
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center

Department of Computer Science and Engineering

Pennsylvania State University, University Park PA

1

Analysis of �
(Access Control) Policies

Penn State Systems and Internet Infrastructure Security Lab
 Page

Outline

•  Weighted Pushdown Systems

•  Analysis of Security Policies

‣  SELinux analysis of mine and Stoller

‣  Program Analysis of Myers

2

Penn State Systems and Internet Infrastructure Security Lab
 Page

Weighted Pushdown Systems

•  A model of programs that uses weights to encode the effect
of each statement on the data state of the program

‣  PDS still represents control flow

‣  Weights provide data abstraction

•  Weights will need to support a variety of possible
abstractions

3

Penn State Systems and Internet Infrastructure Security Lab
 Page

Weighted Pushdown Systems

•  Weight domains are a bounded idempotent semiring

‣  Which is a tuple

•  Weight set (D)

•  Combine operator

•  Extend operator

•  O in D (identity element of combine)

•  1 in D (identity element of extend)

•  Weight domains must enable abstractions to be extended
(values updated) and combined (via joins)

4

Penn State Systems and Internet Infrastructure Security Lab
 Page

Combine and Extend

•  (D, combine) is a commutative monoid with 0 as its neutral
element

‣  Monoid – a set with a binary operation . that satisfies

•  Closure: a,b in S, a.b in S

•  Associativity: (a.b).c = a.(b.c)

•  Identity element: there exists e in S, s.t., forall a in S, a.e = e.a = a

‣  Commutative monoid – is endowed with its algebraic preordering
x<=y, iff there exists a z, s.t. z + x = y (enables join)

•  Extend distributes over combine

•  0 is an annihilator wrt extend

5

Penn State Systems and Internet Infrastructure Security Lab
 Page

Weighted Pushdown System

•  Definition

•  WPDS is a triple (P, S, f) where

‣  P is a PDS

‣  S is a bounded idempotent semiring (weight domain)

‣  f is a map that assigns a weight to each rule of P

6

Penn State Systems and Internet Infrastructure Security Lab
 Page

WPDS expresses PDS

•  A PDS P is a WPDS W with the boolean weight domain S

‣  S = ({F, T}, OR, AND, F, T)

‣  Weight assignment f(r) = T for all rules in P

•  All rules are true

•  JOVP(C1, C2) = T iff there exists a path from a
configuration in C1 to a configuration in C2

7

Penn State Systems and Internet Infrastructure Security Lab
 Page

Finite-State Data Abstractions

•  Can encode data abstractions for finite sets

•  E.g., binary relations on a finite set

‣  S = (2GxG, union, compose, null, id), where

•  Union is combine and compose (relational composition) is extend

•  Empty relation null is 0 and identity relation id is 1

•  Check properties of weight domain against definition

8

Penn State Systems and Internet Infrastructure Security Lab
 Page

Finite-State Data Abstractions

•  JOVP(C1, C2)

‣  From start to n, C1= {<p,start>} and C2= {<p, nu>}

•  Null if n cannot be reached

•  Otherwise, JOVP captures transformation on global state G through
compose and union (join) creating the set of valuations that reach n

•  Poststart(p, n1) in Fig 2.9 gives weight at n6 of w6, which
represent possible values of x, y at that statement

9

Penn State Systems and Internet Infrastructure Security Lab
 Page

Infinite-State Data Abstractions

•  Number of states is infinite, such as integers

•  Verify definition 2.2.10 is a weight domain

‣  Minpath semiring M = (N U {infinity}, min, +, infinity, 0}

•  Find shortest path trace

‣  E.g., give each rule a weight of 1

‣  Then, JOVP is length of shortest path (assuming a combine of min)

10

Penn State Systems and Internet Infrastructure Security Lab
 Page

Weighted Relation

•  A weighted relation is a function from (C1, C2) to D

‣  Can compose two weighted relations

‣  (R1;R2)(s1, s3) = combine?{w1 extend w2 | exists s2 : w1 = R1(s1,
s2), w2 = R2(s2, s3)}

‣  Can union two weighted relations

‣  (R1 union R2)(s1, s2) = R1(s1, s2) combine R2(s1, s2)

•  To find shortest path that exhibits some property R

‣  Weight = 1 if (g1, g2) in R

‣  Weight = infinity if (g1, g2) not in R

11

Penn State Systems and Internet Infrastructure Security Lab
 Page

Affine Programs

•  Programs for which affine relation analysis can be precisely
performed

‣  Where linear-equality constraints between integer-valued variables
can be determined

