorithm
leverages users’ security constraints (e.g., a conflict-of-interest pol-
icy among users) and functional constraints of cloud vendor to find
legal nodes for spawning an event handler for a user. In addition,
the spawn scheduling algorithm aims to select nodes in a manner
that minimizes the additional likelihood that a user’s operation may
be compromised given the current state and history of the node.

The foundation of the spawn scheduling algorithm is a data struc-

Input: Ownership graph GG, ownership to delegate o, and cloud policy P
Output: Selected cloud node n

: for i € TCB(o, G) do > Set of available node that already hold o

1

2 if ¢ meets P then > A cloud node that satisfies cloud policy
3 n<—1

4: return

5: end if

6: end for

7: ® + SORT_BY_CURRENT(G) > Sorted nodes by current users
8: for S € ® do

9: S’ < SORT_BY_HISTORY(S, G) 1> Further sort nodes by history
10: for k € S’ do
11: if k meets P then
12: n<+—k
13: return
14: end if
15: end for
16: end for

Figure 5: Spawn scheduling algorithm

ture that represents the state of the cloud nodes running event han-
dlers, which we call the ownership graph. An ownership graph,
G = (V, E), where: (1) vertices v € V are the set of ownerships
granted per cloud node, v = (0,n), where u is a user’s ownership
and n is a node and (2) edges (u,v) € E are the ownership del-
egations from vertex u on one node to vertex v on a second node.
The ownership graph enables us to reason about two main things:
(1) the set of nodes that are already part of a user’s TCB by virtue
of having been delegated with that user’s ownership and therefore
trusted to protect that user’s data security and (2) the set of own-
erships that must be managed by each node in order for that node
to protect all those users’ data security requirements from attacks
from other nodes.

The spawn scheduling algorithm is illustrated in Figure 9. The
algorithm takes the ownership graph G, the particular ownership
to be delegated o, and the security and functional policies for the
cloud P. First, Pileus will always try to spawn event handlers on
cloud nodes that are already part of a user’s TCB (i.e., the same
cloud node or other nodes that currently hold the user’s ownership).
Only if these nodes are not available (e.g., they do not meet cloud
policies), will the event handler be spawned on another cloud node
because such as choice would expand a user’s TCB.

If a new cloud node must be introduced into a user’s TCB, this
node must also satisty the cloud policy P and must minimize the
likelihood of compromise. Two metrics are considered to minimize
the likelihood of compromise. First, Pileus will try to spawn on a
node that least number of users are currently using. A best case
scenario is that the user will be the only one on the node. Second,
Pileus will try to spawn on a node with shortest history (i.e., least
number of users have used the cloud node since its last reboot).
This reduces the likelihood of the node being "polluted"” (e.g., has
backdoors implanted by attackers) by other users. Ideally, the cloud
node is freshly installed from a clean state®.

4.5 Revoking Authority

Spawn may expand a user’s TCB to new cloud nodes. However,
we do not want the cloud node to be in a user’s TCB forever. Thus,
it is important to revoke the user’s ownership from a cloud node
once the node is no longer involved in serving the user’s opera-
tion, reducing the attack window available to adversary if the node
becomes compromised.

One challenge is to figure out when a cloud node is no longer
involved in executing a user’s operation. Fortunately, it is straight-
forward when using event handlers in the cloud. Since cloud ser-

3In Pileus, we periodically re-image a cloud node to restore it to a pristine
state, using a mechanism similar to cloud verifier [35].

vices are stateless, one request will have only one response. Thus,
when an event handler returns a response, it indicates that the event
handler has completed its job. It is then safe to revoke the user’s
ownership for running that event handler from that cloud node. In
case an event handler never returns (e.g., due to node failure, or an
adversary trying to extend its attack window), a request timeout can
be used as a signal of revocation of *. However, if a node causes
timeouts frequently, the cloud vendors may detect this behavior as
an anomaly. Using event handler completions for revocation en-
ables Pileus to reduce the temporal attack window for adversaries
to compromise a node running a particular user’s service.

The revocation protocol is shown in Figure 4(b). The revocation
protocol in Pileus leverages the response generated by an event han-
dler g as a signal of revocation. After ¢ completes, it would return a
single response to p (step 1), and response is proxied by D, to D),
(step 2). After D, receives the response, it will send a revocation
request to the OR (step 3), revoking any authority delegated to the
target node via D,. The OR validates the revocation request using
its ownership graph, and it removes the edge along with the owner-
ships held by the target node in the graph. In addition, the OR will
also purge any authority tokens that are associated with the delega-
tion. This effectively invalidates the ownership held by the Pileus
daemon Dy, so D, will no longer be able to spawn event handlers
on other cloud nodes using that authority token. The OR confirms
the revocation (step 4), and D,, proxies the response back to the
requesting event handler p (step 5). Compared with an expiration
based strategy [52], revocation in Pileus is more timely. Author-
ities are revoked from a cloud node immediately after the event
handler running on top completes its job, leaving no unnecessary
cloud nodes within a user’s TCB.

S. IMPLEMENTATION

The Pileus implementation consists of introducing the new,
trusted Pileus services (Section 5.1), decomposing OpenStack
cloud services to run on Pileus (Sections 5.2 and 5.3), and ensuring
Pileus can enforce isolation among users and between handlers and
each node’s privileged processes (Section 5.4).

