
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center

Department of Computer Science and Engineering

Pennsylvania State University, University Park PA

1

Compiler Infrastructure

Penn State Systems and Internet Infrastructure Security Lab
 Page

Outline

•  Codesurfer tool

•  CCured (Phil)

•  LLVM (Nirupama)

2

Penn State Systems and Internet Infrastructure Security Lab
 Page

Detecting Buffer Overruns

•  Static analysis tool to detect buffer-overrun vulnerabilities in
C source code

•  Many previous tools have been built

‣  Dynamic techniques – detect at runtime

‣  Static techniques – remove vulnerable code before running

‣  Combination – remove unnecessary runtime checks

•  Advantages of static techniques vs. dynamic?

3

Penn State Systems and Internet Infrastructure Security Lab
 Page

Tool Features

•  Use static analysis to model C string manipulations as a
linear program

•  Build scalable solvers based on linear programming
techniques

•  Make program analysis context-sensitive

•  Eliminate bugs from source code

4

Penn State Systems and Internet Infrastructure Security Lab
 Page

System Architecture

•  Figure 3.1

•  C source  codesurfer  System dependence graph

‣  Interprocedural control flow graph

•   Constraint Generator  Linear Constraints

‣  Linear program constraints

•   Taint Analyzer  Linear Constraints

‣  Remove those that are not suitable for solver

•   Constraint Solver  Ranges

•  Then, warnings for cases that can lead to overflow

5

Penn State Systems and Internet Infrastructure Security Lab
 Page

Example Program

•  Focus on buf and header

‣  Are they vulnerable?

•  What does fgets do?

•  How about copy_buffer?

6

Penn State Systems and Internet Infrastructure Security Lab
 Page

Constraints

•  Char* Constraints for used and allocation

•  Char* Constraints for min and max value

•  Integers just have value constraints

•  Constraint from line 6

‣  Header is assigned a value between size 1 and 2048

•  Constraint from line 10

‣  Relate buf, cc2 and function call, return

7

Penn State Systems and Internet Infrastructure Security Lab
 Page

Constraints

•  Are generated for the following statements

‣  Buffer declarations

‣  Assignments

‣  Function calls

‣  Returns

•  Buffer declarations impact allocation constraints

•  Assignments impact value constraints (for ints too)

•  Function calls are modeled by constraints that summarize
the effect of the call

8

Penn State Systems and Internet Infrastructure Security Lab
 Page

Constraint Analysis

•  Flow-insensitive

‣  Do not account for order of statements

‣  Find constraint in a statement

‣  Collect constraints across statements

‣  Composition of constraints does not account for order of
statements or conditionals

•  Context-insensitive

‣  Does not distinguish among multiple call sites

‣  Inputs of multiple calls may “mix” in the function

•  Libraries are treated in a context-sensitive way

9

Penn State Systems and Internet Infrastructure Security Lab
 Page

Pointers and Constraints

•  Constraints represent buffers

•  Choice for representing

‣  Constraint on pointer to buffer or buffer memory itself

‣  Choose former – false negatives: why?

•  Pointer analysis to remove some false positives between
pointers that are known to be related

10

Penn State Systems and Internet Infrastructure Security Lab
 Page

Pointers and Constraints

•  Use pointer analysis to eliminate some false positives

•  Statement: strcpy(pf, buf)

‣  p can point to structure s

‣  Thus, constraints should relate s.f and buf

11

Penn State Systems and Internet Infrastructure Security Lab
 Page

Constraints and Linear Programs

•  Statement: counter++

•  The constraint counter!max >= counter!max + 1 is cannot be
interpreted by a linear program solver

•  Instead we create two constraints

‣  Counter’ = counter + 1

‣  Counter = counter’

‣  Which are infeasible (more later)

•  Also, constraints for pointer arithmetic are infeasible

12

Penn State Systems and Internet Infrastructure Security Lab
 Page

Taint Analysis

•  Perform taint analysis to make constraints amenable for
linear programming solvers

‣  Remove constraints with infinite values

•  E.g., User input

‣  Remove constraints for uninitialized variables (no lower bound for
max and upper bound for min)

