

Compositional May-Must Program Analysis Unleashing the Power of Alternation

Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani Microsoft Research Sai Deep Tetali UC Los Angeles

Property checking

```
void f()
{
0: *p = 4;
1: *q = 5;
2: assert (¬φ<sub>error</sub>)
}
```

Question

Does the assertion hold for all possible inputs?

Must analysis: finds bugs, but can't prove their absence

May analysis: can prove the absence of bugs, but can result in false errors

More generally, we are interested in the query

$$\langle \varphi_{pre} \stackrel{?}{\Rightarrow}_f \varphi_{error} \rangle$$

SMASH = Compositional May-Must Analysis

- May analysis = predicate abstraction (SLAM)
- Must analysis = symbolic execution + tests (DART)
- Compositional May-Must analysis:
 - Interprocedural analysis
 - Memoize and re-use may/must summaries
 - Allows fine-grained coupling and alternation

SMASH » Compositional-May || Compositional-Must!

Must information

```
\langle T \stackrel{?}{\Rightarrow_f} (*p \neq 4) \rangle = yes
```

```
void f()
{
0: *p = 4;
1: *q = 5;
}
```


- Captures facts that are guaranteed to hold on particular executions of the program (under-approximation)
- Error condition is reachable by any input that satisfies (p = q)

May information

```
\langle (p \neq q) \stackrel{?}{\Rightarrow}_f (*p \neq 4) \rangle = no
```

```
void f()
{
0: *p = 4;
1: *q = 5;
}
```

proof $(p \neq q)$

- Captures facts that are true for all executions of the program (over-approximation)
- Proof can be obtained by keeping track of the predicates (p = q) and $(*p \neq 4)$

Must analysis

$$\frac{\langle \hat{\varphi}_1 \overset{?}{\Rightarrow_{\mathcal{P}}} \hat{\varphi}_2 \rangle}{\Omega_{n^0_{\mathcal{P}}} := \hat{\varphi}_1 \quad \forall n \in N_{\mathcal{P}} \setminus \{n^0_{\mathcal{P}}\} \,.\, \Omega_n \coloneqq \emptyset} \; [\mathsf{INIT} - \mathsf{OMEGA}]$$

$$=\hat{\varphi}_1$$

- Associate every program point n with a set of program states $\Omega_n \subseteq \Sigma_{\mathcal{P}}$ (under-approximation)
- Initialize Ω_n sets at every program point n:

$$\Omega_{n_{\mathcal{D}}^0} := \hat{\varphi}_1$$

Must analysis

$$\frac{e = (n_1, n_2) \in E_P \quad \theta \subseteq Post(\Gamma_e, \Omega_{n_1})}{\Omega_{n_2} := \Omega_{n_2} \cup \theta} \text{ [MUST - POST]}$$

- Extend Ω_n sets by forward (under-approximate) analysis
- In particular, use $\theta \subseteq Post(\Gamma_e, \Omega_{n_1})$

Must analysis

$$\frac{\langle \hat{\varphi}_1 \stackrel{?}{\Rightarrow_{\mathcal{P}}} \hat{\varphi}_2 \rangle \quad \Omega_{n_P^x} \cap \hat{\varphi}_2 \neq \emptyset}{\langle \hat{\varphi}_1 \stackrel{?}{\Rightarrow_{\mathcal{P}}} \hat{\varphi}_2 \rangle = yes} \quad [BUG - FOUND]$$

- If an Ω_n state satisfies error condition, $\langle \hat{\varphi}_1 \stackrel{?}{\Rightarrow}_{\mathcal{P}} \hat{\varphi}_2 \rangle = yes$
- DART [PLDI '05] is a specific instance

May analysis

$$\frac{\langle \hat{\varphi}_1 \overset{?}{\Rightarrow_{\mathcal{P}}} \hat{\varphi}_2 \rangle}{\Pi_{n_{\mathcal{P}}^x} := \{ \hat{\varphi}_2, \Sigma_{\mathcal{P}} \backslash \hat{\varphi}_2 \} \quad \forall n \in N_{\mathcal{P}} \backslash \{n_{\mathcal{P}}^x\}. \ \Pi_n := \{\Sigma_{\mathcal{P}}\} \quad \forall e \in E_{\mathcal{P}}. \ N_e := \emptyset} \ [\mathsf{INIT} - \mathsf{PI} - \mathsf{NE}]$$

