
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Systems and Internet 
Infrastructure Security  

Network and Security Research Center

Department of Computer Science and Engineering

Pennsylvania State University, University Park PA


1


Analysis of �
(Access Control) Policies




Penn State Systems and Internet Infrastructure Security Lab
 Page


Outline


•  Weighted Pushdown Systems


•  Analysis of Security Policies

‣  SELinux analysis of mine and Stoller


‣  Program Analysis of Myers
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Weighted Pushdown Systems


•  A model of programs that uses weights to encode the effect 
of each statement on the data state of the program


‣  PDS still represents control flow


‣  Weights provide data abstraction


•  Weights will need to support a variety of possible 
abstractions
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Weighted Pushdown Systems


•  Weight domains are a bounded idempotent semiring


‣  Which is a tuple


•  Weight set (D)


•  Combine operator


•  Extend operator


•  O in D (identity element of combine)


•  1 in D (identity element of extend)


•  Weight domains must enable abstractions to be extended 
(values updated) and combined (via joins)
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Combine and Extend


•  (D, combine) is a commutative monoid with 0 as its neutral 
element


‣  Monoid – a set with a binary operation . that satisfies


•  Closure: a,b in S, a.b in S


•  Associativity: (a.b).c = a.(b.c)


•  Identity element: there exists e in S, s.t., forall a in S, a.e = e.a = a


‣  Commutative monoid – is endowed with its algebraic preordering 
x<=y, iff there exists a z, s.t. z + x = y (enables join)


•  Extend distributes over combine


•  0 is an annihilator wrt extend
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Weighted Pushdown System


•  Definition


•  WPDS is a triple (P, S, f) where


‣  P is a PDS


‣  S is a bounded idempotent semiring (weight domain)


‣  f is a map that assigns a weight to each rule of P


6




Penn State Systems and Internet Infrastructure Security Lab
 Page


WPDS expresses PDS


•  A PDS P is a WPDS W with the boolean weight domain S


‣  S = ({F, T}, OR, AND, F, T)


‣  Weight assignment f(r) = T for all rules in P


•  All rules are true


•  JOVP(C1, C2) = T iff there exists a path from a 
configuration in C1 to a configuration in C2
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Finite-State Data Abstractions


•  Can encode data abstractions for finite sets


•  E.g., binary relations on a finite set


‣  S = (2GxG, union, compose, null, id), where


•  Union is combine and compose (relational composition) is extend


•  Empty relation null is 0 and identity relation id is 1


•  Check properties of weight domain against definition
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Finite-State Data Abstractions


•  JOVP(C1, C2) 


‣  From start to n, C1= {<p,start>} and C2= {<p, nu>}


•  Null if n cannot be reached


•  Otherwise, JOVP captures transformation on global state G through 
compose and union (join) creating the set of valuations that reach n


•  Poststart(p, n1) in Fig 2.9 gives weight at n6 of w6, which 
represent possible values of x, y at that statement
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Infinite-State Data Abstractions


•  Number of states is infinite, such as integers


•  Verify definition 2.2.10 is a weight domain


‣  Minpath semiring M = (N U {infinity}, min, +, infinity, 0}


•  Find shortest path trace


‣  E.g., give each rule a weight of 1


‣  Then, JOVP is length of shortest path (assuming a combine of min)
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Weighted Relation


•  A weighted relation is a function from (C1, C2) to D


‣  Can compose two weighted relations


‣  (R1;R2)(s1, s3) = combine?{w1 extend w2 | exists s2 : w1 = R1(s1, 
s2), w2 = R2(s2, s3)}


‣  Can union two weighted relations


‣  (R1 union R2)(s1, s2) = R1(s1, s2) combine R2(s1, s2)


•  To find shortest path that exhibits some property R


‣  Weight = 1 if (g1, g2) in R


‣  Weight = infinity if (g1, g2) not in R
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Affine Programs