5.1 Trusted Services

In Pileus, there are two globally trusted services: the Pileus ini-
tiator and the Pileus ownership registry. The Pileus initiator serves
as a trusted portal for cloud users to initiate their cloud operations.
It (1) collects the declassifier or endorser that the user wants to use
in her operation and maps it to the corresponding hash; (2) infers
the input arguments to the declassifier or endorser from the user’s
operation and (3) maps the user’s credentials to corresponding tags.
It then constructs the ownership authority for the user’s operation
and collaborate with the ownership registry to spawn the first event
handler (often event handler of the API service) for the user’s oper-
ation. Its code base is ~500 SLOC. The Pileus ownership registry
maintains the ownership graph, and runs the spawn scheduling pro-
tocol to ensure that the delegation of user’s authority meets cloud
policy. Its code base is ~1200 SLOC. Both Pileus initiator and
ownership registry are implemented in Python.

5.2 Event Handlers

The existing code for the OpenStack cloud services forms the
basis for the event handlers in Pileus-OpenStack. Our observa-
tion is that OpenStack cloud services® are constructed using an

4Current cloud platforms use request timeouts to detect node failures.

SIn this work, we focused on 10 cloud services as a proof-of-concept: nova-
api, nova-scheduler, nova-conductor, nova-compute, nova-network, glance-
api, glance-registry, cinder-api, cinder-scheduler and cinder-volume. These

event-dispatch loop. When an event arrives at a cloud service, it
is dispatched to a worker thread for processing that event. Across
events, the cloud services retain no persistent state, freeing each
worker thread to run independently on one event, just as we re-
quire for event handlers. We extract the worker thread code from
the cloud services that leverage this event-dispatch loop design to
create event handlers. Each event handler is invoked as part of a
single cloud operation performed by a single user, enabling Pileus
to confine them to the user’s security label.

Event handlers may run helper programs, such as legacy Linux
utilities (e.g., gemu-img), to complete their processing on the host.
These helper programs are ephemeral as well—they are executed
to complete one job and exit after the job’s completion. In Pileus,
helper programs’ processes inherit their labels from the event han-
dlers that invoked them, so they are confined by the Pileus.

The advantage of DIFC approach is that we did not need to un-
derstand all of OpenStack’s code. Majority of event handlers are
decomposed as-is from worker threads of cloud services. Only a
few required modification in order to invoke declassifiers or en-
dorsers or to interact with the database, as we will discuss later.
The total modifications we made to event handlers constitute ~300
SLOC out of the ~120,000 SLOC (not counting Python libraries
used) for the 10 OpenStack cloud services in our deployment.

5.3 Pileus Daemon

Events in OpenStack are implemented in either one of two forms:
HTTP requests or messages from the message queue. Thus, cloud
services often share the same underlying implementation of the dis-
patcher loop—diftferent types of cloud services only differ in the
specific implementation of event handlers. Thus, the bulk of Pileus
Daemon implementation comes directly from the dispatcher loop
of cloud services. We mainly augmented it with the ability to man-
age labels and ownerships for event handlers and to execute the
spawn and revocation protocols discussed in the design. The to-
tal code base for Pileus Daemon is ~5000 SLOC, out of which
~3,800 SLOC originates from the dispatcher loop of OpenStack
cloud services and ~1,200 SLOC are our additions.

5.4 Pileus Enforcement Mechanism

Pileus Kernel. Most of the cloud objects that are managed by cloud
services are files (e.g., images, VM disks). For Pileus, we built a
DIFC kernel to enforce access control over these objects on each
cloud node. The DIFC kernel is mainly implemented as a kernel
security module, leveraging the Linux Security Module hooks [50].
Unlike Flume [21], we did not modify the system call interface. In-
stead, we implemented the label and ownership operations through
an interface similar to device drivers. A user space library is created
for exposing an API abstraction to Pileus Daemon and DIFC-aware
event handlers. The kernel module is ~9,000 SLOC and the user-
space library is ~1,200 SLOC.

Network Namespace. Network Service (e.g., nova-network) con-
figures network objects such as Linux bridges, software switches,
and iptables, on a cloud node, in order to manage networking for
VMs. These network objects are challenging for access control
since they are kernel resources which are traditionally treated as
single objects by the kernel from an access control perspective.
Thus, a vulnerability in an event handler may enable one user to
modify the network configuration of another user. For example,
inappropriate processing of firewall rules [42] allowed one user to

services implemented the core functionality of a cloud platform. The rest
OpenStack cloud services are designed in a similar fashion that will plan to
include in future.

w

: Firewall
Brid

Alice-VM Bob-VM
S={a} S={b}

&>

Bridge

Firewall - :
Rules Bridge Bridge

Alice-VM Bob-VM
S={a} S={b}

net_ns_1| |[net_ns_2

Firewall
Rules

Figure 6: Isolating networking objects via network namespace.

block the network connection of another. To mitigate such vulner-
abilities, Pileus must isolate each user’s network objects in order to
provide effective access control.

To achieve this goal, we leverage the network namespace ab-
straction of the Linux kernel in our implementation. A network
namespace is logically a separate copy of the network stack, with
its own network devices, routes, and firewall rules. Network objects
can be isolated into different network namespaces. By running each
event handler with access only to its user’s network namespaces,
the Pileus kernel restricts each event handler to its user’s network-
ing objects. Figure 6 shows an overview of our implementation for
nova-network. Each VM is attached to a private Linux bridge that
runs in its own network namespace. To access physical network,
the two private bridges are connected to a host bridge via veth
pairs. The host bridge runs in the native network namespace and
contains physical network interface as one of its ports. When an
event handler specifies a firewall rule, the rule will be applied to
the private bridge instead of the host one, therefore eliminating its
potential effects on other user’s VMs.