- Associate every program point n with a finite partition Π_n of $\Sigma_{\mathcal{P}}$ (over-approximation)
- Initialize regions Π_n at every program point n: $\Pi_{n_{\mathcal{D}}^{\chi}} := \{\hat{\varphi}_2, \Sigma_{\mathcal{D}} \setminus \hat{\varphi}_2\}$

May analysis

$$\frac{\varphi_1 \in \Pi_{n_1} \quad \varphi_2 \in \ \Pi_{n_2} \quad e = (n_1, n_2) \in E_{\mathcal{P}} \quad \theta \supseteq Pre(\Gamma_e, \varphi_2)}{\Pi_{n_1} \coloneqq \left(\Pi_{n_1} \setminus \{\varphi_1\}\right) \cup \{\varphi_1 \cap \theta, \varphi_1 \cap \neg \theta\} \quad N_e \coloneqq N_e \cup \{(\varphi_1 \cap \neg \theta, \varphi_2)\}} \ [\mathsf{NOTMAY-PRE}]$$

In particular, use $\theta \supseteq Pre(\Gamma_e, \varphi_2)$ for refinement and record deleted abstract edge in N_e

May analysis

$$\begin{split} \langle \hat{\varphi}_{1} \overset{?}{\Rightarrow_{\mathcal{P}}} \hat{\varphi}_{2} \rangle \\ \forall n_{0}, \dots, n_{k} . \ \forall \varphi_{0}, \dots, \varphi_{k} . \ n_{0} = n_{\mathcal{P}}^{0} \land n_{k} = n_{\mathcal{P}}^{x} \land \varphi_{0} \in \Pi_{n_{0}} \land \dots \land \varphi_{k} \in \Pi_{n_{k}} \land \varphi_{0} \cap \hat{\varphi}_{1} \neq \emptyset \land \varphi_{k} \cap \hat{\varphi}_{2} \neq \emptyset \\ &\Rightarrow \exists i \in [0, k) . \ e = (n_{i}, n_{i+1}) \in E_{\mathcal{P}} \Rightarrow (\varphi_{i}, \varphi_{i+1}) \in N_{e} \\ & \langle \hat{\varphi}_{1} \overset{?}{\Rightarrow_{\mathcal{P}}} \hat{\varphi}_{2} \rangle = no \end{split}$$
 [VERIFIED]

• If the error is unreachable in the abstraction, $\langle \hat{\varphi}_1 \stackrel{?}{\Rightarrow}_{\mathcal{P}} \hat{\varphi}_2 \rangle = no$

• SLAM [POPL'02] is a specific instance

May-Must analysis

$$\begin{split} \varphi_1 \in \Pi_{n_1} \quad \varphi_2 \in \ \Pi_{n_2} \quad e = \ (n_1, n_2) \in E_{\mathcal{P}} \\ \frac{\Omega_{n_1} \cap \varphi_1 \neq \emptyset \quad \Omega_{n_2} \cap \varphi_2 = \emptyset \quad \theta \subseteq Post \big(\Gamma_e, \Omega_{n_1} \cap \varphi_1\big) \quad \varphi_2 \cap \theta \neq \emptyset}{\Omega_{n_2} \coloneqq \ \Omega_{n_2} \cup \theta} \quad [\text{MUST} - \text{POST}] \end{split}$$

