
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center

Department of Computer Science and Engineering

Pennsylvania State University, University Park PA

1

Static Analysis Basics II

Trent Jaeger

Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department

Pennsylvania State University

September 19, 2011

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Outline

2

•  More background

‣  Pushdown Systems

‣  Boolean Programs

‣  Enable more refined dataflow analysis

•  Metacompilation

•  Control Flow and Data Flow Integrity

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Pushdown Systems

3

•  To encode ICFGs

‣  What are ICFGs?

‣  Why are they necessary for dataflow analysis?

‣  What is the major challenge in using ICFGs in
dataflow?

‣  Other challenges?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Pushdown Systems

4

•  Consists of

‣  A finite set of states

‣  A finite set of stack symbols

‣  A finite set of rules

•  Which define a transition relation

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Modeling Control Flow

5

•  One state

•  Each ICFG node is a stack symbol

•  Each ICFG edge is represented by a rule

‣  (p, emain)  (p, n1)

‣  (p, n3)  (p, efn4)

‣  (p, n12)  (p, xf)

‣  (p, xf)  (p, epsilon)

•  PDSs with a single control location are called
context-free processes

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Pushdown Systems

6

•  A configuration is a pair (node, stack)

‣  Where we are currently and why

‣  Pre and post-configurations are important

•  Backward and forward reachability over the transition relation

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Find All Reachable Configurations

7

•  Start with a set of configurations

‣  Can be used for assertion checking statically (Phil)

•  Number of configurations in a pushdown system is
unbounded – use finite automata to describe
regular sets of configurations

•  Why?

‣  Symbolic Reachability Analysis of Higher-Order
Context-Free Processes – Bouajjani and Meyer

‣  http://igm.univ-mlv.fr/~ameyer/binaires/fsttcs04.pdf

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Find All Reachable Configurations

8

•  Represent sets of configurations as

•  P-automaton (FSA)

‣  States (superset of PDS states)

‣  Stack symbols

‣  Transition relation

‣  Start and final states

•  What is it missing from the PDS representation?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Find All Reachable Configurations

9

•  Compute post*(C) and pre*(C)

•  Take a P-automaton that accepts a set of
configurations C

‣  Produces an automaton that accepts the pre and post
configurations

•  Saturation procedures

‣  Add transitions to A until no more can be satisfied

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Find All Reachable Configurations

10

•  Prestar

‣  If (p, v)  (p’, w) and p’ w q in A

•  v in Stack, w in Stack*

‣  Then add transition (p, v, q)

•  Why does this enable finding the backward
reachable state for a configuration?

‣  Efficient algorithms for modeling pushdown systems,
Esparza et al (ref 107)

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Find All Reachable Configurations

11

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Find All Reachable Configurations

12

•  Poststar

‣  Phase 1: For each (p’, v’) s.t. P contains at least one rule (p,
v)  (p’, v’, v’’), add new state p’v’

‣  Phase II:

•  If (p, v)  (p’, epsilon) in rules pv q, then (p’, epsilon, q)

•  If (p, v)  (p’, v’) in rules pv q, then (p’, v’, q)

•  If (p, v)  (p’, v’v’’) in rules pv q, then (p’, v’, pv’) and (p’v’, v’’, q)

•  Figure 2.7

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Find All Reachable Configurations

13

•  Fig 2.7

•  Phase 1: Add states

‣  (p, n3)  (p, efn4) results in Pef

‣  (p, n7) also – but same state

•  Phase 2: Add transitions

‣  (p, xf)  (p, epsilon)  (p, epsilon, pef) and (p, epsilon, q)

‣  (p, n8)  (p, n9)  (p, n9, q)

‣  (p, n3)  (p, efn4) and p  q,  (p, ef, pef) and (p, n4, q)

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Boolean Programs

14

•  Program that only uses boolean data types and
fixed-length vectors of booleans

‣  Finite set of globals and local variables

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Boolean Programs

15

•  Let G be the valuations of globals

•  Vali be the valuations of the locals in procedure i

•  L is local states

‣  Program counter

‣  Vali

‣  Stack

•  Assignment statement is binary relation that states how
the values G and Vali (variables in scope) may change

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Encode Boolean Program in PDS

16

•  Why?

