KLEE: Unassisted and Automatic
Generation of High-Coverage
Tests for Complex Systems Programs

Outline

Background

— Symbolic execution

— Constraints and solvers

— Sinks/sink sources

— Abstract domain and concretization
— System modeling

KLEE

— Main concepts

— Overall process

— Precision from LLVM and bytecode
— Notion of states

— Constraints and paths

— Performance and Environment

— Results

My Thoughts
Questions

Background

* Symbolic execution

— Simulation that approximates variable values by using
symbols

— Operations on variables constrain the symbols

— Used to reason about possible values that cause certain
conditions in a program

* |s a symbolic value in the range of values that cause something to
occur?

— http://www.stat.uga.edu/stat files/billard/tr symbolic.pdf
e Constraints and SO|V€I"S

— Constraints are collected facts about a program that define
bounds on possible execution at specific points in a
program

— Solvers determine the possibility of concrete values based
on the constraints

— Certain concrete values can conditionally cause programs
to behave in undesirable ways

Background

* Sinks and sink sources
— Sinks identify meaningful operations within the code
— Sources identify the data origins that can influence sinks

* Abstract domain and concretization
— Defining the range of all possible values for variables

— Concretization maps actual variable values from ranges of
possible values

* System modeling

— “Approximating” how a system behaves when it runs

— We have looked at different ways to represent systems, like
CFGs, summary functions, etc

KLEE > Main Concepts

Use of static analysis to determine if there are possible
concrete values that cause vulnerabilities in the program

Simulate a program and leverage symbolic execution

Build constraints and maintain a series of states throughout the
simulation

— States define each unique path throughout the program

Leverage a solver to determine possibilities within the program
based on constraints

— Return concrete values if something was solvable

Document areas of the code that have any possible values that
can cause vulnerabilities

— Based on a set of possible dangerous operations

“Based on the constraints (state of unique path) at the time |
get to this line of code with a potentially dangerous operation,

is there any possible value that can cause this line of code to
be dangerous?”

KLEE > Main Concepts

KLEE begins by constructing unconstrained variables for arguments into
state

— Initial constraints are set based on --sym-args when running KLEE
— Defines number of arguments and number of characters per argument
— Sets initial constraints so operation is not totally unbounded
Analysis simulates each instruction and runs each state per instruction
— Scheduling algorithm to select which state to analyze first
— Collect more constraints, update the symbolic values in the state

— When reaching a potential operation that contains an exit or error, look at
the path condition

Path conditions are the collection of constraints that are valid for that
specific path
— A path condition is unique for each state since a path can influence the
symbolic values on a path by path basis

— On a branch statement, a state is cloned for possible paths
— The path condition is updated per state, to mimic unique paths

Determining malicious concrete values are bounded by the path
condition

— These are sent to STP solver

— Is there a possible set of values that can cause an issue?

KLEE > Overall Process

Compile program into bytecode with LLVM

Run KLEE with defined number of arguments and initial character
bound constraints of arguments

— Assists with abstract domain to make it bounded

Simulate the program, symbolic execution
— Collect constraints on variables, update state

For branches, determine what is possible based on constraints
— Pass constraints to solver to see what branch is possible

— Clone state for all possible branches, update path conditions in each
state

— Similar to may/must analysis

For potential dangerous operations, identify any concrete values
that cause dangerous operations

— Pass constraints to solver
— Return any possible values that can cause undesired results

Useful for bounds checking, pointer dereferencing, assertions

KLEE > Precision from LLVM byte code

* The constraints are very precise because the
byte code represents bit-level accuracy

* This reduces the approximation used in
modeling the running application

* This precision makes the solver more effective
in determining possible values

KLEE > Notion of States

Each state represents one unique path in the
program at a given point in runtime

Need to maintain symbolic values by state at the
given instruction

Maintains register file, stack, heap, program
counter

— Instruction pointer is maintained by KLEE
Maintain constraints of the path conditions for
use within the solver

— States may be active or inactive for a given instruction
based on path condition and constraints

KLEE > Constraints and Paths

The goal is to find concrete values that cause dangerous
operations

For the solver to be effective in finding concrete values, the
abstract domain needs to be reduced

Path conditions set constraints on variable values of the
specific path
— <0, j==10, etc
Symbolic values creates its own constraints on variables
— i=(2xi)+10
—j=j
The combination of symbolic values and path conditions set

bounds for the solver to determine possible values based
on state for a given instruction