•  Constraints

‣  xj = a0 + sum(i=1 to n) aixi

‣  Or assignments can be non-deterministic

12

Penn State Systems and Internet Infrastructure Security Lab
 Page

ARA Weight Domain

•  Linear algebra formulation

‣  Represented by a column vector (matrix): [a0, …, an]

•  n is the number of (global) variables

‣  An affine relation represents the set of all valuations of
program variables that satisfies it

‣  A concrete valuation must be a subset of all satisficing
valuations for affine relation

13

Penn State Systems and Internet Infrastructure Security Lab
 Page

ARA Weight Domain

•  Problem: Find all affine relations in a program

‣  Abstract each statement as a set of matrices of size (n+1) x (n+1)

‣  Weakest pre-condition transformer of matrices (more to finding
this)

•  Weight Domain

‣  Basis of their linear span

‣  Creates a vector space within which all valuations of program
variables exists

‣  Combine creates the smallest vector space containing the input
vector spaces

14

Penn State Systems and Internet Infrastructure Security Lab
 Page

Solving for JOVP

•  Defining prestar and poststar for WPDSs

•  Like PDSs, create an W-automaton, which is a P-automaton
where each transition of the automaton is labeled with a
weight

•  Weight of a path in the automaton is obtained by taking an extend of
the weights in the transitions in the path

•  Acceptance of a configuration c = <p, u> with weight w = A(c)
occurs if w is the combine of weights of all accepting paths for u
starting from state p in A

‣  Prestar(A) produces JOVP({c}, L(A)) – i.e., configurations accepted
starting from c in A – and Poststar(A) does opposite

•  Need both the forwards and backwards automata – why?

15

Penn State Systems and Internet Infrastructure Security Lab
 Page

Policy Analysis

‣  Does a security policy in a program or a system prevent
vulnerabilities?

•  What is an vulnerability?

•  How do we check that?

16

Penn State Systems and Internet Infrastructure Security Lab
 Page
 17

Example Attack

From SANS : The Top Security Risks (Tutorial)

Penn State Systems and Internet Infrastructure Security Lab
 Page
 18

SANS Example

From SANS : The Top Security Risks (Tutorial)

Penn State Systems and Internet Infrastructure Security Lab
 Page
 19

SANS Example

From SANS : The Top Security Risks (Tutorial)

8/20/11 12:13 PMSANS: Top Cyber Security Risks - Tutorial: HTTP Client-Side Exploit

Page 2 of 3http://www.sans.org/top-cyber-security-risks/tutorial.php

Step 2: Establish Reverse Shell Backdoor Using HTTPS
In Step 2, the attacker's exploit code installs a reverse shell backdoor program on the victim machine. This program gives the attacker

command shell access of the victim machine, communicating between this system and the attacker using outbound HTTPS access from victim

to attacker. The backdoor traffic therefore appears to be regular encrypted outbound web traffic as far as the enterprise firewall and network is

concerned.

Steps 3 & 4: Dump Hashes and Use Pass-the-Hash Attack to Pivot
In Step 3, the attacker uses shell access of the initial victim system to load a local privilege escalation exploit program onto the victim machine.

This program allows the attacker to jump from the limited privilege user account to full system privileges on this machine. Although vendors

frequently release patches to stop local privilege escalation attacks, many organizations do not deploy such patches quickly, because such

enterprises tend to focus exclusively on patching remotely exploitable flaws. The attacker now dumps the password hashes for all accounts on

this local machine, including a local administrator account on the system.

In Step 4, instead of cracking the local administrator password, the attacker uses a Windows pass-the-hash program to authenticate to another

Windows machine on the enterprise internal network, a fully patched client system on which this same victim user has full administrative

privileges. Using NTLMv1 or NTLMv2, Windows machines authenticate network access for the Server Message Block (SMB) protocol based on

user hashes and not the passwords themselves, allowing the attacker to get access to the file system or run programs on the fully patched

system with local administrator privileges. Using these privileges, the attacker now dumps the password hashes for all local accounts on this

fully patched Windows machine.

Step 5: Pass the Hash to Compromise Domain Controller
In Step 5, the attacker uses a password hash from a local account on the fully patched Windows client to access the domain controller system,

again using a pass-the-hash attack to gain shell access on the domain controller. Because the password for the local administrator account is

identical to the password for a domain administrator account, the password hashes for the two accounts are identical. Therefore, the attacker

can access the domain controller with full domain administrator privileges, giving the attacker complete control over all other accounts and

machines in that domain.

