

Static Analysis

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

September 12, 2011

Outline

- Static Analysis Goals
- Static Analysis Concepts
- Abstract Interpretation
- Interprocedural Dataflow Analysis

Our Goal

- In this course, we want to develop techniques to detect vulnerabilities and fix them automatically
- What's a vulnerability?
- How to fix them?

 Today we will start to develop some of the techniques that we will use

Vulnerability

- How do you define computer 'vulnerability'?
 - Flaw
 - Accessible to adversary
 - Adversary has ability to exploit

Vulnerability

- How do you define computer 'vulnerability'?
 - Flaw Can we find flaws in source code?
 - Accessible to adversary Can we find what is accessible?
 - Adversary has ability to exploit Can we find how to exploit?

Anatomy of Control Flow Attacks PENNSTATE

- Two steps
- First, the attacker changes the control flow of the program
 - In buffer overflow, overwrite the return address on the stack
 - What are the ways that this can be done?
- Second, the attacker uses this change to run code of their choice
 - In buffer overflow, inject code on stack
 - What are the ways that this can be done?

Anatomy of Control Flow Attacks Penn State

- Two steps
- First, the attacker changes the control flow of the program
 - In buffer overflow, overwrite the return address on the stack
 - How can an adversary change control?
- Second, the attacker uses this change to run code of their choice
 - In buffer overflow, inject code on stack
 - How can we prevent this? ROP conclusions

Static Analysis

- Explore all possible executions of a program
 - All possible inputs
 - All possible states

A Form of Testing

- Static analysis is an alternative to runtime testing
- Runtime
 - Select concrete inputs
 - Obtain a sequence of states given those inputs
 - Apply many concrete inputs (i.e., run many tests)
- Static
 - Select abstract inputs with common properties
 - Obtain sets of states created by executing abstract inputs
 - One run

Static Analysis

- Provides an approximation of behavior
- "Run in the aggregate"
 - Rather than executing on ordinary states
 - Finite-sized descriptors representing a collection of states
- "Run in non-standard way"
 - Run in fragments
 - Stitch them together to cover all paths
- Runtime testing is inherently incomplete, but static analysis can cover all paths

Static Analysis

- Provides an approximation of behavior
- "Run in the aggregate"
 - Rather than executing on ordinary states
 - Finite-sized descriptors representing a collection of states
- "Run in non-standard way"
 - Run in fragments
 - Stitch them together to cover all paths
- Runtime testing is inherently incomplete, but static analysis can cover all paths

Static Analysis Example

- Descriptors represent the sign of a value
 - Positive, negative, zero, unknown
- For instruction, c = a * b
 - If a has a descriptor pos
 - And b has a descriptor neg
- What is the descriptor for c after that instruction?
- How might this help?

Descriptors

- Choose a set of descriptors that
 - Abstracts away details to make analysis tractable
 - Preserves enough information that key properties hold
 - Can determine interesting results
- Using sign as a descriptor
 - Abstracts away specific integer values (billions to four)
 - Guarantees when a*b = 0 it will be zero in all executions
- Choosing descriptors is one key step in static analysis

Precision

- Abstraction loses some precision
- Enables run in aggregate, but may result in executions that are not possible in the program
 - \rightarrow (a <= b) when both are pos
 - If b is equal to a at that point, then false branch is never possible in concrete executions
- Results in false positives

Soundness

- The use of descriptors "over-approximates" a program's possible executions
- Abstraction must include all possible legal values
 - May include some values that are not actually possible
- The run-in-aggregate must preserve such abstractions
 - Thus, must propagate values that are not really possible

Implications of Soundness

- Enables proof that a class of vulnerabilities are completely absent
 - No false negatives in a sound analysis
- Comes at a price
 - Ensuring soundness can be complex, expensive, cautious
- Thus, unsound analyses have gained in popularity
 - Find bugs quickly and simply
 - Such analyses have both false positives and false negatives

What Is Static Analysis?

- Abstract Interpretation
 - Execute the system on a simpler data domain
 - Descriptors of the abstract domain
 - Rather than the concrete domain
- Elements in an abstract domain represent sets of concrete states
 - Execution mimics all concrete states at once
- Abstract domain provides an over-approximation of the concrete domain

Abstract Domain Example

Use interval as abstract domain

$$b = [40, 41]$$

- a = 2*b
 - a = [x, y]?
- What are the possible concrete values represented?
 - Which concrete states are possible?