KLEE > Performance and Environment

Two of the biggest challenges were performance and
modeling operations involving the environment
The number of states can grow rapidly

— To combat it, KLEE uses a shared memory mapping
between states

Use of compiler-like tricks to make problems easier for
the solver

Environment calls are modeled by C code, to reflect the
runtime state
— Use of uClibc to mimic system calls

— KLEE developers have set up other custom models to
reflect operations involving the environment

KLEE > Results

Looked at packages which supported common
command-line programs like Is and tr

Average of 90% code coverage

Highlighted differences between in CoreUtils

and Busybox

— Simulated the same commands and found
differences between the two packages

Found errors in both CoreUtils and Busybox,

respectively

COREUTILS BUSYBOX
Coverage KLEE | Devel. KLEE | Devel.
(w/o lib) tests tests tests tests
100% 16 | 31 4
90-100% 40 6 24 3
80-90% 21 20 10 15
70-80% 7 23 5 6
60-70% 5 15 2 7
50-60% - 10 - 4
40-50% - 6 - :
30-40% - 3 - 2
20-30% - | - l
10-20% - 3 - :
0-10% - l - 30
Overall cov. 84.5% | 67.7% || 90.5% | 44.8%
Med cov/App || 94.7% | 72.5% || 97.5% | 58.9%
Ave cov/App 90.9% | 68.4% || 93.5% | 43.7%

paste -d\\ abcdefghijklmnopgrstuvwxyz
pr -e t2.txt

tac -r t3.txt t3.txt

mkdir -2 a b

mkfifo -Z a b

mknod -7Z2 a b p

mdbsum -¢ tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x téd.txt

seg -f %0 1

tl.ext: "\t \tMD5 ("

t2.txt: "\b\b\b\b\b\b\b\t"

t3.txt: "\n"

t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
_ed for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

date -I
ls --co cut —-f t3.t=xt
chown a.a - install --m
kill -1 a nmeter -
Setu_ldgld g "o EHVdJ._r |
prj_ntf LTI L =} SEtUldgld
od +1.txt envuidgid
od tZ.txt envdlr.—
printf % arp —Alnet
printf %Lo tar tf_ /
tr | top d
tr |:= SEtarCh mir mn
tr [a-z <full-path>/linux32
T el <full-path>/1inux64
TZ.IAI. a hexdump —e "M
t2.txt: B ,
ing6 -
t3.0xt: \t\n b9

Figure 10: KLEE-generated command lines and inputs (modi-
_ed for readability) that cause program crashes in BUSYBOX.
When multiple applications crash because of the same shared
(buggy) piece of code, we group them by shading.

Differences between CoreUtils and

Busybox

[nput

BUSYBOX

| CorEUTILS

comm tl.txt t2.txt

[does not show difference]

[shows difference]

tee - [does not copy twice to stdout] [does]

tee "" <tl.txt [in"nite loop] [terminates]

cksum / "4294967295 0 /" "/: Is a directory"
split / "/: Is a directory"

tr [duplicates input on stdout] "missing operand"

[O Y'<rr 1]
sum -s <tl.txt
tail -21
unexpand -£
split -

ls —-coclor-blah

"g7 1 -"
[rejects]

[accepts]
[rejects]
[accepts]

"binary operator expected”
"g7 1"
[accepts]
[rejects]
[accepts]
[rejects]

tl.txt: a 2.t

b

My Thoughts

 There are a lot of similarities from what we have discussed
in class
— PHP paper used sinks and sink sources with query statements

— This paper looks for operations like pointers, assertions, printf,
and load/stores

— Symbolic execution like the PHP paper
— May/must analysis for looking at potential paths

— Constraints and use of a solver
e Constraints defined by symbolic analysis and paths

— Can be considered context and flow sensitive
* Creates new states based on path branches
* Simulates function calls per state based on the current state values

— Concretization based on symbolic values and path conditions

My Thoughts

e There are some differences between the
approaches

— No mention of a control flow graph, purely a
simulation tool

— Their goal is only to find concrete values based on
states, so there are no meet or join operations

* They are looking at specific states and deriving concrete
values that are dangerous

* They are not approximating system functionality

— Other static analysis used approximation because
precision is expensive
* | am curious how large the tested applications were

e Authors claim that the code was complicated but my
assumption is that there was not a lot of code

Questions

Which University has
the Hard Times Cafe
shown to the left?

« Employee Benefits
{ + Business Insurance
| * Retirement Plans