Steps 6 and 7: Exfiltration
In Step 6, with full domain administrator privileges, the attacker now compromises a server machine that stores secrets for the organization. In

Step 7, the attacker exfiltrates this sensitive information, consisting of over 200 Megabytes of data. The attacker pushes this data out to the

Penn State Systems and Internet Infrastructure Security Lab
 Page
 20

SANS Example

From SANS : The Top Security Risks (Tutorial)

Penn State Systems and Internet Infrastructure Security Lab
 Page
 21

SANS Example

From SANS : The Top Security Risks (Tutorial)

Penn State Systems and Internet Infrastructure Security Lab
 Page

Current Attacks

22

•  Attack unprivileged processes first

‣  Then, escalate privilege incrementally via local exploits

‣  Leverage (unjustified) trust between processes/hosts to propagate
attacks

•  Such Attack Paths are ubiquitous in current systems

‣  Processes are tightly interconnected

•  Historically, all user processes have same privilege and can utilize
system services

‣  Any control flow vulnerability can be leveraged to run any code

•  Return-oriented programming

•  Claim: Adversaries will use any undefended path

Penn State Systems and Internet Infrastructure Security Lab
 Page

Current Defenses

23

•  We have made progress the last 10 years or so

‣  Vulnerable network services galore  hardened, privilege-
separated daemons (OpenSSH)

‣  Default-enabled services  hardened configurations (IIS)

‣  Root system processes galore  Mandatory access control (Linux,
BSD)

‣  Application plug-ins in same address space  Run application code
in separate processes (Chrome, OP browsers)

‣  Email attachments compromise system  Prevent downloaded
content from modifying system (MIC, antivirus)

‣  A process in one host can easily access another host  Limit open
ports (host firewalls, labeled networking)

Penn State Systems and Internet Infrastructure Security Lab
 Page

MAC Operating Systems

•  Mandatory Access Control (MAC) operating systems

‣  Define an immutable set of labels and assign them to every subject and object in
the system

‣  Define a fixed set of authorized operations based on the labels

•  Now available in most commodity operating systems (Trusted Solaris,
TrustedBSD, SELinux, AppArmor, Windows MIC*, etc)

24

OS

Reference

Monitor

Security

Server

a

b

q

p

r

Policy

User Space
 Kernel Space

Penn State Systems and Internet Infrastructure Security Lab
 Page
 25

Idealized Security

•  Multilevel Security (MLS) for secrecy

‣  Secrecy requirement: Do not leak data to unauthorized principals

‣  Only permit information to flow from less secret to more secret
principals/objects

‣  E.g., Can only read a file if your clearance dominates that of the file

•  Biba Integrity

‣  Integrity requirement: Do not depend on data from lower integrity
principals

‣  Only permit information to flow from high integrity to lower
integrity

‣  E.g., Can only read a file if your integrity level is dominated by the
file’s

Penn State Systems and Internet Infrastructure Security Lab
 Page
 26

•  Secrecy (MLS): If the OS permits a secret application/object to flow to
a public application/object, then there may be a leak (e.g., Trojan
horse)

•  Integrity (Biba): If the OS permits a low integrity input to flow to a
high integrity application/object, then there may be a dependency (e.g.,
buffer overflow)

Information Flows

Secret
 Public

High
Low

Penn State Systems and Internet Infrastructure Security Lab
 Page
 27

Practical vs. Ideal

•  Do these idealized approaches based on information flow
enable practical realization of OS enforcement?

•  Secrecy is possible in some environments

‣  Implemented in a paper world, previously

‣  Still depend on many “declassifiers”

•  Integrity has not been realized in practice

•  Many processes provide high integrity services to others

•  Result: Depend on many applications to manage information
flows

Penn State Systems and Internet Infrastructure Security Lab
 Page
 28

Example: logrotate

•  Logrotate is a service that swaps logs

•  It rotates logs through sequence

‣  Secrecy: Logs may span all security
levels on system

‣  Thus, logrotate is trusted in MLS

•  It reads a configuration to tell it what to
do

‣  Integrity: Logs must not leak into
configuration files

‣  Thus, logrotate is trusted to protect
integrity

Penn State Systems and Internet Infrastructure Security Lab
 Page
 29

SELinux/MLS Trusted Programs

•  The OS trusts that privileged applications preserve system secrecy
(30+ programs)