•  Changes

‣  Use P to encode globals

‣  Use stack alphabet to encode local vars

•  Model

‣  (Ni is control nodes in ith procedure)

‣  P is set to G

‣  Stack symbols are union of Ni X Vali

‣  Rules for assignments, calls, returns

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Vulnerability

17

•  How do you define computer ‘vulnerability’?

‣  Flaw

‣  Accessible to adversary

‣  Adversary has ability to exploit

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Vulnerability

18

•  How do you define computer ‘vulnerability’?

‣  Flaw – Can we find flaws in source code?

‣  Accessible to adversary – Can we find what is accessible?

‣  Adversary has ability to exploit – Can we find how to exploit?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Bugs

•  Known incorrect functions

‣  Dereference after free

‣  Double free

•  Often have known patterns

‣  Can we express and check

19

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

20

1

A System and Language for

Building System-Specific, Static

Analyses

Seth Hallem, Benjamin Chelf, Yichen Xie, and

Dawson Engler

Stanford University

Overview

• Goal: find as many bugs as possible

– Allow users of our system to write the analyses

• Implementation: tool with two parts

– Metal - the language for writing analyses

– xgcc - the engine for executing analyses

• System design goals

– Metal must be easy to use and flexible

• we have written over 50 checkers, found 1000+ bugs in

Linux, OpenBSD and still counting

– xgcc must execute Metal extensions efficiently

– xgcc must not restrict Metal extensions too much

int contrived (int *p, int *w, int x) {

 int *q;

 if (x) {

 kfree (w);

 q = p;

 p = 0;

 }

 if (!x)

 return *w; // safe

 return *q; // deref after free

}

int contrived_caller (int *w, int x, int *p) {

 kfree (p);

 contrived (p, w, x);

 return *w; // deref after free

}

1

2

3

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

21

1

A System and Language for

Building System-Specific, Static

Analyses

Seth Hallem, Benjamin Chelf, Yichen Xie, and

Dawson Engler

Stanford University

Overview

• Goal: find as many bugs as possible

– Allow users of our system to write the analyses

• Implementation: tool with two parts

– Metal - the language for writing analyses

– xgcc - the engine for executing analyses

• System design goals

– Metal must be easy to use and flexible

• we have written over 50 checkers, found 1000+ bugs in

Linux, OpenBSD and still counting

– xgcc must execute Metal extensions efficiently

– xgcc must not restrict Metal extensions too much

int contrived (int *p, int *w, int x) {

 int *q;

 if (x) {

 kfree (w);

 q = p;

 p = 0;

 }

 if (!x)

 return *w; // safe

 return *q; // deref after free

}

int contrived_caller (int *w, int x, int *p) {

 kfree (p);

 contrived (p, w, x);

 return *w; // deref after free

}

1

2

3

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

22

10

More metal patterns

• Wildcard types

– Typed placeholders within a pattern

decl any_expr e;
start: { e++ } ==>

decl {int} i;
start: { i++ } ==>

decl any_fn_call f;
decl any_args args;

{ f(args) } && ${ strstr (mc_identifier (f), “mem”) } ==> …

• Composition: &&, ||

• Restrictions on patterns

– No star operator; must be meaningful in isolation

• Callouts: query AST directly if necessary

decl any_pointer p;
start: { kfree (p) } ==>

Interprocedural Analysis

• Start at each entry point to the callgraph

– initially we do not know any facts

• Traverse CFG for each function depth-first

– at each block, remove seen facts

• At the end of an intraprocedural path or a cache hit,

relax edges and backtrack intraprocedurally

• At a function call, use the edges summarizing the call

to transform the extension state

– reanalyze the called function with any new facts

• After all paths in a function are analyzed, backtrack to

return-site, apply edges to extension state at call

Overview

• The goal of our research is to find as many
bugs in real systems as possible

• Insight: many rules are system-specific.
– The number of rules that apply to all programs is

very small; violations of these generic rules are
hard to find.

• E.g. memory errors, race conditions, etc.

