\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

Attacks

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab
Computer Science and Engineering Department
Pennsylvania State University

August 29, 201 |

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Introduction —

e Problem — Attacks on software and systems
e Classical attack — Buffer overflow

e Attack: (1) Change control and (2) Run code
e Other forms of attack

e Return-oriented attacks

e Stuxnet

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT
Our Goal =

e In this course, we want to develop techniques to
detect vulnerabilities and fix them automatically

e What’s a vulnerability?

e How to fix them!?
o)

o We will examine the first question today

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Vulnerability =

e How do you define computer ‘vulnerability’?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Buffer Overflow =

e First and most common way to take control of a
process

o Attack code

» Call the victim with inputs necessary to overflow
buffer

» Overwrites the return address on the stack
e Exploit
» Jump to attacker chosen code

» Run that code

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Determine what to attack s

o . BEFORE picture of stack
e Local variable that is a char buffer oxbfa3bssa: 0x3
Oxbfa3b855: 0x0
Oxbfa3b856: 0x0
0xbfa3b857: 0x0

4 Ca”ed bUf Oxbfa3b8s8: 0x3 buf
Oxbfa3b859: 0x0
Oxbfa3b85a: 0x0
Oxbfa3b85b: 0x0
Oxbfa3b85c: 0x0
Oxbfa3b85d: 0x0

e Oxbfa3b85e: 0x0
printf("BEFORE picture of stack\n"); Oxbfa3b85f: 0Ox0

for (i=CCunsigned) buf-8); i<((unsigned) ((char *)&ct)+8); i++) Oxbfa3b860: Ox0
printf("%p: 0x%x\n", (void *)i, *(unsigned char *) 1i); Oxbfa3b861l: Ox0
Oxbfa3b862: 0x0

/* run overflow */ Oxbfa3b863: 0x0
for C i=1; i<tmp; i++ D{ Oxbfa3b864: 0x0

printf("i = %d; tmp= %d; ct = %d; &tmp = %p\n", i, tmp, ct, (void *)&tmp);

strcpy(p, inputs[i]); Oxbfa3b865: 0x0

Oxbfa3b866: 0x0

/* print stack after the fact */ 0xbfa3b867: 0x0
printf("AFTER iteration %d\n", 1i); 0xbfa3b868: 0xal
for (j=(Cunsigned) buf-8); j<((unsigned) ((char *)&ct)+8); Jj++) 0xbfa3b869: 0xb8 b
printf("%p: @x%x\n", (void *)j, *(unsigned char *) j); Oxbfa3b86a: @xa3 Ea F)
Oxbfa3b86b: Oxbf
p += strlen(inputs[i]); Oxbfa3b86c: 0Ox71
if C i+l != tmp) Oxbfa3b86d: 0x84
ot = Oxbfa3b86e: 0x4 rtr] Ea(j(jr.
¥ Oxbfa3b86f: 0x8
printf("buf = %s\n", buf); Oxbfa3b870: 0x3

printf("victim: %p\n", (void *)&victim); Oxbfa3bs871: 0x0

return 0: Oxbfa3b872: 0x0 Ct
1 ’ Oxbfa3b873: 0x0

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Configure Attack =

e Configure following
» Distance to return address from buffer
e Where to write!
» Location of start of attacker’s code
e Where to take control?
» WVhat to write on stack
e How to invoke code (jump-to existing function)?

» How to launch the attack

e How to send the malicious buffer to the victim?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Return Address

e x86 Architecture

» Build 32-bit code for Linux environment

e Remember integers are represented in
“little endian” format

e Take address 0x804847 |

» See trace at right

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

i

BEFORE picture of stack

Oxbfa3b854:
Oxbfa3b855:
Oxbfa3b856:
Oxbfa3b857:
Oxbfa3b858:
@xbfa3b859:
Oxbfa3b85a:
Oxbfa3b85b:
@xbfa3b85c:
Oxbfa3b85d:
Oxbfa3b85e:
Oxbfa3b85f:
0xbfa3b860:
Oxbfa3b861:
Oxbfa3b862:
Oxbfa3b863:
Oxbfa3b864:
@xbfa3b865:
0xbfa3b866:
Oxbfa3b867:
Oxbfa3b868:
0xbfa3b869:
Oxbfa3b8oa:
@xbfa3b8ob:
Oxbfa3b86c:
Oxbfa3b8od:
@xbfa3b8oe:
Oxbfa3b8of:
Oxbfa3b870:
Oxbfa3b871:
Oxbfa3b872:
Oxbfa3b873:

0x3
0x0
0x0
0x0
0x3
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0

buf

0xad
Oxb8
0xa3
Oxbf

ebp

0x71
0x84
Ox4
0x8

rtn addr

0x3
0x0
0x0
0x0

ct

Find Return Address Offset

BEFORE picture of stack

 Build and run victim
— ‘make victim’
— ‘“.victim foo bar’
 Find buffer address
— printed at start of victim output

In shell

1 = 3; inputs = @xbfa3b944
&main = 0x8048424

&shell = 0x8048648

‘ &buf[@] = Oxbfa3b854

« To start of return address

— read from stack
— Oxbfa3b86c¢c

- How do we know its the rtn_addr?
— Must be an address in caller (main)

Systems and Internet Infrastructure Security (SIIS) Laboratory

Oxbfa3b854:
Oxbfa3b855:
Oxbfa3b856:
Oxbfa3b857:
Oxbfa3b858:
Oxbfa3b859:
Oxbfa3b85a:
Oxbfa3b85b:
Oxbfa3b85c:
Oxbfa3b85d:
Oxbfa3b85e:
Oxbfa3b85f:
Oxbfa3b860:
Oxbfa3b861:
Oxbfa3b862:
Oxbfa3b863:
Oxbfa3b864:
Oxbfa3b865:
Oxbfa3b866:
Oxbfa3b867:
Oxbfa3b868:
Oxbfa3b869:
Oxbfa3b86a:
Oxbfa3b86b:
Oxbfa3b86c:
Oxbfa3b86d:
Oxbfa3b8oe:
Oxbfa3b86f:
Oxbfa3b870:
Oxbfa3b871:
Oxbfa3b872:
Oxbfa3b873:

0x3
0x0
0x0
0x0
0x3
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0

PENNSTATE
i

buf

0xa8
Oxb8
0xa3
Oxbf

ebp

Ox71
0x84
0x4
0x8

rtn addr

0x3
0x0
0x0
0x0

ct

PENNSTAT

Exploits =

e Run code determined by attacker

e Old way

» Include attack code in buffer value

» Prevented by modern defenses: NX and
randomized stack base

e Modern way
» Return-to-libc attack

» Configure the stack to run code in the
victim’s address space

Systems and Internet Infrastructure Security (SIIS) Laboratory

Find Addr to Call Shell Fn =~ ™

e Jump to location where call to shell
function occurs (In main function)

e What address is this at?

» Need to look at assembly code
e Step I:
» Build victim in assembly
» ‘make victim.s
o Step 2:
» Insert label before call to shell and rerun

» ‘make victim-label’

Systems and Internet Infrastructure Security (SIIS) Laboratory

Add Label before Call PENN%TE

e |In cseb44-victim.s

main:
leal 4(%esp), %ecx
andl $-16, %esp
pushl -4(%ecx)

pushl %ebp

movl %esp, %ebp
pushl %ebx

pushl %ecx

subl $48, %esp

mov1l %ecx, %ebx

mov1l 4(%ebx), %eax
movl %eax, 4(%esp)

ol e e (1) Find “call shell’
(2) Add ‘JMP_ADDR:’ to

mov1l $0, 16(%esp)

movl $0, 12(kesp) the prior line

mov1l -12(%ebp), %eax
mov1l %eax, 8(%esp)
movl 4(%ebx), %eax
movl %eax, 4(%esp)

mov1l (%ebx), %eax
movl %eax, (%esp)
call victim

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Launch Attack >

e Execute the victim program with the
malicious buffer

» From the attack program

» Use the system system call to involve the exec
system call on victim

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Anatomy of Control Flow Attacks &g

e Two steps

e First, the attacker changes the control |
flow of the program g

Thoracic
Vertebrae o Clavicle

SSSSSS
nnnnnnnnnn

» In buffer overflow, overwrite the return
address on the stack T eia L=

nnnn
Coccyx

CCCCC
||||||||||

» What are the ways that this can be done?

e Second, the attacker uses this change to N
run code of their choice

ththththth

» In buffer overflow, inject code on stack

» What are the ways that this can be done?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Return-oriented Programming 9

e General approach to control flow attacks

e Demonstrates how general the two steps of
a control flow attack can be

e First, change program control flow
» In any way

e Then, run any code of attackers’ choosing,
including the code in the existing program

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Return-oriented Programming 5

e ROP slides

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Stuxnet =

e Stuxnet slides

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTAT

Summary =

e The types of attacks that we must defend against
are becoming more complex

e Return-oriented programming shows us that any
attacker-dictated change in program control flow
can lead to arbitrary malice

e Stuxnet shows that ad hoc system defenses can be
evaded by an adversary

e We must apply principled approaches to defense to
make significant strides in defense

Systems and Internet Infrastructure Security (SIIS) Laboratory