•  Programs for which affine relation analysis can be precisely 
performed


‣  Where linear-equality constraints between integer-valued variables 
can be determined


•  Constraints


‣  xj = a0 + sum(i=1 to n) aixi


‣  Or assignments can be non-deterministic
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ARA Weight Domain


•  Linear algebra formulation


‣  Represented by a column vector (matrix): [a0, …, an]


•  n is the number of (global) variables


‣  An affine relation represents the set of all valuations of 
program variables that satisfies it 



‣  A concrete valuation must be a subset of all satisficing 
valuations for affine relation
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ARA Weight Domain


•  Problem: Find all affine relations in a program


‣  Abstract each statement as a set of matrices of size (n+1) x (n+1)


‣  Weakest pre-condition transformer of matrices (more to finding 
this)


•  Weight Domain


‣  Basis of their linear span


‣  Creates a vector space within which all valuations of program 
variables exists


‣  Combine creates the smallest vector space containing the input 
vector spaces
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Solving for JOVP


•  Defining prestar and poststar for WPDSs


•  Like PDSs, create an W-automaton, which is a P-automaton 
where each transition of the automaton is labeled with a 
weight


•  Weight of a path in the automaton is obtained by taking an extend of 
the weights in the transitions in the path


•  Acceptance of a configuration c = <p, u> with weight w = A(c) 
occurs if w is the combine of weights of all accepting paths for u 
starting from state p in A


‣  Prestar(A) produces JOVP({c}, L(A)) – i.e., configurations accepted 
starting from c in A – and Poststar(A) does opposite


•  Need both the forwards and backwards automata – why?


15




Penn State Systems and Internet Infrastructure Security Lab
 Page


Policy Analysis


‣  Does a security policy in a program or a system prevent 
vulnerabilities?


•  What is an vulnerability?


•  How do we check that?
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Example Attack


From SANS : The Top Security Risks (Tutorial)
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SANS Example


From SANS : The Top Security Risks (Tutorial)
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SANS Example


From SANS : The Top Security Risks (Tutorial)


8/20/11 12:13 PMSANS: Top Cyber Security Risks - Tutorial: HTTP Client-Side Exploit

Page 2 of 3http://www.sans.org/top-cyber-security-risks/tutorial.php

Step 2: Establish Reverse Shell Backdoor Using HTTPS
In Step 2, the attacker's exploit code installs a reverse shell backdoor program on the victim machine. This program gives the attacker

command shell access of the victim machine, communicating between this system and the attacker using outbound HTTPS access from victim

to attacker. The backdoor traffic therefore appears to be regular encrypted outbound web traffic as far as the enterprise firewall and network is

concerned.

Steps 3 & 4: Dump Hashes and Use Pass-the-Hash Attack to Pivot
In Step 3, the attacker uses shell access of the initial victim system to load a local privilege escalation exploit program onto the victim machine.

This program allows the attacker to jump from the limited privilege user account to full system privileges on this machine. Although vendors

frequently release patches to stop local privilege escalation attacks, many organizations do not deploy such patches quickly, because such

enterprises tend to focus exclusively on patching remotely exploitable flaws. The attacker now dumps the password hashes for all accounts on

this local machine, including a local administrator account on the system.

In Step 4, instead of cracking the local administrator password, the attacker uses a Windows pass-the-hash program to authenticate to another

Windows machine on the enterprise internal network, a fully patched client system on which this same victim user has full administrative

privileges. Using NTLMv1 or NTLMv2, Windows machines authenticate network access for the Server Message Block (SMB) protocol based on

user hashes and not the passwords themselves, allowing the attacker to get access to the file system or run programs on the fully patched

system with local administrator privileges. Using these privileges, the attacker now dumps the password hashes for all local accounts on this

fully patched Windows machine.