• Programmers know the rules their code
obeys

• A system that allows programmers to specify
these rules will find lots of bugs

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

23

1

A System and Language for

Building System-Specific, Static

Analyses

Seth Hallem, Benjamin Chelf, Yichen Xie, and

Dawson Engler

Stanford University

Overview

• Goal: find as many bugs as possible

– Allow users of our system to write the analyses

• Implementation: tool with two parts

– Metal - the language for writing analyses

– xgcc - the engine for executing analyses

• System design goals

– Metal must be easy to use and flexible

• we have written over 50 checkers, found 1000+ bugs in

Linux, OpenBSD and still counting

– xgcc must execute Metal extensions efficiently

– xgcc must not restrict Metal extensions too much

int contrived (int *p, int *w, int x) {

 int *q;

 if (x) {

 kfree (w);

 q = p;

 p = 0;

 }

 if (!x)

 return *w; // safe

 return *q; // deref after free

}

int contrived_caller (int *w, int x, int *p) {

 kfree (p);

 contrived (p, w, x);

 return *w; // deref after free

}

1

2

3

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

24

2

System Overview

Metal compiler
(mcc)

xgcc

Source base

(e.g. Linux)

gcc

Emitter

Emit
directory

source code

AST for each file

binary representation

emitted
binaries

Metal

extension

free.m

dynamic library

(free.so)

deref-after-free, double-free errors

Analysis Overview: if (!x) branch

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{ }

{p is freed}

1

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}{p is freed}

{p is freed}

Analysis Overview: if (x) branch

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{ }

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{q and w

 are freed}
{q and w

 are freed}

3

{w is freed}

{w is freed}

{w is freed}

{ }
2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

25

2

System Overview

Metal compiler
(mcc)

xgcc

Source base

(e.g. Linux)

gcc

Emitter

Emit
directory

source code

AST for each file

binary representation

emitted
binaries

Metal

extension

free.m

dynamic library

(free.so)

deref-after-free, double-free errors

Analysis Overview: if (!x) branch

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{ }

{p is freed}

1

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}{p is freed}

{p is freed}

Analysis Overview: if (x) branch

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{ }

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{q and w

 are freed}
{q and w

 are freed}

3

{w is freed}

{w is freed}

{w is freed}

{ }
2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

26

2

System Overview

Metal compiler
(mcc)

xgcc

Source base

(e.g. Linux)

gcc

Emitter

Emit
directory

source code

AST for each file

binary representation

emitted
binaries

Metal

extension

free.m

dynamic library

(free.so)

deref-after-free, double-free errors

Analysis Overview: if (!x) branch

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{ }

{p is freed}

1

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}{p is freed}

{p is freed}

Analysis Overview: if (x) branch

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{ }

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{q and w

 are freed}
{q and w

 are freed}

3

{w is freed}

{w is freed}

{w is freed}

{ }
2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

27

2

System Overview

Metal compiler
(mcc)

xgcc

Source base

(e.g. Linux)

gcc

Emitter

Emit
directory

source code

AST for each file

binary representation

emitted
binaries

Metal

extension

free.m

dynamic library

(free.so)

deref-after-free, double-free errors

Analysis Overview: if (!x) branch

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{ }

{p is freed}

1

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{p is freed}{p is freed}

{p is freed}

Analysis Overview: if (x) branch

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{ }

{p is freed}

{p is freed}

{p is freed}

{p is freed}

{q and w

 are freed}
{q and w

 are freed}

3

{w is freed}

{w is freed}

{w is freed}

{ }
2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

28

3

Metal extensions

• State machine abstraction

– SMs have patterns, states, transitions, and actions

• Why is Metal easy to use?

– SMs are a familiar concept to programmers

– Patterns specify interesting source constructs in

the source language

• Why is Metal flexible?

– Actions are escapes to arbitrary C code that

execute whenever a transition executes

– Main restriction is determinism

Example: the free checker

• Looks for deref-after-free, double free

• Free checker is a collection of SMs

• Each SM tracks a single program object

v.unk v.freed v.stop
kfree(v);

kfree(v);

*v

_

Metal states

• Two types of states

– Global: “interrupts are disabled”

– Variable-specific: “pointer p is freed”

• States are bound to state variables

sm free-check {

state decl any_pointer v;

start: { kfree (v) } ==> v.freed;

v.freed: { *v } ==> v.stop,

{ err (“dereferenced %s after free!”, mc_identifier (v)); }

| { kfree (v) } ==> v.stop,

{ err (“double free of %s!”, mc_identifier (v)); }

;

}

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

29

3

Metal extensions

• State machine abstraction

– SMs have patterns, states, transitions, and actions

• Why is Metal easy to use?