Joins

- A join combines states from multiple paths
 - Approximates set-union as either path is possible
- Use Interval as abstract domain
 - \bullet a = [36, 39], b = [40, 41]
- If $(a \ge 38)$ a=2*b; /* join */
 - a = [x, y], b=[40, 41] what are x and y?
- What's the impact of over-approximation?

Impact of Abstract Domain

- The choice of abstract domain must preserve the over-approximation to be sound (no false negatives)
- Integer arithmetic vs 2's-complement arithmetic
- a = [126, 127], b = [10, 12]
 - What is c = a+b in an 32-bit machine?
 - What is c = a+b in an 8-bit machine?

Successive Approximation

- The abstract execution of a system can often be cast as a problem of solving a set of equations by means of successive approximation.
- If constructed correctly, the execution of the system in the abstract domain over-approximates the semantics of the original system
 - Any behavior not exhibited by the abstract domain cannot be exhibited during concrete system execution.

- Patrick Cousot
 - Class slides/notes from MIT
 - http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

- Patrick Cousot
 - Class slides/notes from MIT
 - http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

« An <u>Informal</u> Overview of Abstract Interpretation »

Patrick Cousot

Jerome C. Hunsaker Visiting Professor Massachusetts Institute of Technology Department of Aeronautics and Astronautics

> cousot@mit.edu www.mit.edu/~cousot

Course 16.399: "Abstract interpretation" http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Graphic example: Possible behaviors

Undecidability

- The concrete mathematical semantics of a program is an "infinite" mathematical object, not computable;
- All non trivial questions on the concrete program semantics are undecidable.

Example: Kurt Gödel argument on termination

- Assume termination(P) would always terminates and returns true iff P always terminates on all input data;
- The following program yields a contradiction

 $P \equiv \text{while termination}(P) \text{ do skip od.}$

Graphic example: Safety properties

The safety properties of a program express that no possible execution in any possible execution environment can reach an erroneous state.

Graphic example: Safety property

Safety proofs

- A safety proof consists in proving that the intersection of the program concrete semantics and the forbidden zone is empty;
- Undecidable problem (the concrete semantics is not computable);
- Impossible to provide completely automatic answers with finite computer resources and neither human interaction nor uncertainty on the answer².

² e.g. probabilistic answer.

| II | Course 18.389: "Abstract interpretation", Thursday, Pebruary 10, 2005 — 13 — ⊗ P. Couset, 200

Abstract interpretation

- consists in considering an abstract semantics, that is to say a superset of the concrete semantics of the program;
- hence the abstract semantics covers all possible concrete cases;
- correct: if the abstract semantics is safe (does not intersect the forbidden zone) then so is the concrete semantics.

Course 16.399: "Abstract interpretation", Thursday, Pebruary 10, 2005 — 16 — © P. Cousot, 2005

Graphic example: Abstract interpretation

Formal methods

Formal methods are abstract interpretations, which differ in the way to obtain the abstract semantics:

- "model checking":
 - the abstract semantics is given manually by the user;
 - in the form of a finitary model of the program execution;
 - can be computed automatically, by techniques relevant to static analysis.

- "deductive methods":
 - the abstract semantics is specified by verification conditions;
 - the user must provide the abstract semantics in the form of inductive arguments (e.g. invariants);
 - can be computed automatically by methods relevant to static analysis.
- "static analysis": the abstract semantics is computed automatically from the program text according to predefined abstractions (that can sometimes be tailored automatically/manually by the user).

@ P. Cousot, 2005

Course 16.399: "Abstract interpretation", Thursday, February 10, 2005 - 19 -

19 —

(c) P. Cousot, 2005

Graphic example: Erroneous abstraction — I

Graphic example: Imprecision ⇒ false alarms

Graphic example: Standard abstraction by intervals

Graphic example: A more refined abstraction

Abstraction by Galois connections

Abstracting sets (i.e. properties)

- Choose an abstract domain, replacing sets of objects (states, traces, ...) S by their abstraction α(S)
- The abstraction function α maps a set of concrete objects to its abstract interpretation;
- The inverse concretization function γ maps an abstract set of objects to concrete ones;
- Forget no concrete objects: (abstraction from above)
 S ⊆ γ(α(S)).