Database. OpenStack relies on legacy database servers to store
database objects (e.g., metadata of user such as their SSH keys). To
extend information flow control to the database objects, we rely on
the security framework built inside of the database servers. SEPost-
greSQL [36] assigns labels to database objects and enforces access
control over all requests to database objects. For each access re-
quest, the label of the requestor as well as the database objects are
passed to a security server (the Pileus kernel in our case), which
performs the access decision, enabling consistent enforcement of
access control for system and database objects. The downside of
this approach is, however, the database server must be fully trusted,
since it runs the enforcement mechanism.

In order to obtain the label of the requestor (i.e., the querying
event handler), we disable all remote connections to the database.
Instead, an event handler requesting database access must spawn
a special event handler, called DB-Client, on the cloud node that
hosts the database server. The DB-Client will inherit its parent’s
label through the Pileus spawn mechanism, and connect to the
database server via a Unix domain socket. The database will obtain
the DB-Client’s label from the socket descriptor (e.g., using the get-
peercon APl in libselinux [22]). This prevents an adversarial cloud
node from accessing arbitrary data from the database server, since
an adversarial node can only spawn DB-Clients with the labels of
users for which it holds ownerships.

Libvirtd. In OpenStack, VM objects (e.g., VMs, containers) are
managed by virtualization drivers which are often daemon pro-
grams that run with root privilege. One example is libvirtd. The
question is how to extend access control to these VM objects, pre-
venting these daemons from being leveraged as confused deputies
(e.g., In current OpenStack, Bob’s event handler may ask libvirtd
to operate over Alice’s VM).

Labeled peer libvirtd

Alice-Compute connections q Alice-VM
S={ worker)< T| S=fa
Security

- L framework
Bobs(io;;l}pute < Socket ﬁ(wcrker) < l4,| Bob-vM

S ={b}

Figure 7: Information flow between event handlers of compute

service and libvirtd daemon.
CVEID Affected Cloud Service Mitigated

CVE-2015-1195 Image Service (Glance) Yes
CVE-2015-1850 Volume Service (Cinder) Yes
CVE-2015-1851 Volume Service (Cinder) Yes
CVE-2015-5163 Image Service (Glance) Yes
CVE-2015-7548 Compute Service (Nova) Yes
CVE-2015-3221 | Network Service (Neutron) | No*

Table 1: Information flow control vulnerabilities in OpenStack.

AN B W

To address this problem, we enhance libvirtd with an in-daemon
security framework that can validate whether the requesting event
handler has the same label as the resources to be operated upon,
similar to SEPostgreSQL [36]. As shown in Figure 7, the basic
idea is that when an event handler establishes a connection to lib-
virtd through a Unix domain socket, the in-daemon security frame-
work retrieve labels of the event handler from the socket descrip-
tor (e.g., via getpeercon). Then, when the event handler requests
libvirtd for a VM operation, the security framework compares the
label of the event handler with the label of the VM, ensuring that
the event handler is authorized to operate over the VM. At present,
this enforcement mechanism is embedded into the libvirtd. We will
explore using the Pileus kernel as the security server in the future.

6. EVALUATION
6.1 Mitigating Cloud Service Vulnerabilities

In this section, we show the security improvement made by
Pileus over the off-the-shelf OpenStack, both through a system ex-
ploit experiment and a qualitative analysis.

Exploit Experiment. We ported OpenStack Icehouse 2014.1 to
Pileus. Six information flow vulnerabilities were reported after our
installation. Five of them are present in our deployment and one is
not. To conduct the comparison, we did not patch the cloud services
and try to exploit them in vanilla OpenStack and OpenStack on
Pileus respectively. The vulnerabilities are listed in Table 1.

Vulnerability 1 is a pathname resolution bug in image service.
Exploiting the vulnerability, we were able to read arbitrary image
files on an image node that runs vanilla OpenStack image service.
In contrast, Pileus successfully prevented the vulnerable image ser-
vice from reading other users’ images since the event handler of
image service is confined to a user label.

Vulnerability 2, 3, 4 and 5 are of a similar kind: by exploit-
ing them, we were able to read/overwrite arbitrary files on a cloud
node. The attacks happen due to a helper program gemu-img that
was called by cloud services to process user images. If not explic-
itly specified, gemu-img will infer image type and automatically
read necessary files (e.g., base file for a qcow2 type image) to build
the image. An adversary may thus trick a vulnerable cloud ser-
vice into accessing files that he does not have access. Although
the vulnerabilities remain unpatched, Pileus successfully prevented
vulnerable cloud services from being utilized to access arbitrary
files. In Pileus, gemu-img program runs with a user label inher-
ited from the event handler that invokes it. Consequently, the only
files that it can access are the ones that have the same label.

Vulnerability 6 was identified in OpenStack network service

Op | boot delete resize snapshot migrate vol-attach
|10 7 8 5 8 6

Table 2: Maximum number of nodes that needs to be trusted
when performing cloud operations.