Step 5: Pass the Hash to Compromise Domain Controller
In Step 5, the attacker uses a password hash from a local account on the fully patched Windows client to access the domain controller system,

again using a pass-the-hash attack to gain shell access on the domain controller. Because the password for the local administrator account is

identical to the password for a domain administrator account, the password hashes for the two accounts are identical. Therefore, the attacker

can access the domain controller with full domain administrator privileges, giving the attacker complete control over all other accounts and

machines in that domain.

Steps 6 and 7: Exfiltration
In Step 6, with full domain administrator privileges, the attacker now compromises a server machine that stores secrets for the organization. In

Step 7, the attacker exfiltrates this sensitive information, consisting of over 200 Megabytes of data. The attacker pushes this data out to the
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SANS Example


From SANS : The Top Security Risks (Tutorial)
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SANS Example


From SANS : The Top Security Risks (Tutorial)
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Current Attacks
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•  Attack unprivileged processes first


‣  Then, escalate privilege incrementally via local exploits


‣  Leverage (unjustified) trust between processes/hosts to propagate 
attacks


•  Such Attack Paths are ubiquitous in current systems


‣  Processes are tightly interconnected


•  Historically, all user processes have same privilege and can utilize 
system services


‣  Any control flow vulnerability can be leveraged to run any code


•  Return-oriented programming


•  Claim: Adversaries will use any undefended path
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Current Defenses
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•  We have made progress the last 10 years or so


‣  Vulnerable network services galore  hardened, privilege- 
separated daemons (OpenSSH)


‣  Default-enabled services  hardened configurations (IIS)


‣  Root system processes galore  Mandatory access control (Linux, 
BSD)


‣  Application plug-ins in same address space  Run application code 
in separate processes (Chrome, OP browsers)


‣  Email attachments compromise system  Prevent downloaded 
content from modifying system (MIC, antivirus)


‣  A process in one host can easily access another host  Limit open 
ports (host firewalls, labeled networking)
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MAC Operating Systems


•  Mandatory Access Control (MAC) operating systems


‣  Define an immutable set of labels and assign them to every subject and object in 
the system


‣  Define a fixed set of authorized operations based on the labels


•  Now available in most commodity operating systems (Trusted Solaris, 
TrustedBSD, SELinux, AppArmor, Windows MIC*, etc) 
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Idealized Security


•  Multilevel Security (MLS) for secrecy


‣  Secrecy requirement: Do not leak data to unauthorized principals


‣  Only permit information to flow from less secret to more secret 
principals/objects


‣  E.g., Can only read a file if your clearance dominates that of the file


•  Biba Integrity 


‣  Integrity requirement: Do not depend on data from lower integrity 
principals


‣  Only permit information to flow from high integrity to lower 
integrity


‣  E.g., Can only read a file if your integrity level is dominated by the 
file’s 
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•  Secrecy (MLS): If the OS permits a secret application/object to flow to 
a public application/object, then there may be a leak (e.g., Trojan 
horse)


•  Integrity (Biba): If the OS permits a low integrity input to flow to a 
high integrity application/object, then there may be a dependency (e.g., 
buffer overflow)


Information Flows


Secret
 Public


High
Low
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Practical vs. Ideal


•  Do these idealized approaches based on information flow 
enable practical realization of OS enforcement?


•  Secrecy is possible in some environments


‣  Implemented in a paper world, previously


‣  Still depend on many “declassifiers”


•  Integrity has not been realized in practice


•  Many processes provide high integrity services to others


•  Result: Depend on many applications to manage information 
flows
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Example: logrotate


•  Logrotate is a service that swaps logs 


•  It rotates logs through sequence 


‣  Secrecy: Logs may span all security 
levels on system


‣  Thus, logrotate is trusted in MLS


•  It reads a configuration to tell it what to 
do


‣  Integrity: Logs must not leak into 
configuration files


‣  Thus, logrotate is trusted to protect 
integrity 
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SELinux/MLS Trusted Programs