SELinux/MLS:

Policy management tools
secadm, load_policy, setrans, setfiles, semanage,

restorecon, newrole

Startup utilities

bootloader, initrc, init, local_login

File tools

dpkg_script, dpkg, rpm, mount, fsadm

Network utilities

iptables, sshd, remote_login, NetworkManager

Auditing, logging services
logrotate, klogd, auditd, auditctl

Hardware, device mgmt
hald, dmidecode, udev, kudzu

Miscellaneous services
passwd, tmpreaper, insmod, getty, consoletype, pam_console

Penn State Systems and Internet Infrastructure Security Lab
 Page
 30

Integrity Situation Is Much Worse

•  Clients

‣  Lots of client programs are entrusted with information
with different secrecy/integrity requirements

‣  Email, browser, IM, VOIP, …

•  Servers

‣  Historically, many servers have enforced security policies
because they handle multiple clients

‣  Web servers, databases, mail, respositories, …

•  Information flow alone is not enough to build a secure
system!

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

•  Evaluating whether a policy permits an adversary to have unauthorized
access (i.e., contains an error) is a compliance problem:

‣  System Policy: describes a system’s behavior

‣  Goal Policy: describes acceptable behavior

‣  Mapping function: relates elements from the system policy to elements in the
goal policy

‣  A compliant system policy is guaranteed to meet the requirements defined by
the goal policy

31

Penn State Systems and Internet Infrastructure Security Lab
 Page

Evaluating OS MAC Policy

•  We represent a single MAC policy with an information flow graph

‣  Used in analyses for SELinux by Tresys, Stoller, Li, Jaeger, etc.

32

etc_t
 var_t
 sbin_t

installer_t
 read,write
 read,write
 read,write

kernel_t
 read,write
 read,write
 read

ftpd_t
 read
 read
 read

var_t

installer_t

kernel_t

ftpd_t

etc_t

sbin_t

read

read,write

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

33

•  The policy compliance problem for a single policy is set up as follows:

•  System policy – The policy that we are analyzing is represented as a
graph

var_t

installer_t

kernel_t

ftpd_t

etc_t

sbin_t

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

34

•  The policy compliance problem for a single policy is set up as follows:

•  System policy – The policy that we are analyzing is represented as a
graph

•  Goal – The security goal is a lattice that defines integrity levels and
rules that guarantee the integrity of the system

High

Low

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

35

•  The policy compliance problem for a single policy is set up as follows:

•  System policy – The policy that we are analyzing is represented as a
graph

•  Goal – The security goal is a lattice that defines integrity levels and
rules that guarantee the integrity of the system

•  Mapping - Assigns integrity levels to policy labels

var_t

installer_t

kernel_t

ftpd_t

etc_t

sbin_t

High

Low

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

36

•  The policy compliance problem for a single policy is set up as follows:

•  System policy – The policy that we are analyzing is represented as a
graph

•  Goal – The security goal is a lattice that defines integrity levels and
rules that guarantee the integrity of the system

•  Mapping - Assigns integrity levels to policy labels

var_t

installer_t

kernel_t

ftpd_t

etc_t

sbin_t

High

Low

Do all flows meet the requirements defined by the goal ?

High

Low

Penn State Systems and Internet Infrastructure Security Lab
 Page

Other Compliance Problems

•  Information flow compliance in programs

‣  Data flow is determined by program data flows – security-typed languages, such
as Jif, Sif, SELinks, FlowCaml

•  Goal policy is not a lattice

‣  Illegal reachability: no path from u G v

‣  Illegal sets of permissions: annotate edges with permissions

•  Goals as functional requirements (e.g., obligations)

‣  The presence of a node, edge, or path is required

‣  These are functional constraints, rather than security

37

Penn State Systems and Internet Infrastructure Security Lab
 Page
 38

Find SELinux TCB

•  Can we identify a TCB in SELinux Example Policy
whose integrity protection can be managed (circa
Linux 2.4.19)?

‣  See [USENIX Security 2003]

•  Tasks:

‣ Can We Identify Trusted Programs?

‣ Can We Define a Security Goal to Protect These
Programs?

‣ Can We Verify This Goal?

‣ How Do We Debug Conflicts?