[+ T T T

2 original Openstack

» 1000 p—— WO Tévbchtion ==

a - r“"* revocation by expiration (DStar)

z A timely revocation (Pileus) —#—

c 800 - }I/’r timely revocation with spawn scheduling (Pileus) —=—

5]

2

g 600F },?{ e

3 /

T

6 «‘f

g 400- £ B

F=} {

£ /

2 /

= 200], S * HAH -

4 J

7 i

o

x o - -

[} 0 \=m= & 7 i i &
0 500 1000 1500 2000

Number of cloud operations

Figure 8: Expected number of cloud nodes in a user’s TCB.
The simulation consists of 1,000 cloud nodes. 5 are randomly
picked each time to perform a cloud user’s operation, and 10
operations are performed per second.

(Neutron) but not in the legacy nova-network that we used in our
deployment. Thus we did not test against it. However, we note
that by design Pileus can mitigate this vulnerability. The vulner-
ability is caused by incorrectly parsing iptables firewall rules that
an adversary may leverage to block network connections of others.
In Pileus, we used network namespaces to isolate the firewall rules
for different users. Thus incorrect parsing of firewall rules can only
affect a single network namespace, the adversary’s own namespace.

Qualitative Analysis. In order to have a big picture of how Pileus
can improve OpenStack security, we performed a qualitative anal-
ysis of all 154 vulnerabilities identified in OpenStack so far®. We
found that 1/3 (53 out of 154) of OpenStack vulnerabilities are re-
lated to information flow problems studied in this paper, and Pileus
systematically mitigate those vulnerabilities.

6.2 Reducing the Cloud Users’ TCBs

In the original OpenStack, a user needs to rely on all cloud nodes
to execute their user operations securely, so all cloud nodes are in
the trusted computing base (TCB). Consequently, a compromise of
any single cloud node allows adversary to gain control over any
user’s data, cloud wide. In contrast, Pileus restricts the data acces-
sibility of a cloud node to the authority held by it. Thus, data loss
due to a node compromise is bounded by the trust placed on the
node. Table 2 shows the maximum number of nodes that need to
be trusted in order to perform various cloud operations on Pileus’.
As shown in the table, the size of each operation’s TCB is reduced
to a handful of cloud nodes that are actually involved in each user’s
operation, instead of the entire cloud.

In addition, Pileus further reduces the amount of time that a user
needs to trust a cloud node in an operation through its timely revo-
cation mechanism. This reduces temporal attack surface of a user’s
TCB. To show the effect of the mechanism, we saturate a cloud
with a large number of concurrent user operations and evaluate the
average size of the user’s TCB®. Figure 8 shows the result. The

5These vulnerabilities came from OpenStack versions spanning from 2012
to 2016. Therefore much of this evaluation is necessarily qualitative.

7The maximum occurs when every event handler involved in the operation
runs on its own cloud node. The actual number is often much smaller since
Pileus will always try to schedule event handlers of the same cloud opera-
tion on the same cloud node.

81n this case, a user’s TCB at a given time becomes a composite of all cloud

simulated cloud has 1,000 cloud nodes, and to simplify the dis-
cussion, we ignore the actual service deployment and assume each
user operation takes five cloud nodes picked at random. We then
investigate the effectiveness of different approaches by comparing
the expected number of cloud nodes of a user’s TCB (Y-axis in the
figure). The X-axis is the number of cloud operations performed
by the user.

In original OpenStack, a user’s TCB includes all the cloud nodes
(black line at top). In contrast, when enforcing a decentralized se-
curity principle, a user’s TCB dynamically expands as more cloud
nodes are involved in his operations (red line). However, without
revocation, the user will eventually end up trusting all the cloud
nodes in the cloud. When an expiration-based strategy is adopted,
the user’s trust is revoked from a cloud node after a certain period.
In our simulation, we set the expiration time to be 15 seconds. The
expected size of the user’s TCB in this case converges to around
530 cloud nodes (green line). In contrast, Pileus adopts a timely
revocation where trust is revoked immediately after a cloud node
completes its processing of the user’s operation. In the experiment,
we used our observed service duration of 2 to 8 seconds in a uni-
form distribution. In this case, the expected size of the user’s TCB
converges to around 220 cloud nodes (blue line). When we adopt
Pileus’s spawn scheduling algorithm, which gives priority to cloud
nodes that are already within a user’s TCB, the size of user’s TCB
converges to 25 cloud nodes (pink line) in this experiment, assum-
ing that each cloud node can serve at most 10 concurrent opera-
tions.

6.3 Optimizing the Cloud Users’ TCBs

Pileus differs from previous DIFC approaches is its ability to
dynamically manage TCB on behalf of cloud users. Its owner-
ship registry runs a spawn scheduling algorithm that computes a
spawn destination, implementing a best effort approach to reduce
the likelihood of compromise of a user’s TCB. To approximate the
likelihood of a user’s TCB compromise, we propose a metric called
Averaged TCB Sharing Factor (ATSF). The ATSF metric reflects an
intuitive observation—the more a user’s TCB overlaps with other
users, the more likely it is to be compromised by one of those other
users (assuming users are equally likely to be an adversary). It is
calculated based on the average number of users per cloud node,
using the following equation where U; is the number of unique
users on cloud node ¢. In an ideal case where each user has no-
overlapping TCB, ATSF would be one. We thus measure three dif-
ferent node selection strategies in OpenStack, and compare them
with Pileus’s spawn scheduling algorithm.