• Check if frontier (n_1, n_2) can be extended by an Ω_{n_2} set

May-Must analysis

$$\begin{split} \varphi_1 \in \Pi_{n_1} \quad \varphi_2 \in \ \Pi_{n_2} \quad e = \ (n_1, n_2) \in E_{\mathcal{P}} \\ \frac{\Omega_{n_1} \cap \varphi_1 \neq \emptyset \quad \Omega_{n_2} \cap \varphi_2 = \emptyset \quad \theta \subseteq Post \big(\Gamma_e, \Omega_{n_1} \cap \varphi_1\big) \quad \varphi_2 \cap \theta \neq \emptyset}{\Omega_{n_2} \coloneqq \ \Omega_{n_2} \cup \theta} \quad [\text{MUST} - \text{POST}] \end{split}$$

- Check if frontier (n_1, n_2) can be extended by an Ω_{n_2} set
- If yes, grow Ω_{n_2} with $\theta \subseteq Post(\Gamma_e, \Omega_{n_1} \cap \varphi_1)$

May-Must analysis

$$\begin{split} \varphi_1 \in \Pi_{n_1} \quad \varphi_2 \in \ \Pi_{n_2} \quad e = \ (n_1, n_2) \in E_{\mathcal{P}} \\ \frac{\Omega_{n_1} \cap \varphi_1 \neq \emptyset \quad \Omega_{n_2} \cap \varphi_2 = \emptyset \quad \theta \supseteq Pre(\Gamma_e, \varphi_2) \quad \theta \cap \Omega_{n_1} = \emptyset}{\Pi_{n_1} \coloneqq \left(\Pi_{n_1} \setminus \{\varphi_1\}\right) \cup \{\varphi_1 \cap \theta, \varphi_1 \cap \neg \theta\} \quad N_e \coloneqq N_e \cup \{(\varphi_1 \cap \neg \theta, \varphi_2)\}} \ [\text{NOTMAY} - \text{PRE}] \end{split}$$

- Check if frontier (n_1, n_2) can be extended by an Ω_{n_2} set
- If not, refine Π_{n_1} with $\theta \supseteq Pre(\Gamma_e, \varphi_2)$ and record deleted abstract edge in N_e
- Synergy/Dash [FSE '06, ISSTA '08] are specific instances

Compositional Must analysis

- A *must summary* for a procedure \mathcal{P}_i is of the form $(\varphi_1, \varphi_2) \in \stackrel{must}{\Longrightarrow}_{\mathcal{P}_i}$
- $\forall t \in \varphi_2$. $\exists s \in \varphi_1$. t can be obtained by executing \mathcal{P}_i from an initial state s

must summary

Compositional Must analysis

$$e = (n_1, n_2) \in E_{\mathcal{P}_i} \text{ is a call to procedure } \mathcal{P}_j$$

$$\frac{(\varphi_1, \varphi_2) \in \Longrightarrow_{\mathcal{P}_j} \Omega_{n_1} \supseteq \varphi_1 \quad \theta \subseteq \varphi_2}{\Omega_{n_2} \coloneqq \Omega_{n_2} \cup \theta} \text{ [MUST - POST - USESUM]}$$

must summary

Generate post states by using must summaries

$procedure \mathcal{P}_i$

Compositional Must analysis

$$e = (n_1, n_2) \in E_{\mathcal{P}_i} \text{ is a call to procedure } \mathcal{P}_j$$

$$\frac{(\varphi_1, \varphi_2) \in \Longrightarrow_{\mathcal{P}_j} \Omega_{n_1} \supseteq \varphi_1 \quad \theta \subseteq \varphi_2}{\Omega_{n_2} \coloneqq \Omega_{n_2} \cup \theta} \text{ [MUST - POST - USESUM]}$$

must summary

- Generate post states by using must summaries
 - ✓ If $must summary(\varphi_1, \varphi_2)$ is applicable, use $\theta \subseteq \varphi_2$ to extend $Ω_{n_2}$ set
- If no *must* summaries are available for procedure \mathcal{P}_i , analyze \mathcal{P}_i
- SMART [POPL'07] is a specific instance

 $procedure \mathcal{P}_i$

Compositional May analysis

- A $\neg may\ summary\$ for a procedure \mathcal{P}_i is of the form $(\varphi_1, \varphi_2) \in \stackrel{\neg may}{\Longrightarrow}_{\mathcal{P}_i}$
- $\forall s \in \varphi_1 \ \forall t \in \varphi_2 \ .t$ cannot be obtained by executing \mathcal{P}_i starting in state s