Course 16.399: "Abstract interpretation", Thursday, February 10, 2005

- 46 -

(c) P. Cousot, 200

Abstraction by Galois connections

Abstracting sets (i.e. properties)

- Choose an abstract domain, replacing sets of objects (states, traces, ...) S by their abstraction α(S)
- The abstraction function α maps a set of concrete objects to its abstract interpretation;
- The inverse concretization function γ maps an abstract set of objects to concrete ones;
- Forget no concrete objects: (abstraction from above)
 S ⊆ γ(α(S)).

Course 16.399: "Abstract interpretation", Thursday, February 10, 2005

- 46 -

(g) P. Cousot, 200

Interval abstraction α

${x:[1,99],y:[2,77]}$

Interval concretization γ

Course 16.399: "Abstract interpretation", Thursday, February 10, 2005 Course 16.369: "Abstract interpretation", Thursday, February 10, 2005 (B) P. Couset, 2005

The abstraction α is monotone

The concretization γ is monotone

Course 16.399: "Abstract interpretation", Thursday, Pebruary 10, 2006 @ P. Couset, 2005

The $\gamma \circ \alpha$ composition is extensive

 $X \subseteq \gamma \circ \alpha(X)$

Course 16.399: "Abstract interpretation", Thursday, February 13, 2005

@ P. Cousot, 2005

The $\alpha \circ \gamma$ composition is reductive

$$\alpha \circ \gamma(Y) = / \sqsubseteq Y$$

Course 16.869: "Abstract interpretation", Thursday, Pebruary 10, 2006 @ P. Couset, 2005

Abstract Interpretation

Galois connection

$$\begin{array}{ll} \langle \mathcal{D}, \subseteq \rangle & \xrightarrow{\boldsymbol{\gamma}} \langle \overline{\mathcal{D}}, \sqsubseteq \rangle \\ \\ \text{iff} & \forall x,y \in \mathcal{D}: x \subseteq y \Longrightarrow \alpha(x) \sqsubseteq \alpha(y) \\ \\ \wedge \forall \overline{x}, \overline{y} \in \overline{\mathcal{D}}: \overline{x} \sqsubseteq \overline{y} \Longrightarrow \gamma(\overline{x}) \subseteq \gamma(\overline{y}) \\ \\ \wedge \forall x \in \mathcal{D}: x \subseteq \gamma(\alpha(x)) \\ \\ \wedge \forall \overline{y} \in \overline{\mathcal{D}}: \alpha(\gamma(\overline{y})) \sqsubseteq \overline{x} \\ \\ \text{iff} & \forall x \in \mathcal{D}, \overline{y} \in \overline{\mathcal{D}}: \alpha(x) \sqsubseteq y \Longleftrightarrow x \subseteq \gamma(y) \\ \\ \hline \\ \blacksquare \blacksquare \blacksquare \\ \end{array}$$

Lattices

- A partially ordered set (poset) in which any two elements have a
 - Greatest lower bound (meet)
 - Least upper bound (join)
- Semilattice has one or the other (join or meet)
- Claim: any abstract interpretation must express at least a join semilattice

Lattices

Generalizing to complete lattices

- The reasoning on abstractions of concrete properties $(p(\Sigma), \subseteq, \emptyset, \Sigma, \cup, \cap, \neg)$ to an abstract domain which, in case of best abstraction is a Moore family, whence a complete lattice, can be generalized to an arbitrary concrete complete lattice $\langle L, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$
- This allow a compositional approach where ⟨L, ⊆, ⊥, \top , \sqcup , \sqcap) is abstracted to $\langle A_1, \sqsubseteq_1, \bot_1, \top_1, \sqcup_1, \sqcap_1 \rangle$ which itself can be further abstracted to $(A_2, \sqsubseteq_2, \bot_2,$ $T_2, \sqcup_2, \sqcap_2\rangle, \ldots$

Course 16.390: "Abstract interpretation", Tuesday, April 12, 2005 — 95 —
© P. Cousel, 2005

Lattices

Why are abstract domains complete lattices in the presence of best abstractions?