7%::;:1]\[_ where N; = {(1)’ gl N 8 6.1)
i=17"¢ ’ ¢

The result is shown in Figure 9. The simulation consists of 1,000
cloud nodes and 400 cloud users. Each cloud node has a capacity
of 10 operations, i.e., a node can support a maximum of 10 con-
current cloud operations. The X-axis is the total number of cloud
operations performed. They are randomly distributed across 400
cloud users. The Y-axis is measured ATSF. The higher the ATSF
is, the more TCB sharing is observed across cloud users. Thus the
TCB of a cloud user is more likely to be compromised.

The first node selection strategy in OpenStack is maximum uti-
lization. This strategy tries to maximize the utilization of individual
cloud nodes, i.e., unless a cloud node reaches its capacity, it will be
scheduled first. Such strategy is useful when cloud vendor wants
to minimize its cost (e.g., electric bill). As shown in the figure,
the ATSF quickly reaches 10 (the capacity of a cloud node) after

nodes that are involved in concurrent operations.

Maximur;'\ utilization ——

Riardompick——
| Minimum usage
| Least TCB shag

Average TCB sharing factor

0 500 1000 1500 2000
Number of cloud operations performed

Figure 9: Average TCB sharing factor under different node
selection strategies. The simulation consists of 1,000 cloud
nodes and 400 cloud users. Cloud operations are randomly dis-
tributed across cloud users.

Type Number | Example

DIFC-aware 13 nova boot

DIFC-unware | 135 nova volume-attach

Infrastructure | 6 nova host-action

Multiple users | 3 nova host-evacuate

Total 157

Table 3: OpenStack operations.

around 10 cloud operations and stays at 10 thereafter. The second
node selection strategy randomly selects cloud nodes for a user’s
operation. The ATSF increases almost linearly as the number of
operations grow. The third node selection strategy selects least oc-
cupied cloud nodes, i.e., cloud nodes currently performing least
cloud operations. Such strategy is useful when cloud vendor wants
to improve the performance of individual cloud operations. For this
strategy, the ATSF stays at 1 before all the 1,000 cloud nodes are
used by cloud users. Then the ATSF increases linearly, at a rate al-
most the same as the random selection strategy. The ATSF for both
the random selection and least usage strategy eventually reaches 10,
when the cloud is saturated with operations (at ~2000 operations).
In contrast, Pileus’s spawn scheduling algorithm tries to co-locate
the same user’s cloud operations on the same cloud nodes, thereby
reducing the ATSF. As shown in the figure, the ATSF is 1 before all
1,000 cloud nodes are used. Then it increases slowly and reaches
a maximum of around 3 when the cloud is saturated with cloud
operations. This simulation shows that Pileus’s spawn scheduling
algorithm indeed reduces TCB sharing among users.

6.4 OpenStack on Pileus

OpenStack Operations. One concern of DIFC approach is that
cloud services need to be intrusively modified to be aware of DIFC
control. However, as we show in this section, majority of cloud
operations do not require cloud services to be DIFC aware. Table 3
shows cloud operations we studied. Out of the 157 cloud operations
that are available in our deployment, 135 do not require any DIFC
aware cloud services to run. What this means is that despite of
being confined, cloud services involved in these operations are not
aware of Pileus. 13 operations may require certain cloud services to
be DIFC aware—they need to declassify or endorse data on behalf
of cloud users. But as we show later, the types of endorsement and
declassification are limited.

The remaining nine cloud operations are special cloud admin-
istrator operations that fall into two categories. The first category
allows cloud administrator to directly operate over the cloud in-
frastructure. These operations do not involve information flow of

Syscalls (u5) Nfitive Pileus Pileus FlowK Flumve
Linux Mult. Mult. Multi.
open
—create 1.23 6.16 5 8.3 16
—exists 0.62 2.90 4.7 11 34.5
—not exist 0.51 1.69 33 3.7 23.6
close 0.51 0.55 1.1 1.1 1.3
stat 0.33 1.55 4.7 N/A 34.5
readlink 0.34 1.52 4.5 N/A 33
unlink 11.97 24.31 2 N/A 72
fork-+exit 2634 2875 1.1 N/A N/A

Table 4: System call overheads compared with Flume [21] and
FlowK [48]. Results are averaged over 10,000 runs.

user, so Pileus confines cloud services to a vendor label. The sec-
ond category involves operations that operate over multiple users’
data at the same time (e.g., delete all VMs on a node). In this case,
Pileus confines cloud services using group label, which combines
authorities of multiple users that are involved in the operation.

Endorsers and Declassifiers. A cloud operation would involve
DIFC-aware cloud services only if it will cause data to flow across
user boundaries (i.e., resource sharing). In our study, we found that
only two kinds of resources, volume and image, might be shared
across users. Although 13 cloud operations involve volume or im-
age sharing, the types of declassification and endorsement are lim-
ited, as shown below.

User — Public declassification allows a user to safely release a
private resource to public. For images, the declassifier is motivated
by the problem studied in Amazonia [8], where a careless user may
publish her images with sensitive data such as API keys remained.
We thus implemented the countermeasures suggested in Amazonia
which parses the image and scans for any sensitive data. The im-
age declassifier achieves the following security guarantee: without
proper declassification, user images will not be released to public
either intentionally or by mistake.

For volumes, declassification to public means removing any data
residue. So, to implement a volume declassifier, we factored out
the function in OpenStack volume service that zeros out all data on
a volume. The difference is that in OpenStack, vulnerabilities [12,
13] can cause this function to be omitted. But on Pileus, the volume
declassifier must be run to return an used volume.

