S u l Fl l l ' lO r le Snode €X€Cut|on r:olQlSt
Péuell%u;ipsm,Mon%l_(l] Qsing Set
fgl’l{le agorinmSLAL L. y Srggdo DASH

e everysummg{ y procedure

Compositional May-Must Program Analysis

Unleashing the Power of Alternation

Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani Sai Deep Tetal
Microsoft Research UC Los Angeles

Property checking

Question
void O Does the assertion hold for all possible inputs?
1
0: *p = 45
1: q=5;
2: assert (1 Qerror)
}

Must analysis: finds bugs, but can’t prove their
absence

May analysis: can prove the absence of bugs,
but can result in false errors

More generally, we are interested in the query

?
(@pre :>f @error)

SMASH = Compositional May-Must Analysis

May analysis = predicate abstraction (SLAM)
Must analysis = symbolic execution + tests (DART)

Compositional May-Must analysis:
Interprocedural analysis
Memoize and re-use may/must summaries
Allows fine-grained coupling and alternation

SMASH » Compositional-May || Compositional-Must!

Must information

(T :?>f (xp #4)) =yes

test
void FO P=-0=a
{
0: *p = 4; ®
1: q = 5;
} VC

(xp # 4)

Capturesfacts that are guaranteedto hold on particular
executions of the program (under-approximation)
Error condition is reachable by any input that satisfies (p = q)

May information

?
((p#q)=r(xp #4)) =no proof
void () r #
{
0: *p = 4,
1: *q = 5; (r=a) (r #q)
}
(xp # 4)

* Capturesfactsthat are true for all executions
of the program (over-approximation)

* Proof can be obtained by keeping track of the
predicates(p = q) and (* p # 4)

Must analysis

?
(91 =9 P2)
.(an;) = @; Vne€ Np\{n2}.0,=0

[INIT — OMEGA]

* Associate every program point n with a set of
program states (2,, © X (under-approximation)
Initialize (2,, sets at every program point n:

'QTL% = (pl

Must analysis

e =(ny,n,) € Ep 0 S Post(l,,12,,)
-Q'n.z = -Q'nz U 6

[MUST — POST]

* Extend (2, sets by forward (under-approximate)analysis
* Inparticular,use 6 < Post(l, 2,)

Must analysis

(P1 =9 P2) Qpx NPy # 0

? [BUG — FOUND]
(91 =9 @) = yes c 9

NPr# O

?
» If an (2, state satisfies error condition, (¢, =» @,) = yes
« DARTI[PLDI’05]is a specificinstance

May analysis

(P1 =9 §2)
Mpx :={@2,Zp\P2} Vn € Np\{nz} Il ={Zp} Ve€ Ep.N,:=0

[INIT — PI — NE]

* Associate every program point n with a finite
partitionIl,, of X, (over-approximation)
* InitializeregionsIl,, at every program point n:

Hnﬁ; o= {@212?\@2} (2\)2@

May analysis

®1 € Hn,l P2 € an €= (nl'nz) € E}’ 6 2 PT@(FQ,(/)Z)
Hnl — (Hnl \ {(pl}) U{p:N0O,9 N =0} N,:=N,U {(p1 N =6, 92)}

[NOTMAY — PRE]

* Refine abstractionvia a backward (over-approximate)
analysis T

* Inparticular,use 8 2 Pre(T,, ¢,) for refinementand
record deleted abstractedge in N,

May analysis

?
(@1 =9 P2)
Vg, e, Mg VP, oo, @i - Mg = NP AT =NF AP ENly A A@r €Ty Ao NPy EBAQ NPy # O
= 3i €[0,k). e = (n,ni41) € Ep = (@i, pis1) EN,

: [VERIFIED]
(@1 =9 P3) =no

* Ifthe errorisunreachableinthe abstraction,
?

(P4 ='>7> @) =no
« SLAMI[POPL’02]is a specificinstance

May-Must analysis

01 €M, @€ Il,, e= (n,ny) €EEp
QN1 #0 QN =0 6 S Post(T,, Uy, Np1) N0 %0
Qp, = Qyp, VO

[MUST — POST]

frontier

* Checkiffrontier (n{,n,) can be extended by
an (), set T

May-Must analysis

01 €M, @€ Il,, e= (n,ny) €EEp
QN1 #0 QN =0 6 S Post(T,, Uy, Np1) N0 %0
Qp, = Qy, VO

[MUST — POST]

frontier

* Checkif frontier (nq,n,) can be extended by
an (), set T

e |f yes, grow QnZWIth 6 C POSt(Fe; in N §01)

May-Must analysis

¢, € nn] @, € nnz e = (ny,ny) €Ep
in N, #0 an N, =0 0 2Pre(T, @) 6N Qn1 =0

nnl = (nm \ {(pl}) U {(pl no, e N ﬁ9} Ng == N, U {((Pl N ﬁg;q)z)}

[NOTMAY — PRE]