•  E.g., Uninitialized vars

•  Algorithm in 3.4

‣  Returns subset of constraints with no infinite or uninitialized values

13

Penn State Systems and Internet Infrastructure Security Lab
 Page

Constraint Solving

•  Goal: obtain best possible estimate of the number of bytes
used and allocated for each buffer in any execution of the
program

‣  Number of bytes used is the smallest range that satisfies all
constraints

‣  Number of bytes allocated is the smallest range that satisfies all
constraints

•  Will discuss two techniques later

14

Penn State Systems and Internet Infrastructure Security Lab
 Page

Detecting Overruns

•  Results of analysis

‣  Header is allocated 2048 bytes, and between 1 and 2048 bytes can
be used (is safe)

‣  Same is true of buf

‣  Ptr was found to have between 1024 and 2048 bytes allocated
while 1 to 2048 bytes are used

•  Is a buffer overrun possible?

•  Could this be a false positive?

‣  Copy allocated max is less than copy used max

‣  cc1 and cc2 get same values, due to context-insensitivity

15

Penn State Systems and Internet Infrastructure Security Lab
 Page

Linear Program Solvers

•  Linear program

‣  Minimize: cx

‣  Subject to: Ax >= b

‣  A: m x n matrix; b, c vectors of constants; x is a vector of
variables

•  System of m inequalities in n variables

‣  Find values of vars such that system is satisfied and objective
function takes its lowest possible value

•  Works on finite, real values for x

•  Methods to solve (Simplex)

16

Penn State Systems and Internet Infrastructure Security Lab
 Page

Formulate as a Linear Program

•  Set of constraints are linear, so can formulate a linear
program

‣  What is the objective function?

•  Find smallest ranges for allocated and used values for buffers

•  Problem: need to find integer values

‣  That problem is NP-complete

•  Solution: express A as a unimodular matrix

‣  Every equation Ax = b where A is unimodular and A, b are both
integer has an integer solution

17

Penn State Systems and Internet Infrastructure Security Lab
 Page

Constraint Resolution (1)

•  Problem: optimal solution may not exist

‣  May not be feasible

‣  May not be optimal (i.e., may be unbounded)

•  This problem

‣  No solution can be unbounded – due to taint analysis

‣  Some infeasible constraints

18

Penn State Systems and Internet Infrastructure Security Lab
 Page
 19

Solution (part I)

•  Try to remove some constraints to make solution feasible

‣  Identify Irreducibly Inconsistent Sets (IISs)

•  Use Elastic Filtering Algorithm to identify IISs

‣  Takes set of linear constraints and identifies an IIS in these
constraints

‣  May have to run multiple times

Penn State Systems and Internet Infrastructure Security Lab
 Page
 20

Solution (part II)

•  Approach for dealing with IISs

‣  Find if C is feasible

‣  If not, identify IISs as C’

‣  C-C’ is feasible

‣  Set values of C’ to infinite, and run taint analysis to remove some
constraints C’’

‣  Result is feasible and bounded: C-(C’+C’’)

Penn State Systems and Internet Infrastructure Security Lab
 Page
 21

Another Approach

•  Decompose constraints into subsets and solve each subset
separately in an order that prevents backtracking

•  Formulate constraints into DAG

‣  Dependence among constraints

•  A variable depends on all constraints in which it appears n on LHS

•  Coalesce constraints that are mutually dependent (strongly connected)

‣  Solve constraints in SCCs in topologically sorted order

‣  If infeasible

•  Set to infinite ranges (no use of IIS)

•  More precise representation of dependence leading to
infeasibility than IIS

Penn State Systems and Internet Infrastructure Security Lab
 Page
 22

Summary

•  Buffer overflow detection using static analysis to
generate linear program constraints

‣  Possible to create static analysis model

‣  ICFG

‣  Constraints from limited data flow (no joins)

‣  Linear program is abstraction

•  Need some additional effort to make abstraction
work

•  However, false negatives and false positives are
possible

Penn State Systems and Internet Infrastructure Security Lab
 Page

Questions

23

