Interprocedural Analysis: Sharir-Pnueli’s
Call-strings Approach

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

06 October 2010

Call strings approach

@ For a given program P and
analysis ((D, <), fyn, do), the
join over all interprocedurally
valid paths (JVP) at point N is
defined to be:

|_| fp(dO)-

pEIVP(ry,N)

@ Idea: collect data values that
reach each point, tagged with
call-string of associated path.

@ This helps to say which values
pass to a given return site.

@ Now we can set up equations
that capture JVP values.

Call-string along an interprocedurally valid path

@ Call-string associated with an /VP path p, denoted CM(p), is
the sequence of pending calls in p.

@ A path pin IVP(r1, 1) for example program:

3
2

0

@ Associated call-string CM(p) is ci.

Call-string along an interprocedurally valid path

Call-string associated with an /VP path p, denoted CM(p), is
the sequence of pending calls in p.

(4]

A path p in IVP(ry, 1) for example program:

3
2

0

(4]

Associated call-string CM(p) is c1.
For p' = ABCOFGHLF CM(p') = cico.

Denote set of all call-strings for given program by I

(4]

(4]

Tagging with call-strings

@ Classify paths reaching N according to call-strings.
@ For each call-string v maintain data value

d= || fild).

pECM™1()
@ Thus elements of L* are maps £ : [— D, and ordering
& < & is pointwise extension of < in D.
@ Tagged JVP value: & 1y — [,ccp—1(4) fo().
® JVP value dy = || cr E3(7)-

Example: Tagging

Eg: Path ABCOFGHLFKJ
has associated callstring c; c».

€1

12

Tagged data values at J for
for availability of a*b analysis

| €

‘1

c1e2

€122

L

1

0

0

Data-flow analysis with tagged data values

Let D* =T — D.
@ Pointwise ordering on D*
o £ < Eiff () < E(y) for each call-string .

(D*,<') is also a complete lattice.

(4]

(4]

@ Initial value &g is given by
| do ify=c¢€
fo(v) = { L otherwise.
@ Transfer functions for non call/ret nodes: f, = A.fun 0 €.

Transfer functions fy,'s are monotonic (distributive) if fyy's
are monotonic (distributive).

Transfer functions f;;, by example

_---=0 6

@ (Non-call/ret node) 1 7 n
§c = fec o &B. B o/ | G t
2 L 8
,/ ' a:=a-1
@ (Call node) c \ .
c . ' o
. 3 ",/’] 9
oy S 2= e
At L otherwise — 7 Qs
! 4 =a*b 10
@ (Return site) -~ M
:]
D e My]
Ep(7) =& - a). N ")
i ° T et

E
\V4

Correctness claims

Let the LFP of the analysis ((D*, <), fin,&0) be £€*. Then

xv =] &0
vyel

is an over-approximation of the JVP at N. When fyy's are
distributive xy, coincides with JVN at V.

Use Kildall's algo to compute the £ table values for the example
program, for |y| < 4. Start with initial value dy = 0.

.20 6
,F¢

, ,
, /
, /
/

N
s | ot
B

Use Kildall's algo to compute the £ table values for the example
program, for |y| < 4. Start with initial value dy = 0.

.20 6
,F¢

, ,
, /
, /
/

(2==0 J

Use Kildall's algo to compute the £ table values for the example
program, for |y| < 4. Start with initial value dy = 0.
,»:%:(5 6

, ,
, /
, /
/

N
s | ot
B

onm

Use Kildall's algo to compute the £ table values for the example
program, for |y| < 4. Start with initial value dy = 0.

onm

onm

=

Use Kildall's algo to compute the £ table values for the example
program, for |y| < 4. Start with initial value dy = 0.

onm

onm

N
s |
B
2

=

Convergence of iteration

@ Lattice (D*, <’) is infinite for recursive programs.
) prog

@ It is possible to bound the size of call strings [we need to
consider.

@ Let k be the number of call sites in P.

Convergence of iteration

Claim

For any path p with a prefix g such that |CM(q)| > k|D|?> = M
there is a path p’ with [CM(q’)| < M for each prefix ¢’ of p/, and
fo(do) = for(db). |

Paths with bounded call-strings

Proof follows shortly.

Ensuring convergence

@ Go over to a finite lattice.
@ Consider only call strings of length < M (Call this I'y).

@ IVPr,,(ri, N) = paths from r; to N such that for each prefix
q, CM(q) < M.

Data-flow analysis for JVP over /VPr,,

@ (Non-call/ret node)
§c =fecoép-

@ (Call node)

SF(v) = and vy € Ty

4 otherwise

{ Ec(y) ify=4""q

@ (Return site)

Ep(7) =&4(v - a)-

Bounding call-string size

For any path p in IVP(r1, N) such that |CM(q)| > M = k|D|? for
some prefix g of p, there is a path p’ in IVPr,, (ri, N) with
for (do) = fp(b).

@ Sufficient to prove:

For any path p in IVP(ry, N) with a prefix g such that
|CM(q)| > M, we can produce a smaller path p’ in IVP(r1, N)
with £y (do) = f(dp).

@ ..since if |p| < M then p € IVPr,,.

Proving subclaim: Path decomposition

A path p in IVP(r, n) can be decomposed as

prll(ew, roo)llp2ll(e2; rs)llosll - - [I(cj-1s 7))l -

where each p; (i < j)is a valid and complete path from r,, to ¢,
and pj is a valid and complete path from rp, to n. Thus c1,...,¢;
are the unfinished calls at the end of p.

4
8
20 N\ Nl S
C P3
1 G
P2

0 T T T T T T T T T T

a @ @ rn (5] (5] rn rn rn (o]

Proving subclaim

@ Let pg be the first prefix of p where |CM| > M.

@ Let decomposition of pg be

le(Clv rP2)||p2||(C2v rP3)||0'3H T H(Cj—lv er)Hpj'
@ Tag each unfinished-call ¢; in pg by (ci, fq.c;(do), fg-ciqrers)
where ej11 is corresponding return of ¢; in p.
@ If no return for ¢; in p tag with (c, fq.c;(do), L).
@ Number of distinct such tags is k - |D|?.

@ So there are two calls gc and gcg’c with same tag values.

Proving subclaim — tag values are |

Proving subclaim — tag values are not |

~ N N

/
,
. €2 e
AN return v

v t