Public — User endorsement allows a user to safely use a public
resource. For images, the problem is motivated by vulnerabilities
such as [41]. We provided two reference implementations. One
endorses image by performing a checksum against a white list and
another scans the image for malware.

User — User data flow allows a user to selectively share a re-
source with another user (e.g., Alice shares her volume with Bob).
In this case, the owner of the resource needs to declassify the data
(i.e., run a declassifier), and the receiver needs to endorse the data
(i.e., run an endorser). To implement a declassifer for the owner
is different from declassifying to the public, since in this case the
resource may contain private data that the owner wants only the re-
ceiver (e.g., Bob, not public) to be able to access. The general idea
is that declassifier will still run with the owner’s ownership, as it
is trusted by the owner to declassify data, but it will create a new
intermediate secrecy tag, say n, to label the resource and transfer
the ownership of n to the receiver. Then using the ownership of n,
the receiver, and only the receiver, will be able to access the data.
The receiver may endorse the resource using the same endorsers as
if the resource is from public.

Latency(s) | boot delete resize snapshot migrate
OpenStack | 3.92 1.72 4.07 2.83 4.11
Pileus 4.01 1.74 416 291 4.20
Percentage | 2.3% 0.8% 2.2% 2.8% 2.2%

Table 5: Latency for cloud operations.

6.5 Performance

Our testbed consists of six cloud nodes: three running nova-
compute, one running Glance services, one running Cinder services
and the last one running the rest. Cloud nodes are identical blades
with 2.4Ghz Intel E5-2609 CPU and 64GB memory, installed with
Ubuntu 14.04.

Pileus Kernel. Table 4 shows micro-benchmark results for some
system calls. The process under test has secrecy and integrity label
with both 20 tags. For most system calls, Pileus kernel adds a la-
tency of a factor of 1.1-5 with relative to native Linux. Since Pileus
runs the DIFC mechanism in kernel, the performance is better than
Flume [21]. It also appears to be slightly better than FlowK [48],
another kernel DIFC module developed contemporarily.

Pileus Daemon. We evaluate the throughput of Pileus daemon by
stressing it with large volume of events. In original OpenStack,
the throughput for cloud service is 1,200 req/sec whereas in Pileus
it is 950 req/sec (20.8% slowdown). The reason is that cloud ser-
vices spawn green threads but Pileus Daemon spawns processes,
in order to isolate them using user labels. To improve the perfor-
mance, a possible solution is to build new OS abstractions that can
be as lightweight as threads but have the same level of isolation as
processes, such as the event process abstraction proposed in As-
bestos [15]. But this may require intrusive kernel modification.

Ownership Registry. We evaluate the scalability of the OR by
stressing it with high frequency of spawn request. Results show
that the OR can handle up to ~3000 req/sec. Most of the overhead
comes from two sources: (1) the spawn scheduling algorithm and
(2) the OR signing the authority token during spawn. One way
to optimize it is to separate the spawn scheduling algorithm into a
separate service. This service needs not to be trusted, but the OR
must be able to check the output of the service to ensure that the
global cloud policy is met (e.g., Col is not violated).

Overall Latency. Table 5 shows the latency perceived by cloud
users. While Pileus adds latency in its network protocol (due to
the added round of communication with the OR during spawn),
the latency is amortized by the time spent on actually processing
the events. As a result, we noticed less than 3% additional latency
when performing various cloud operations in Pileus.

7. RELATED WORK

There has been much work on improving data security in cloud,
including data encryption [31], data sealing [34], protection against
compromised hypervisor and privileged domain [53, 9, 6, 46] and
leakage detection [30]. These works aim to protect data from par-
ties in cloud that should not have access. Pileus addresses a differ-
ent concern: if a cloud service has legitimate access to data, how
to prevent them from being leveraged as confused deputies due to
cloud service vulnerabilities.

Another line of research focuses on security of cloud infrastruc-
ture. The CV framework [35] allows cloud users to reason about in-
tegrity of cloud nodes. CloudArmor [44] protects cloud operations
performed on benign cloud nodes from compromised ones by en-
forcing a cloud operation model. These works are complementary
to Pileus. SOS [45] addresses the concern of compromised com-
pute services, but it requires other cloud services to be trustworthy.

In contrast, Pileus can systematically run and confine any type of
cloud services. Pileus is motivated by the SCOS [43], which advo-
cates the development of a secure cloud operating system in order
to confine vulnerable cloud services.

Pileus takes advantage of a number of well-established mecha-
nisms in decentralized information flow control (DIFC) systems. In
particular, Pileus adopts its label and ownership from Flume [21]
and its event handler abstraction from Asbestos [15]. The DIFC
model was proposed by Myers and Liskov [24], then it was incor-
porated into programming languages such as Jif [25] and systems
such as Asbestos [15], HiStar [51], Flume [21], Laminar [33] and
Aeolus [11]. These systems often assume a fully trusted reference
monitor (or several mutually trusted reference monitors) that can
track information flows on the system. Pileus, on the other hand,
assumes cloud nodes are mutually distrustful.

Similar to DStar [52], Fabric [23] and Mobile-fabric [4], Pileus
assumes reference monitor on a single node may be compromised
and therefore cloud nodes are mutually distrustful. However, Pileus
differs from these systems in its ability to control authority distribu-
tion. In Pileus, the ownership registry (OR) ensures that authority
propagation across cloud nodes will not violate the cloud policy
and it enables timely authority revocation from nodes. In addition,
Pileus developed a systematic approach for cloud users to delegate
their authorities to event handlers that they trust, without the fear
the such trust might be misused to run other code.