– SMs are a familiar concept to programmers

– Patterns specify interesting source constructs in

the source language

• Why is Metal flexible?

– Actions are escapes to arbitrary C code that

execute whenever a transition executes

– Main restriction is determinism

Example: the free checker

• Looks for deref-after-free, double free

• Free checker is a collection of SMs

• Each SM tracks a single program object

v.unk v.freed v.stop
kfree(v);

kfree(v);

*v

_

Metal states

• Two types of states

– Global: “interrupts are disabled”

– Variable-specific: “pointer p is freed”

• States are bound to state variables

sm free-check {

state decl any_pointer v;

start: { kfree (v) } ==> v.freed;

v.freed: { *v } ==> v.stop,

{ err (“dereferenced %s after free!”, mc_identifier (v)); }

| { kfree (v) } ==> v.stop,

{ err (“double free of %s!”, mc_identifier (v)); }

;

}

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

30

3

Metal extensions

• State machine abstraction

– SMs have patterns, states, transitions, and actions

• Why is Metal easy to use?

– SMs are a familiar concept to programmers

– Patterns specify interesting source constructs in

the source language

• Why is Metal flexible?

– Actions are escapes to arbitrary C code that

execute whenever a transition executes

– Main restriction is determinism

Example: the free checker

• Looks for deref-after-free, double free

• Free checker is a collection of SMs

• Each SM tracks a single program object

v.unk v.freed v.stop
kfree(v);

kfree(v);

*v

_

Metal states

• Two types of states

– Global: “interrupts are disabled”

– Variable-specific: “pointer p is freed”

• States are bound to state variables

sm free-check {

state decl any_pointer v;

start: { kfree (v) } ==> v.freed;

v.freed: { *v } ==> v.stop,

{ err (“dereferenced %s after free!”, mc_identifier (v)); }

| { kfree (v) } ==> v.stop,

{ err (“double free of %s!”, mc_identifier (v)); }

;

}

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

31

4

Metal patterns

• Syntactic matching: literal AST match

• Semantic matching: wildcard types

sm free-check {

 state decl any_pointer v;

 start: { kfree (v) } ==> v.freed;

 v.freed:{ *v } ==> v.stop,

 { err (“dereferenced %s after free!”, mc_identifier (v)); }

 | { kfree (v) } ==> v.stop,

 { err (“double free of %s!”, mc_identifier (v)); }

;

}

Metal transitions and actions

• Specify with source state, pattern, destination

state

• Actions execute when transition occurs

– Report errors, extend analysis (e.g., statistical)

sm free-check {

 state decl any_pointer v;

 start: { kfree (v) } ==> v.freed;

 v.freed: { *v } ==> v.stop,

 { err (“dereferenced %s after free!”, mc_identifier (v)); }

 | { kfree (v) } ==> v.stop,

 { err (“double free of %s!”, mc_identifier (v)); }

;

}

Executing Metal SMs

• Intraprocedural analysis:

– Depth-first-search + caching

– Cache at the block level

• contains union of all “facts” seen at that block

– On cache hit, abort the current path, backtrack

• Interprocedural analysis

– Summarize the effects of analyzing large portions

of the code

– Use summaries whenever possible

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

32

4

Metal patterns

• Syntactic matching: literal AST match

• Semantic matching: wildcard types

sm free-check {

 state decl any_pointer v;

 start: { kfree (v) } ==> v.freed;

 v.freed:{ *v } ==> v.stop,

 { err (“dereferenced %s after free!”, mc_identifier (v)); }

 | { kfree (v) } ==> v.stop,

 { err (“double free of %s!”, mc_identifier (v)); }

;