* Checkif frontier (nq,n,) can be extended by
an (), set

* If not, refine I1,, with 6 2 Pre(Iy, ¢,) and
record deleted abstractedge in N,

* Synergy/Dash[FSE 06, ISSTA‘08] are
specificinstances

Compositional Must analysis

must summary
* A mustsummary foraprocedure P; is of the

must P
form (@1, 9,) € ==y, P,

* YVt € @,.3ds € ¢ .t canbe obtained by
executing P; from an initial state s

Compositional Must analysis

e = (nq,ny) € Ep, is a call to procedure P;

must

(91, 92) € =, Qp, 2901 0S¢,
Qp, =Qy, VO

[MUST — POST — USESUM]

procedure P;

must summary

P

j)j

@2

* Generate post states by using must summaries

Compositional Must analysis

e = (nq,ny) € Ep, is a call to procedure P;

must

(1, 92) € =, Oy, 29, 0C @,
J
Qp, =Qy, VO

[MUST — POST — USESUM]

procedure P;

must summary

P1 < Q'nl
P; [=call P;
220 Q, uUb

no

* Generate post states by using must summaries
v’ If must summary (¢4, @-,) isapplicable,
use 8 S @, toextend (2, set
* If no mustsummariesare available for
procedure P;, analyze P;
« SMART[POPL’07]is a specificinstance

Compositional May analysis

. —may summary
* A -—may summary for a procedure P; is of

may
the form (¢, ¢,) € ==, Q@l
* Vs € @, Vt € @, .t cannot be obtained by

executing P; startingin state s

Compositional May analysis

o1 €1, @€ Il,, e= (ng,ny) € Ep, is acall to procedure P;

-may

(@1, P2) € =—p; P2 & P, 0< Py
Hnl = (nnl \ {(/)1}) U{p; N6, 9 N6} N, :=N,U{(p1 N8O, ¢;)}

[NMAY — PRE — USESUM]

amay summary procedure P;

P1
[, = call P;

* Refine the abstractionfor procedure 7;
by using the =may summary for P;

Compositional May analysis

o1 €1, @€ Il,, e= (ng,ny) € Ep, is acall to procedure P;
-may

(91, 92) € —p; ¢2 <@, 6<

[NMAY — PRE — USESUM]
Hnl = (nnl \ {(/)1}) U {q)l neo, e N ﬁ9} N, :== N, U {((pl ne, (Pz)}

procedure P;

—may summary

>

K
N =6 no
Cp@z = @, 1 1
* Refine the abstractionfor procedure P; by using T ®,
the —may summary for P;
v If =may summary (¢4, ¢,) is applicable, T T

use 8 C @, to refinethe abstraction
* If =may summaries are not available for
procedure P}, analyze P;
 SLAM[POPL’02]is a specificinstance

®1 S nnl P2 € an ®1 N in * @ P2 n an = @
e = (nq,ny) € Ep, is a call to procedure P;

must

(@1, P2) € =—=p; {y, 2 P1 0SSP, 9, NO+0
Qp, =Qy, VO

must summary

@1 - Q")

?)j

(@22 0) A (92 N0 # 0)

11

* Baseanalysisis a may-must analysis (Dash)
* Checkif frontier (n4,n,) can be extended by a
mustsummary (§,P,)

[MUST — POST — USESUM|

procedure P;

®1 S nnl P2 € an ®1 N in * @ P2 n an = @
e = (nq,ny) € Ep, is a call to procedure P;

must

(@1, P2) € =—=p; {y, 2 P1 0SSP, 9, NO+0
Qp, =Qy, VO

[MUST — POST — USESUM|

must summary procedure P;

@1 - in frontier
ﬂ
(@22 0) A (9, NG + D) ' = call P,

* Checkif frontier (n4,n,) can be extended by a
must summary(p,P,) T
* Ifyes, grow Q, with6 S @,

@1 € nnl @, € nnz @1 N in 0 @N an =0

e = (nq,n,) € Ep, is a call to procedure P;
-may

(91, P2) € ==, P2 P, 0SSP 20NQ, =0

n711 . (nnl \ {<,01}) U {(pl nNo,eps N jg} Ne = N, U {((pl N 91902)}

—may summary

Q(@l 26)A(=0NQ,, = 0)

)
7

CD@Z =2 @,

* Checkif frontier (ny,n,) canbe refined by a
—may summary (pq,P,)
If yes, use 6 © @,to refine the abstraction
If both mustand —=may summariesare not
available, analyze procedure 7;

* yes = must summary for P;

* no = —may summary for P;

[NMAY — PRE — USESUM]

procedure P;

¢1 N6
[, = call
T

Interplay between —may and must

summaries

-may

must may

must must

-may -may

must

Implementation

The SMASH implementation is a

deterministic realization of the declarative
rules
Input C program is first abstractly interpreted

No pointer arithmetic -- *(p+i) is treated as *p
_ogic encoding -- propositional logic, linear

arithmetic and uninterpreted functions
Theorem prover: Z3

Evaluation on Windows 7

drivers

Statistics Das SMAS
h H

Average 0 39

—may summaries/driver

Average 0 12

must summaries/driver

Number of proofs 2176 2228

Number of bugs 64 64

Time-outs 61 9

Time (hours) 117 44

69 drivers (342000 LOC) and 85 prbberties

—4—SMASH —fli=—Compositional-May-DASH Compositional-Must-DASH ==#=DASH

250 ~

200 A

150 o
Number of
checks
100

50

0+ T T)
0 2 4 6 8 10 12
Time (minutes)

We have unleashed the power of alternation!

Summary

SMASH is a unified framework for compositional
may-must program analysis

We have explained SMASH in the context of
existing analyses (SLAM, DART, Synergy/Dash ...)
in the area

Empirical evaluation shows that SMASH can

significantly outperform may-only, must-only and
non-compositional may-must algorithms

http://research.microsoft.com/yoqi

