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Call strings approach

For a given program P and
analysis ((D,≤), fMN , d0), the
join over all interprocedurally

valid paths (JVP) at point N is
defined to be:

⊔

ρ∈IVP(r1,N)

fρ(d0).

Idea: collect data values that
reach each point, tagged with
call-string of associated path.

This helps to say which values
pass to a given return site.

Now we can set up equations
that capture JVP values.
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Call-string along an interprocedurally valid path

Call-string associated with an IVP path ρ, denoted CM(p), is
the sequence of pending calls in ρ.

A path ρ in IVP(r1, I ) for example program:
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Associated call-string CM(ρ) is c1.



Call-string along an interprocedurally valid path

Call-string associated with an IVP path ρ, denoted CM(p), is
the sequence of pending calls in ρ.

A path ρ in IVP(r1, I ) for example program:
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Associated call-string CM(ρ) is c1.

For ρ′ = ABCOFGHLF CM(ρ′) = c1c2.

Denote set of all call-strings for given program by Γ.



Tagging with call-strings

Classify paths reaching N according to call-strings.

For each call-string γ maintain data value

d =
⊔

ρ∈CM−1(γ)

fρ(d0).

Thus elements of L∗ are maps ξ : Γ → D, and ordering
ξ1 ≤ ξ2 is pointwise extension of ≤ in D.

Tagged JVP value: ξ∗N : γ 7→
⊔

ρ∈CM−1(γ) fρ(d0).

JVP value dN =
⊔

γ∈Γ ξ∗N(γ).



Example: Tagging

Eg: Path ABCOFGHLFKJ

has associated callstring c1c2 .

c1 c1c2

ǫ c1 c1c2

⊥ 1 0 0

c1c2c2

ǫγ :

ξ(γ) :

γ :

ξ(γ) :

Tagged data values at J for
for availability of a*b analysis
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Data-flow analysis with tagged data values

Let D∗ = Γ → D.

Pointwise ordering on D∗

ξ ≤′ ξ′ iff ξ(γ) ≤ ξ′(γ) for each call-string γ.

(D∗,≤′) is also a complete lattice.

Initial value ξ0 is given by

ξ0(γ) =

{

d0 if γ = ǫ

⊥ otherwise.

Transfer functions for non call/ret nodes: f ∗MN = λξ.fMN ◦ ξ.

Transfer functions f ∗MN ’s are monotonic (distributive) if fMN ’s
are monotonic (distributive).



Transfer functions f ∗MN by example

(Non-call/ret node)

ξC = fBC ◦ ξB .

(Call node)

ξF (γ) =

{

ξC (γ′) if γ = γ′ · c1

⊥ otherwise

(Return site)

ξP(γ) = ξJ (γ · c1).
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Correctness claims

Claim

Let the LFP of the analysis ((D∗,≤′), f ∗MN , ξ0) be ξ∗. Then

x∗

N =
⊔

γ∈Γ

ξ∗N(γ)

is an over-approximation of the JVP at N. When fMN ’s are
distributive x∗

N coincides with JVN at N.



Exercise

Use Kildall’s algo to compute the ξ table values for the example
program, for |γ| ≤ 4. Start with initial value d0 = 0.
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Convergence of iteration

Lattice (D∗,≤′) is infinite for recursive programs.

It is possible to bound the size of call strings Γ we need to
consider.

Let k be the number of call sites in P .



Convergence of iteration

Claim

For any path p with a prefix q such that |CM(q)| > k|D|2 = M

there is a path p′ with |CM(q′)| ≤ M for each prefix q′ of p′, and
fp(d0) = fp′(d0).

Paths with bounded call-strings

M

p
p′

Proof follows shortly.



Ensuring convergence

Go over to a finite lattice.

Consider only call strings of length ≤ M (Call this ΓM).

IVPΓM
(r1,N) = paths from r1 to N such that for each prefix

q, CM(q) ≤ M.



Data-flow analysis for JVP over IVPΓM

(Non-call/ret node)

ξC = fBC ◦ ξB .

(Call node)

ξF (γ) =

8

<

:

ξC (γ′) if γ = γ′
· c1

and γ ∈ ΓM
⊥ otherwise

(Return site)

ξP (γ) = ξJ (γ · c1).
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Bounding call-string size

Claim

For any path p in IVP(r1,N) such that |CM(q)| > M = k|D|2 for
some prefix q of p, there is a path p′ in IVPΓM

(r1,N) with
fp′(d0) = fp(d0).

Sufficient to prove:

Subclaim

For any path p in IVP(r1,N) with a prefix q such that
|CM(q)| > M, we can produce a smaller path p′ in IVP(r1,N)
with fp′(d0) = fp(d0).

...since if |p| ≤ M then p ∈ IVPΓM
.



Proving subclaim: Path decomposition

A path ρ in IVP(r1, n) can be decomposed as

ρ1‖(c1, rp2)‖ρ2‖(c2, rp3)‖σ3‖ · · · ‖(cj−1, rpj
)‖ρj .

where each ρi (i < j)is a valid and complete path from rpi
to ci ,

and ρj is a valid and complete path from rpj
to n. Thus c1, . . . , cj

are the unfinished calls at the end of ρ.
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Proving subclaim

Let p0 be the first prefix of p where |CM | > M.

Let decomposition of p0 be

ρ1‖(c1, rp2)‖ρ2‖(c2, rp3)‖σ3‖ · · · ‖(cj−1, rpj
)‖ρj .

Tag each unfinished-call ci in p0 by (ci , fq·ci
(d0), fq·ciq′ei+1

)
where ei+1 is corresponding return of ci in p.

If no return for ci in p tag with (c , fq·ci
(d0),⊥).

Number of distinct such tags is k · |D|2.

So there are two calls qc and qcq′c with same tag values.



Proving subclaim – tag values are ⊥
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Proving subclaim – tag values are not ⊥
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