Researchers have shown that DIFC is an useful model in protect-
ing distributed web applications deployed on PaaS clouds [29, 5].
These systems focus on protecting cloud hosted applications and
rely on a trustworthy cloud platform, including underlying cloud
services and nodes. Pileus can be used to secure this foundation.

The ownership authorization in Pileus is motivated by capability-
based systems [37, 47, 16]. A security issue with traditional capa-
bility systems is that they cannot enforce the x-property [49]. To
address this concern, multiple designs [20, 18, 16] were proposed
that combined capability with authority check to limit who may ex-
ercise the capability. Pileus adopts a similar design idea that uses
ownership authorization to securely delegate the ownerships to par-
ticular event handlers that cloud users trust.

Cloud vendors have started developing some countermeasures
to address the security issue reported in this paper. For example,
an OpenStack blueprint [28] proposes to encrypt the message be-
tween cloud services, preventing a malicious cloud node from sniff-
ing the channel. As another example, OpenStack supports scoped
tokens [2] which could reduce the token privilege down a single
project. However, much of these efforts are still ongoing, and they
cannot address the vulnerabilities in cloud services.

8. CONCLUSION

Pileus is a model and system for securing cloud platforms by en-
forcing decentralized information flow control (DIFC) over cloud
services. On Pileus, cloud services are ephemeral, and are confined
to users’ security labels, enabling least privilege. Pileus tracks and
protects users’ data as it flows through the cloud platform there-
fore mitigating both cloud service vulnerabilities and compromised
cloud nodes. We ported OpenStack, a widely used cloud platform,
to Pileus and show that Pileus can greatly improve the security of
OpenStack for less than 3% overhead on user operation latency.

9. ACKNOWLEDGMENTS

The authors thank Danfeng Zhang, Susanta Nanda and the
anonymous reviewers for their comments on drafts of this paper.
This work was supported by NSF under grant No. CNS-1117692.

10. REFERENCES

[1] CVE-2012-3360. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-3360.

[2] Openstack keystone token. http:
//docs.openstack.org/admin-guide/keystone_tokens.html.

[3] Amazon EC2. http://aws.amazon.com/ec2.

[4] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and
A. C. Myers. Sharing mobile code securely with information

flow control. In Proc. 2012 IEEE Security and Privacy, 2012.

[5] J. Bacon, D. Eyers, T. Pasquier, J. Singh, I. Papagiannis, and
P. Pietzuch. Information Flow Control for Secure Cloud
Computing. /IEEE Transactions on Network and System
Management, SI Cloud Service Management, 11(1):76-89,
2014.

[6] A.Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with haven. In Proc.
11th USENIX OSDI, 2014.

[7] W. E. Boebert and R. Y. Kain. A practical alternative to
hierarchical integrity policies. In Proceedings of the Sth
National Computer Security Conference, 1985.

[8] S. Bugiel, S. Niirnberger, T. P6ppelmann, A. Sadeghi, and
T. Schneider. AmazonlA: When elasticity snaps back. In
Proc. ACM CCS’11.

[9] S.Butt, H. A. Lagar-Cavilla, A. Srivastava, and
V. Ganapathy. Self-service cloud computing. In Proc. ACM
CCS’12.

[10] CVE-2012-0030. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-0030.

[11] W. Cheng, D. R. K. Ports, D. A. Schultz, V. Popic,

A. Blankstein, J. A. Cowling, D. Curtis, L. Shrira, and
B. Liskov. Abstractions for usable information flow control
in aeolus. In USENIX ATC’12.

[12] CVE-2012-5625. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-5625.

[13] CVE-2013-4183. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2013-4184.

[14] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236-243, 1976.

[15] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,

D. Ziegler, E. Kohler, D. Mazieres, F. Kaashoek, and
R. Morris. Labels and event processes in the asbestos
operating system. In Proc. ACM SOSP’05.

[16] L. Gong. A secure identity-based capability system. In Proc.
IEEE Security and Privacy, 1989.

[17] N. Hardy. The confused deputy. Operating Systems Review,
22(4):36-38, Oct. 1988.

[18] P. A. Karger. Limiting the damage potential of discretionary
trojan horses. In Proc. IEEE Security and Privacy, 1987.

[19] P. A. Karger and A. J. Herbert. An augmented capability
architecture to support lattice security and traceability of
access. In Proceedings of the 1984 IEEE Symposium on
Security and Privacy, pages 2—12, 1984.

[20] P. A. Karger and A. J. Herbert. An augmented capability
architecture to support lattice security and traceability of
access. In Proc. IEEE Security and Privacy, 1984.

[21] M. N. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information flow

control for standard OS abstractions. In Proc. ACM SOSP’07.

[22] libselinux. http://www.rpmfind.net//linux/RPM/fedora/devel/
rawhide/armhfp/l/libselinux-2.4-5.fc24.armv7hlLhtml.
[23] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C.

Myers. Fabric: A platform for secure distributed
computation and storage. In Proc. ACM SOSP’09.

[24] A.C. Myers and B. Liskov. A decentralized model for
information flow control. In Proc. 16th ACM SOSP, 1997.

[25] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM TOCS, 9(4):410-442, Oct.
2000.