¬may summary

Compositional May analysis

$$\begin{split} \varphi_1 \in \Pi_{n_1} \quad \varphi_2 \in \Pi_{n_2} \quad e &= (n_1, n_2) \in E_{\mathcal{P}_i} \text{ is a call to procedure } \mathcal{P}_j \\ &\qquad \qquad (\hat{\varphi}_1, \hat{\varphi}_2) \in \Longrightarrow_{\mathcal{P}_j} \quad \varphi_2 \subseteq \hat{\varphi}_2 \quad \theta \subseteq \hat{\varphi}_1 \\ \hline \Pi_{n_1} &\coloneqq \left(\Pi_{n_1} \setminus \{\varphi_1\}\right) \cup \{\varphi_1 \cap \theta, \varphi_1 \cap \neg \theta\} \quad N_e \coloneqq N_e \cup \{(\varphi_1 \cap \theta, \varphi_2)\} \end{split} \text{ [NMAY - PRE - USESUM]}$$

¬may summary

• Refine the abstraction for procedure \mathcal{P}_i by using the $\neg may\ summary$ for \mathcal{P}_j

Compositional May analysis

$$\begin{split} \varphi_1 \in \Pi_{n_1} \quad \varphi_2 \in \Pi_{n_2} \quad e &= (n_1, n_2) \in E_{\mathcal{P}_i} \text{ is a call to procedure } \mathcal{P}_j \\ &\qquad \qquad (\hat{\varphi}_1, \hat{\varphi}_2) \in \Longrightarrow_{\mathcal{P}_j} \quad \varphi_2 \subseteq \hat{\varphi}_2 \quad \theta \subseteq \hat{\varphi}_1 \\ \hline \Pi_{n_1} &\coloneqq \left(\Pi_{n_1} \setminus \{\varphi_1\}\right) \cup \{\varphi_1 \cap \theta, \varphi_1 \cap \neg \theta\} \quad N_e \coloneqq N_e \cup \{(\varphi_1 \cap \theta, \varphi_2)\} \end{split} \text{ [NMAY - PRE - USESUM]}$$

$\neg may\ summary$

- Refine the abstraction for procedure \mathcal{P}_i by using the $\neg may\ summary$ for \mathcal{P}_i
 - ✓ If $\neg may\ summary\ (\hat{\varphi}_1, \hat{\varphi}_2)$ is applicable, use $\theta \subseteq \hat{\varphi}_1$ to refine the abstraction
- If $\neg may$ summaries are not available for procedure \mathcal{P}_j , analyze \mathcal{P}_j
- SLAM [POPL '02] is a specific instance

SMASH

$$\begin{split} \varphi_1 \in \Pi_{n_1} \quad \varphi_2 \in \Pi_{n_2} \quad \varphi_1 \cap \Omega_{n_1} \neq \emptyset \quad \varphi_2 \cap \Omega_{n_2} = \emptyset \\ e = & \ (n_1, n_2) \in E_{\mathcal{P}_i} \text{ is a call to procedure } \mathcal{P}_j \\ \\ \frac{(\hat{\varphi}_1, \hat{\varphi}_2) \in \overset{must}{\Longrightarrow}_{\mathcal{P}_j} \quad \Omega_{n_1} \supseteq \hat{\varphi}_1 \quad \theta \subseteq \hat{\varphi}_2 \quad \varphi_2 \cap \theta \neq \emptyset}{\Omega_{n_2} \coloneqq \Omega_{n_2} \cup \theta} \quad \text{[MUST - POST - USESUM]} \end{split}$$

must summary

- Base analysis is a may-must analysis (Dash)
- Check if frontier (n_1, n_2) can be extended by a must summary $(\hat{\varphi}_1, \hat{\varphi}_2)$