- The abstractions start from the complete lattice of concrete properties $(\wp(\Sigma), \subseteq, \emptyset, \Sigma, \cup, \cap, \neg)$ where objects in Σ represent program computations and the elements of $\wp(\Sigma)$ represent properties of these program computations
- We have defined abstract domains with best approximations in three equivalent different ways (more are considered in [3])
 - As a Moore family:
 - As a closure operator (which fixpoints form the abstract domain):
 - As the image of the concrete domain by a Galois surjec-

Course 16.369: "Abstract interpretation", Tuesday, April 12, 2005

- In all cases, it follows that the abstract domain is a complete lattice, since we have seen that:
 - A Moore family of a complete lattice is a complete lattice;
 - The image of a complete lattice by an upper closure operator is a complete lattice (Ward);
 - The image of a complete lattice by the surjective abstraction of a Galois connection is a complete lattice.
- In general this property does not hold in absence of best abstraction or if arbitrary points are added to the abstract domain as shown next.

[3] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 269-282, San Antonio, Texas, 1979. ACM Press, New York, NY, U.S.A.

Course 16.399; "Abstract interpretation", Tuesday, April 12, 2005

Lattices Too Limiting?

- Does the requirement for an abstract interpretation that is a lattice too restrictive?
 - How can we build a lattice for a set of values?
 - How do we combine two sets of values representing two properties into a lattice?
 - What are the pros/cons of these results?

Dataflow Analysis

- Interprocedural Control Flow Graph (ICFG)
 - Possible flow paths in system
- Join Semilattice for an Abstract Interpretation
 - How to combine values on joins
- Initial Configuration for the Abstract Interpretation
 - Starting values for system
- Dataflow Transfer Function over edges in ICFG
 - How values are changed by operations in system

Intraprocedural CFG

- Statements
 - Nodes
 - One successor and one predecessor
- Basic Blocks
 - Multiple successors to the join (multiple predecessors)
 - Examples?
- Unique Enter and Exit
 - All start nodes are successors of enter
 - All return nodes are predecessors of exit

Legal and Illegal Paths

- Interprocedurally, connect CFGs
 - Calls → Enter
 - ▶ Exit → Return-Site
- Want to represent only legal paths
 - In particular, calls must match returns
 - Will discuss the implications of this later
- Example...

Path Function Problem

- A path of length j >= 1 from node m to node n is a (non-empty) sequence of j edges,
- denoted by $[e_1, e_2, ..., e_j]$, such that
 - the source of e_i is m,
 - the target of e_j is n,
 - and for all i, $l \le i \le j-l$, the target of edge e_i is the source of edge e_{i+l} .

Intraprocedural Dataflow Analysis

- The path function pf_q for path $q = [e_1, e_2, ..., e_j]$ is the composition, in order, of q's transfer functions
- In intraprocedural dataflow analysis, the goal is to determine, for each node n, the "join-over-all-paths" solution
 - $JOP_n = join(q in Paths(enter, n)) pf_q(v_0)$
 - Paths(enter, n) denotes the set of paths in the CFG from enter node to n
 - v_0 is the possible memory configurations at the start of the procedure
- Soundness depends on the abstract interpretation

Abstract Interpretation

- As discussed above, a sound JOP_n solution requires
 - A Galois connection is established between concrete states and abstract states
 - Each dataflow transfer function M(e) is shown to overapproximate the transfer function for the concrete semantics of e

Example

Interprocedural Dataflow Analysis

- Find join-over-all-valid-paths
- What is a valid path?
 - Is a matched or valid path
 - Where a valid path has an open call
 - Where a matched path has a matching return for each call
 - Or consists only of edges without calls and returns
- Be able to use the grammar on your own

Join Over All Valid Paths

- Solution is said to be "context-sensitive"
 - A context-sensitive analysis captures the fact that the results propagated back to each return site r should depend only on the memory configurations that arise at the call site that corresponds to r.
- Formal definition
 - $JOVP_n = join(q in VPaths(enter_{main}, n)) pf_q(v_0)$
- VPaths(enter_{main}, n) denotes the set of valid paths from the main entry point to n

Summary

- To find and fix bugs, we need to understand how programs and systems work
 - Testing time-consuming and incomplete
 - Validation find all bugs
- Static analysis
 - Key concepts: concrete to abstract domains
 - Soundness No false negatives
- OK, so what do you do with static analysis?
 - ▶ E.g., Interprocedural Dataflow Analysis