}

Metal transitions and actions

• Specify with source state, pattern, destination

state

• Actions execute when transition occurs

– Report errors, extend analysis (e.g., statistical)

sm free-check {

 state decl any_pointer v;

 start: { kfree (v) } ==> v.freed;

 v.freed: { *v } ==> v.stop,

 { err (“dereferenced %s after free!”, mc_identifier (v)); }

 | { kfree (v) } ==> v.stop,

 { err (“double free of %s!”, mc_identifier (v)); }

;

}

Executing Metal SMs

• Intraprocedural analysis:

– Depth-first-search + caching

– Cache at the block level

• contains union of all “facts” seen at that block

– On cache hit, abort the current path, backtrack

• Interprocedural analysis

– Summarize the effects of analyzing large portions

of the code

– Use summaries whenever possible

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

33

4

Metal patterns

• Syntactic matching: literal AST match

• Semantic matching: wildcard types

sm free-check {

 state decl any_pointer v;

 start: { kfree (v) } ==> v.freed;

 v.freed:{ *v } ==> v.stop,

 { err (“dereferenced %s after free!”, mc_identifier (v)); }

 | { kfree (v) } ==> v.stop,

 { err (“double free of %s!”, mc_identifier (v)); }

;

}

Metal transitions and actions

• Specify with source state, pattern, destination

state

• Actions execute when transition occurs

– Report errors, extend analysis (e.g., statistical)

sm free-check {

 state decl any_pointer v;

 start: { kfree (v) } ==> v.freed;

 v.freed: { *v } ==> v.stop,

 { err (“dereferenced %s after free!”, mc_identifier (v)); }

 | { kfree (v) } ==> v.stop,

 { err (“double free of %s!”, mc_identifier (v)); }

;

}

Executing Metal SMs

• Intraprocedural analysis:

– Depth-first-search + caching

– Cache at the block level

• contains union of all “facts” seen at that block

– On cache hit, abort the current path, backtrack

• Interprocedural analysis

– Summarize the effects of analyzing large portions

of the code

– Use summaries whenever possible

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

34

5

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

• Derived from “Precise Interprocedural Dataflow Analysis via

Graph Reachability”; Reps, Horowitz, Sagiv 1995

2

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: q!freed v: w!freed

?

2

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: q!freed v: w!freed

v: w!unk

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

35

5

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

• Derived from “Precise Interprocedural Dataflow Analysis via

Graph Reachability”; Reps, Horowitz, Sagiv 1995

2

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: q!freed v: w!freed

?

2

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: q!freed v: w!freed

v: w!unk

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

36

5

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

• Derived from “Precise Interprocedural Dataflow Analysis via

Graph Reachability”; Reps, Horowitz, Sagiv 1995

2

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: q!freed v: w!freed

?

2

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: q!freed v: w!freed

v: w!unk

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

37

6

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;
if (x)

kfree (w);
q = p;

p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: q!freed v: w!freed

v: w!unk

v: q!freed

v: q!freed

v: w!freed

v: w!freed

v: q!freed v: w!freed

v: q!unk v: w!freed

2

Memoizing Analysis Results

• Edges make statements of two forms

– given that p is freed at the entry to block b, p will

be freed at the exit from b

– given that we know nothing about w at the entry to

b, we know w is freed at the exit from b

• Relax edges

– given that p is freed at the entry to block b, p will

be freed at the exit from procedure P

• Use edges to transform extension state

Example: Memoizing Edges

contrived (p, w, x)

int *q;
if (x)

kfree (w);
q = p;

p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: w!unk

v: w!freed

v: w!freed

v: w!freed

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

38

6

Executing Metal SMs: DP Edges

contrived (p, w, x)

int *q;
if (x)

kfree (w);
q = p;

p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: p!freed

v: q!freed v: w!freed

v: w!unk

v: q!freed

v: q!freed

v: w!freed

v: w!freed

v: q!freed v: w!freed

v: q!unk v: w!freed

2

Memoizing Analysis Results

• Edges make statements of two forms

– given that p is freed at the entry to block b, p will

be freed at the exit from b

– given that we know nothing about w at the entry to

b, we know w is freed at the exit from b

• Relax edges

– given that p is freed at the entry to block b, p will

be freed at the exit from procedure P

• Use edges to transform extension state

Example: Memoizing Edges

contrived (p, w, x)

int *q;
if (x)

kfree (w);
q = p;

p = 0;

if (!x)

return *w;

return *q;

exit from contrived

v: w!unk

v: w!freed

v: w!freed

v: w!freed

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

39

11

Executing Metal SMs

• Simple, slow method:

– start at entry to main

– follow each path through CFG

• call extension on each AST node (program point)

• if the current program point is a function call

– retrieve CFG for called function

– restart analysis at entry to callee

– when analysis of callee finishes, return to appropriate return site

• Good attributes:

– interprocedural, context-sensitive

• Unnecessary attributes:

– path sensitive - SMs do not track data dependencies

Items (1) - (3): Overview

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{}

{‘p’ is freed}

{‘p’ is freed}

{‘p’ is freed}

{‘p’ is freed}

{‘p’ is freed}

{‘q’ and ‘w’ are freed}

{‘p’ is freed}

{‘p’ and ‘w’ are freed}

{‘q’ and ‘w’ are freed}

{‘p’ and ‘w’ are freed}

{}

{‘p’ and ‘w’ are freed}

{‘p’ is freed}

Analysis Result: Union of all

Paths

contrived_caller (w, x, p)

kfree (p); // don’t follow

call contrived (p, w, x);

return from contrived;

return *w;

contrived (p, w, x)

int *q;

if (x)

kfree (w);

q = p;
p = 0;

if (!x)

return *w;

return *q;

exit from contrived_caller
exit from contrived

{}

{‘p’ is freed}

{‘p’ is freed}

{‘p’ is freed}

{‘p’ is freed}

{‘p’ is freed}

{‘q’ and ‘w’ are freed}

{‘p’ is freed}

{‘p’ and ‘w’ are freed}

{‘q’ and ‘w’ are freed}

{‘p’ and ‘w’ are freed}

{}

{‘p’ and ‘w’ are freed}

{‘p’ is freed}

{‘p’ is freed}

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

40

7

Interprocedural Analysis

• Start at each entry point to the callgraph

– initially we do not know any facts

• Traverse CFG for each function depth-first

• At the end of an intraprocedural path, relax

edges

• At a function call, analyze call with new facts

• At return, apply edges to extension state

False-Path Pruning

int f (int x, int z) {

int a, b, p, q, y;

p = x;

q = 5;

a = x;

b = 5;

if (z == (p + q)) {

y = a + b;

if (z != y) {

. . .

}

. . .

}

}

Know nothing.

Track y = a + b.
??

Track q = 5.

Track b = 5.
Track a = x.

Track p = x.

Track z = p + q.

False-Path Pruning

int f (int x, int z) {

int a, b, p, q, y;

p = x;

q = 5;

a = x;

b = 5;

if (z == (p + q)) {

y = a + b;

if (z != y) {

. . .

}

. . .

}

}

{q, 5}

{b, 5}
{z, p + q}

??
{y, a + b}

{a, x}

{p, x}

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

41

7

Interprocedural Analysis

• Start at each entry point to the callgraph

– initially we do not know any facts

• Traverse CFG for each function depth-first

• At the end of an intraprocedural path, relax

edges

• At a function call, analyze call with new facts

• At return, apply edges to extension state

False-Path Pruning

int f (int x, int z) {

int a, b, p, q, y;

p = x;

q = 5;

a = x;

b = 5;

if (z == (p + q)) {

y = a + b;

if (z != y) {

. . .

}

. . .

}

}

Know nothing.

Track y = a + b.
??

Track q = 5.

Track b = 5.
Track a = x.

Track p = x.

Track z = p + q.

False-Path Pruning

int f (int x, int z) {

int a, b, p, q, y;

p = x;

q = 5;

a = x;

b = 5;

if (z == (p + q)) {

y = a + b;

if (z != y) {

. . .

}

. . .