•  The OS trusts that privileged applications preserve system secrecy 
(30+ programs)


SELinux/MLS:


Policy management tools 
secadm, load_policy, setrans, setfiles, semanage,

 
 
restorecon, newrole 

Startup utilities 
 
bootloader, initrc, init, local_login 

File tools 
 
 
dpkg_script, dpkg, rpm, mount, fsadm 

Network utilities 
 
iptables, sshd, remote_login, NetworkManager 

Auditing, logging services 
logrotate, klogd, auditd, auditctl 

Hardware, device mgmt 
hald, dmidecode, udev, kudzu 

Miscellaneous services 
passwd, tmpreaper, insmod, getty, consoletype, pam_console 
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Integrity Situation Is Much Worse


•  Clients


‣  Lots of client programs are entrusted with information 
with different secrecy/integrity requirements


‣  Email, browser, IM, VOIP, …


•  Servers


‣  Historically, many servers have enforced security policies 
because they handle multiple clients


‣  Web servers, databases, mail, respositories, …


•  Information flow alone is not enough to build a secure 
system!
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Compliance Problem


•  Evaluating whether a policy permits an adversary to have unauthorized 
access (i.e., contains an error) is a compliance problem: 


‣  System Policy: describes a system’s behavior


‣  Goal Policy: describes acceptable behavior


‣  Mapping function: relates elements from the system policy to elements in the 
goal policy


‣  A compliant system policy is guaranteed to meet the requirements defined by 
the goal policy
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Evaluating OS MAC Policy


•  We represent a single MAC policy with an information flow graph


‣  Used in analyses for SELinux by Tresys, Stoller, Li, Jaeger, etc.
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Compliance Problem 
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•  The policy compliance problem for a single policy is set up as follows:


•  System policy – The policy that we are analyzing is represented as a 
graph


var_t


installer_t


kernel_t


ftpd_t

etc_t


sbin_t
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Compliance Problem 
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•  The policy compliance problem for a single policy is set up as follows:


•  System policy – The policy that we are analyzing is represented as a 
graph 


•  Goal – The security goal is a lattice that defines integrity levels and 
rules that guarantee the integrity of the system


High 

Low 
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Compliance Problem 
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•  The policy compliance problem for a single policy is set up as follows:


•  System policy – The policy that we are analyzing is represented as a 
graph 


•  Goal – The security goal is a lattice that defines integrity levels and 
rules that guarantee the integrity of the system


•  Mapping -  Assigns integrity levels to policy labels 
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Compliance Problem 
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•  The policy compliance problem for a single policy is set up as follows:


•  System policy – The policy that we are analyzing is represented as a 
graph 


•  Goal – The security goal is a lattice that defines integrity levels and 
rules that guarantee the integrity of the system


•  Mapping -  Assigns integrity levels to policy labels 


var_t


installer_t


kernel_t


ftpd_t

etc_t


sbin_t

High 

Low 

Do all flows meet the requirements defined by the goal ? 


High 

Low 
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Other Compliance Problems


•  Information flow compliance in programs


‣  Data flow is determined by program data flows – security-typed languages, such 
as Jif, Sif, SELinks, FlowCaml


•  Goal policy is not a lattice


‣  Illegal reachability: no path from u G v


‣  Illegal sets of permissions: annotate edges with permissions


•  Goals as functional requirements (e.g., obligations)


‣  The presence of a node, edge, or path is required


‣  These are functional constraints, rather than security 
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Find SELinux TCB


•  Can we identify a TCB in SELinux Example Policy 
whose integrity protection can be managed (circa 
Linux 2.4.19)?


‣  See [USENIX Security 2003]


•  Tasks:


‣ Can We Identify Trusted Programs?


‣ Can We Define a Security Goal to Protect These 
Programs?


‣ Can We Verify This Goal?