[26] Security-enhanced linux. http://www.nsa.gov/selinux.

[27] OpenStack Open Source Cloud Computing Software.
http://www.openstack.org//, 2008.

[28] OpenStack Message Security.
https://wiki.openstack.org/wiki/MessageSecurity/.

[29] T. Pasquier, J. Singh, D. Eyers, and J. Bacon. CamFlow:
Managed Data-Sharing for Cloud Services. I[EEE
Transactions on Cloud Computing, 2015.

[30] C. Priebe, D. Muthukumaran, D. O’ Keeffe, D. Eyers,

B. Shand, R. Kapitza, and P. Pietzuch. Cloudsafetynet:
Detecting data leakage between cloud tenants. In Proc. ACM
CCSW’14.

[31] K. P.N. Puttaswamy, C. Kruegel, and B. Y. Zhao. Silverline:
Toward data confidentiality in storage-intensive cloud
applications. In Proc. 2nd ACM SOCC, 2011.

[32] Rackspace Cloud Servers. http://www.rackspace.com/cloud/.

[33] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and
E. Witchel. Laminar: Practical fine-grained decentralized
information flow control. In Proc. ACM PLDI, 2009.

[34] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu.
Policy-sealed data: A new abstraction for building trusted
cloud services. In Proc. 21st USENIX Security, 2012.

[35] J. Schiffman, Y. Sun, H. Vijayakumar, and T. Jaeger. Cloud
verifier: Verifiable auditing service for IaaS clouds. In Proc.
IEEE SERVICE’13.

[36] The SEPostgreSQL Project.
https://wiki.postgresql.org/wiki/Main_Page.

[37] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros: A fast
capability system. In Proc. ACM SOSP’99.

[38] J. S. Shapiro and S. Weber. Verifying the EROS confinement
mechanism. In Proceedings of the 2000 IEEE Symposium on
Security and Privacy, pages 166—176, 2000.

[39] CVE-2012-4573. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-4573.

[40] CVE-2012-5482. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-5482.

[41] CVE-2013-4354. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2013-4354.

[42] CVE-2015-3221. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-3221.

[43] Y. Sun, G. Petracca, and T. Jaeger. Inevitable failure: The
flawed trust assumption in the cloud. In Proc. ACM
CCSW’14.

[44] Y. Sun, G. Petracca, T. Jaeger, H. Vijayakumar, and
J. Schiffman. Cloudarmor: Protecting cloud commands from
compromised cloud services. In Proc. IEEE CLOUD’15.

[45] W.-K. Sze, A. Srivastava, and R. Sekar. Hardening
OpenStack Cloud Platforms against Compute Node
Compromises. Technical report, ASIACCS 2016, May 2016.

[46] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: making
trust between applications and operating systems
configurable. In Proc. USENIX OSDI’07.

[47] A.S. Tanenbaum, S. J. Mullender, and R. van Renesse.
Using sparse capabilities in a distributed operating system. In

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3360
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3360
http://docs.openstack.org/admin-guide/keystone_tokens.html
http://docs.openstack.org/admin-guide/keystone_tokens.html
http://aws.amazon.com/ec2
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0030
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0030
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5625
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5625
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4184
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4184
http://www.rpmfind.net//linux/RPM/fedora/devel/rawhide/armhfp/l/libselinux-2.4-5.fc24.armv7hl.html
http://www.rpmfind.net//linux/RPM/fedora/devel/rawhide/armhfp/l/libselinux-2.4-5.fc24.armv7hl.html
http://www.nsa.gov/selinux
http://www.openstack.org//
https://wiki.openstack.org/wiki/MessageSecurity/
http://www.rackspace.com/cloud/
https://wiki.postgresql.org/wiki/Main_Page
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4573
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4573
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5482
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5482
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4354
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4354
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3221
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3221

(48]

[49]

[50]

[51]

[52]

[53]

Proc. ICDCS’86.

D. M. E. Thomas F. J.-M. Pasquier, Jean Bacon. Flowk:
Information flow control for the cloud. In Proc. IEEE
CloudCom’14.

W.E.Boebert. On the inability of an unmodified capability
machine to enforce the *-property. In Proc. 7th DoD/NBS
Computer Security Conference, 1984.

C. Wright, C. Cowan, J. Morris, S. Smalley, and

G. Kroah-Hartman. Linux security module framework. In
Ottawa Linux Symposium, volume 8032, page 6, 2002.

N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazieres.
Making information flow explicit in HiStar. In Proc.
USENIX OSDI’06.

N. Zeldovich, S. Boyd-Wickizer, and D. Maziéres. Securing
distributed systems with information flow control. In Proc.
USENIX NSDI'0S.

F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor:
retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization. In Proc. ACM SOSP’11.

	Introduction
	Problem Definition
	Security Problems in Cloud Services
	Problem Definition

	DIFC Model Background
	Pileus Design
	Pileus Overview
	Pileus Spawn Protocol
	Restricting Security Decisions
	Selecting Nodes for Spawning Handlers
	Revoking Authority

	Implementation
	Trusted Services
	Event Handlers
	Pileus Daemon
	Pileus Enforcement Mechanism

	Evaluation
	Mitigating Cloud Service Vulnerabilities
	Reducing the Cloud Users' TCBs
	Optimizing the Cloud Users' TCBs
	OpenStack on Pileus
	Performance

	Related Work
	Conclusion
	Acknowledgments
	References