SMASH

$$\begin{split} \varphi_1 &\in \Pi_{n_1} \quad \varphi_2 \in \Pi_{n_2} \quad \varphi_1 \cap \Omega_{n_1} \neq \emptyset \quad \varphi_2 \cap \Omega_{n_2} = \emptyset \\ &e = (n_1, n_2) \in E_{\mathcal{P}_i} \text{ is a call to procedure } \mathcal{P}_j \\ \\ \frac{(\hat{\varphi}_1, \hat{\varphi}_2) \in \overset{must}{\Longrightarrow}_{\mathcal{P}_j} \quad \Omega_{n_1} \supseteq \hat{\varphi}_1 \quad \theta \subseteq \hat{\varphi}_2 \quad \varphi_2 \cap \theta \neq \emptyset}{\Omega_{n_2} \coloneqq \Omega_{n_2} \cup \theta} \quad \text{[MUST - POST - USESUM]} \end{split}$$

must summary

- Check if frontier (n_1, n_2) can be extended by a $must summary(\hat{\varphi}_1, \hat{\varphi}_2)$
- If yes, grow Ω_{n_2} with $\theta \subseteq \hat{\varphi}_2$

SMASH

$$\varphi_{1} \in \Pi_{n_{1}} \quad \varphi_{2} \in \Pi_{n_{2}} \quad \varphi_{1} \cap \Omega_{n_{1}} \neq \emptyset \quad \varphi_{2} \cap \Omega_{n_{2}} = \emptyset$$

$$e = (n_{1}, n_{2}) \in E_{\mathcal{P}_{i}} \text{ is a call to procedure } \mathcal{P}_{j}$$

$$\langle \hat{\varphi}_{1}, \hat{\varphi}_{2} \rangle \in \Longrightarrow_{\mathcal{P}_{j}} \quad \varphi_{2} \subseteq \hat{\varphi}_{2} \quad \theta \subseteq \hat{\varphi}_{1} \quad \neg \theta \cap \Omega_{n_{1}} = \emptyset$$

$$\Pi_{n_{1}} \coloneqq (\Pi_{n_{1}} \setminus \{\varphi_{1}\}) \cup \{\varphi_{1} \cap \theta, \varphi_{1} \cap \neg \theta\} \quad N_{e} \coloneqq N_{e} \cup \{(\varphi_{1} \cap \theta, \varphi_{2})\}$$

$$\neg may \ summary$$

$$procedure \mathcal{P}_{i}$$

$$(\hat{\varphi}_{1} \supseteq \theta) \wedge (\neg \theta \cap \Omega_{n_{1}} = \emptyset)$$

- Check if frontier (n_1, n_2) can be refined by a $\neg may\ summary\ (\hat{\varphi}_1, \hat{\varphi}_2)$
- If yes, use $\theta \subseteq \hat{\varphi}_1$ to refine the abstraction
- If both must and $\neg may$ summaries are not available, analyze procedure \mathcal{P}_i
 - $yes \Rightarrow must summary \text{ for } \mathcal{P}_i$
 - $no \Rightarrow \neg may \ summary \ for \ \mathcal{P}_i$

Interplay between ¬may and must summaries

Implementation

- The SMASH implementation is a deterministic realization of the declarative rules
- Input C program is first abstractly interpreted
 - No pointer arithmetic -- *(p+i) is treated as *p
 - Logic encoding -- propositional logic, linear arithmetic and uninterpreted functions
- Theorem prover: Z3

Evaluation on Windows 7 drivers

Statistics	Das h	SMAS H
Average ¬may summaries/driver	0	39
Average must summaries / driver	0	12
Number of proofs	2176	2228
Number of bugs	64	64
Time-outs	61	9
Time (hours)	117	44

69 drivers (342000 LOC) and 85 properties

We have unleashed the power of alternation!

Summary

- SMASH is a unified framework for compositional may-must program analysis
- We have explained SMASH in the context of existing analyses (SLAM, DART, Synergy/Dash ...) in the area
- Empirical evaluation shows that SMASH can significantly outperform may-only, must-only and non-compositional may-must algorithms

http://research.microsoft.com/yogi