‣ How Do We Debug Conflicts?
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Type Enforcement 


•  Least privilege MAC policy used by SELinux 


‣  Subjects have a label


‣  Objects have a label


‣  Permissions define object labels accessible to subject labels


•  Several systems use (or have used) a form of TE


‣  SELinux uses labels called types


•  TE policies are fine-grained and complex


‣  SELinux has 10,000s of rules


•  SELinux has added abstractions, such as attributes and roles
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Proposed Approach


•  Propose a TCB from SELinux subjects


•  Identify Biba integrity violations


•  “Handle” integrity violations


‣  Classify integrity violations


‣  Remove violations that can be managed by application


•  Application is trusted to protect itself


‣  Revise TCB proposal


‣  Revise SELinux policy


•  Result: All information flows are legal or accounted
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Propose a TCB - Detail


•  Use SELinux transition graph (i.e., who can exec 
whom) for server programs (e.g., httpd_t) to identify 
base subject types


•  Ones that provide TCB services (e.g., 
authentication)


•  Others that have many transitions (hard to contain)
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Identify Integrity Violations


•  Biba Integrity Analysis -- Gokyo, PAL, PALMS


•  TCB subject types  read/exec perms


‣  Generate corresponding “integrity-sensitive write” 
perms


•  Others  write perms


‣  Generate corresponding “integrity-sensitive read” 
perms


•  Analysis


‣  Do Others’ write to integrity-sensitive writes?


‣  Do TCB Subjects read from integrity-sensitive reads?
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Integrity Analysis


Subject 
Perm 

Subject 

Perm 

High Subject 
Object Read 

Low Subject 

Object Write 

Low Subject  
Can Modify 

Input To High 
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Are There Integrity Violations?


•  For Linux 2.4.19 -- SELinux Strict Policy


•  Permissions


‣  129 perms used to “read down”


•  57 socket perms, 25 fifo perms


‣  1583 perms used to “write up”


•  Subjects 


‣  28 high integrity subjects “read down”


•  35 for sysadm_t, 4 for load_policy_t


‣  150 low integrity subjects “write up”
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Expressing Conflicts


file_type 
read 

sshd_tmp 
read 

lastlog 
write 

sysadm 

sshd 

logrotate 
logfile 
read 

setfiles 

user_ssh 
rw 

lastlog 
read 

sshd_tmp 
rw 

user_ssh 
rw user 

httpd 
admin 

xdm 

High 
Subject 

Type 

Attr 
Perm Perm Perm Low 

Subject 
Type 

Conflict S-P Assign S-P Assign 

The subject-permission assignments that lead to

 a conflict result in a minimal cover of all conflicts
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Example Resolutions


file_type 
read 

sshd_tmp 
read 

lastlog 
write 

sysadm 

sshd 

logrotate 
logfile 
read 

setfiles 

user_ssh 
rw 

lastlog 
read 

sshd_tmp 
rw 

user_ssh 
rw user 

httpd 
admin 

xdm 

High 
Subject 

Type 

Attr 
Perm Perm Perm 

Conflict S-P Assign S-P Assign 

Exclude Subject Type 

X 
Low 

Subject 
Type 

X 
No Dep Read 

Exclude Object Type 
Deny Access 

X 
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Integrity Resolutions


• Remove Subject Type or Object Type


• Reclassify Subject Type of Object Type


• Change Subject Type-Permission assignment


• Clark-Wilson reads


‣  Allow reading of low integrity data that meet Clark-Wilson


• Deny Object Access 


‣  Track low integrity writes per object


• LOMAC Subject Type (sysadm)


‣  Reduce integrity level of subject when reading low integrity 
data
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Analysis Summary


•  Conclusions


‣  Biba Information Flow Integrity 


•  May not be so far off practical


•  But, we cannot force Biba (or other ideal models, e.g., LOMAC)


‣  Need to address conflicts 


•  Identify resolutions


•  Approach


‣  Compliance Problem


‣  Multiple types of resolutions
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Questions
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