Penn State Systems and Internet Infrastructure Security Lab
 Page

Type Enforcement

•  Least privilege MAC policy used by SELinux

‣  Subjects have a label

‣  Objects have a label

‣  Permissions define object labels accessible to subject labels

•  Several systems use (or have used) a form of TE

‣  SELinux uses labels called types

•  TE policies are fine-grained and complex

‣  SELinux has 10,000s of rules

•  SELinux has added abstractions, such as attributes and roles

39

Penn State Systems and Internet Infrastructure Security Lab
 Page
 40

Proposed Approach

•  Propose a TCB from SELinux subjects

•  Identify Biba integrity violations

•  “Handle” integrity violations

‣  Classify integrity violations

‣  Remove violations that can be managed by application

•  Application is trusted to protect itself

‣  Revise TCB proposal

‣  Revise SELinux policy

•  Result: All information flows are legal or accounted

Penn State Systems and Internet Infrastructure Security Lab
 Page
 41

Propose a TCB - Detail

•  Use SELinux transition graph (i.e., who can exec
whom) for server programs (e.g., httpd_t) to identify
base subject types

•  Ones that provide TCB services (e.g.,
authentication)

•  Others that have many transitions (hard to contain)

Penn State Systems and Internet Infrastructure Security Lab
 Page
 42

Identify Integrity Violations

•  Biba Integrity Analysis -- Gokyo, PAL, PALMS

•  TCB subject types  read/exec perms

‣  Generate corresponding “integrity-sensitive write”
perms

•  Others  write perms

‣  Generate corresponding “integrity-sensitive read”
perms

•  Analysis

‣  Do Others’ write to integrity-sensitive writes?

‣  Do TCB Subjects read from integrity-sensitive reads?

Penn State Systems and Internet Infrastructure Security Lab
 Page
 43

Integrity Analysis

Subject
Perm

Subject

Perm

High Subject
Object Read

Low Subject

Object Write

Low Subject
Can Modify

Input To High

Penn State Systems and Internet Infrastructure Security Lab
 Page
 44

Are There Integrity Violations?

•  For Linux 2.4.19 -- SELinux Strict Policy

•  Permissions

‣  129 perms used to “read down”

•  57 socket perms, 25 fifo perms

‣  1583 perms used to “write up”

•  Subjects

‣  28 high integrity subjects “read down”

•  35 for sysadm_t, 4 for load_policy_t

‣  150 low integrity subjects “write up”

Penn State Systems and Internet Infrastructure Security Lab
 Page
 45

Expressing Conflicts

file_type
read

sshd_tmp
read

lastlog
write

sysadm

sshd

logrotate
logfile
read

setfiles

user_ssh
rw

lastlog
read

sshd_tmp
rw

user_ssh
rw user

httpd
admin

xdm

High
Subject

Type

Attr
Perm Perm Perm Low

Subject
Type

Conflict S-P Assign S-P Assign

The subject-permission assignments that lead to

 a conflict result in a minimal cover of all conflicts

Penn State Systems and Internet Infrastructure Security Lab
 Page
 46

Example Resolutions

file_type
read

sshd_tmp
read

lastlog
write

sysadm

sshd

logrotate
logfile
read

setfiles

user_ssh
rw

lastlog
read

sshd_tmp
rw

user_ssh
rw user

httpd
admin

xdm

High
Subject

Type

Attr
Perm Perm Perm

Conflict S-P Assign S-P Assign

Exclude Subject Type

X
Low

Subject
Type

X
No Dep Read

Exclude Object Type
Deny Access

X

Penn State Systems and Internet Infrastructure Security Lab
 Page
 47

Integrity Resolutions

• Remove Subject Type or Object Type

• Reclassify Subject Type of Object Type

• Change Subject Type-Permission assignment

• Clark-Wilson reads

‣  Allow reading of low integrity data that meet Clark-Wilson

• Deny Object Access

‣  Track low integrity writes per object

• LOMAC Subject Type (sysadm)

‣  Reduce integrity level of subject when reading low integrity
data

Penn State Systems and Internet Infrastructure Security Lab
 Page
 48

Analysis Summary

•  Conclusions

‣  Biba Information Flow Integrity

•  May not be so far off practical

•  But, we cannot force Biba (or other ideal models, e.g., LOMAC)

‣  Need to address conflicts

•  Identify resolutions

•  Approach

‣  Compliance Problem

‣  Multiple types of resolutions

Penn State Systems and Internet Infrastructure Security Lab
 Page

Questions

49