}

}

{q, 5}

{b, 5}
{z, p + q}

??
{y, a + b}

{a, x}

{p, x}

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

42

7

Interprocedural Analysis

• Start at each entry point to the callgraph

– initially we do not know any facts

• Traverse CFG for each function depth-first

• At the end of an intraprocedural path, relax

edges

• At a function call, analyze call with new facts

• At return, apply edges to extension state

False-Path Pruning

int f (int x, int z) {

int a, b, p, q, y;

p = x;

q = 5;

a = x;

b = 5;

if (z == (p + q)) {

y = a + b;

if (z != y) {

. . .

}

. . .

}

}

Know nothing.

Track y = a + b.
??

Track q = 5.

Track b = 5.
Track a = x.

Track p = x.

Track z = p + q.

False-Path Pruning

int f (int x, int z) {

int a, b, p, q, y;

p = x;

q = 5;

a = x;

b = 5;

if (z == (p + q)) {

y = a + b;

if (z != y) {

. . .

}

. . .

}

}

{q, 5}

{b, 5}
{z, p + q}

??
{y, a + b}

{a, x}

{p, x}

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

43

8

False-Path Pruning

• Apply congruence closure

{q, b, 5} {z, y, a+b, p+q}{a, p, x}

• Contradicts z != y

More False Positives

• Simple value flow

– Tracks all value flow through direct assignment

flow sensitively

– Ignores indirect value flow

• p = q implies p, q are aliases but not *p, *q

– Tracks structure fields, pointer arithmetic

Unsoundness

• Unsound because:

– No conservative alias analysis

– Do not handle recursion soundly

• Benefits of unsoundness

– Goal is to find as many bugs as possible

– For many properties conservative assumptions

cause an explosion of false positives

• Future goal: precise unsoundness

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

44

8

False-Path Pruning

• Apply congruence closure

{q, b, 5} {z, y, a+b, p+q}{a, p, x}

• Contradicts z != y

More False Positives

• Simple value flow

– Tracks all value flow through direct assignment

flow sensitively

– Ignores indirect value flow

• p = q implies p, q are aliases but not *p, *q

– Tracks structure fields, pointer arithmetic

Unsoundness

• Unsound because:

– No conservative alias analysis

– Do not handle recursion soundly

• Benefits of unsoundness

– Goal is to find as many bugs as possible

– For many properties conservative assumptions

cause an explosion of false positives

• Future goal: precise unsoundness

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

45

9

Conclusion

• Evaluating our approach

– Flexible: over 50 checkers

– Easy-to-use: Metal provides abstraction, sugar

• unsound analysis is easy

– Effective: 1000+ real bugs, still finding more

– What makes our tool effective?

• does just enough analysis to find bugs

• often trade precision for speed/flexibility

• aliasing: conservative is too imprecise; more aggressive

analysis is helpful

More False-Path Pruning

• Redefine loop targets/do not prune in loops

• Predicate edges/cache entries

• Ignores aliasing

• Could benefit from abstract simulation insight

Ranking

• Ranking: we find too many errors to inspect

– Rank most likely, easiest-to-diagnose errors first

– Statistical ranking: use statistical test of

significance to rank rules we check

• reliable rules are usually followed

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Metacompilation

46

9

Conclusion

• Evaluating our approach

– Flexible: over 50 checkers

– Easy-to-use: Metal provides abstraction, sugar

• unsound analysis is easy

– Effective: 1000+ real bugs, still finding more

– What makes our tool effective?

• does just enough analysis to find bugs

• often trade precision for speed/flexibility

• aliasing: conservative is too imprecise; more aggressive

analysis is helpful

More False-Path Pruning

• Redefine loop targets/do not prune in loops

• Predicate edges/cache entries

• Ignores aliasing

• Could benefit from abstract simulation insight

Ranking

• Ranking: we find too many errors to inspect

– Rank most likely, easiest-to-diagnose errors first

– Statistical ranking: use statistical test of

significance to rank rules we check

• reliable rules are usually followed

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Control and Data Flow Integrity

47

•  How do they work?

•  Are they Sound?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Summary

48

•  Introduction to Pushdown Systems and Boolean
Programs

‣  Application to Dataflow Analysis

‣  Prove to yourself

•  Application of Static Analysis to Bug Finding

‣  Metacompilation

•  And Enforcement of Program Execution Integrity

‣  Control Flow Integrity

‣  Data Flow Integrity

