

Wrap-Up

December 5, 2011

What do I think you know?

- Exam
- Sharir-Pnueli
- Key elements of papers

- Vulnerability definition
- Static analysis Chapter 2
 - Definitions for basic concepts
 - Abstract domain
 - Dataflow problem
 - Join/Meet and Path
 - Join-over-all-paths
 - Join-over-all-valid-paths

- Somewhat more complex topics
 - Flow-sensitivity or not ... Context-sensitivity or not
 - Would you know it if you saw it applied?
 - Configurations and past/future
 - P-automaton and prestar and poststar and
 - What's the point? Relate concepts to specifics?
 - Weighted pushdown system concepts
 - Assume you know what an FSA and PDA are
 - Good for asking about dataflow problems
 - Probably I'll have to explain a bit

- Lots of abstract domains and composition functions and join/ meet functions
 - What do they mean? How might they affect results?
 - I'll have to help with these

- Key concepts
 - Every paper has a key concept
 - What do you think it is?

Return-oriented programming

- The execution model
- Instruction pointer is stack
 - Followed by executing until a return occurs
 - Data is also on the stack (push and pop into registers)
 - Connecting gadgets together

Control-Flow Integrity

- Approach enforces possible valid control flows (paths)
 - A calls B at instruction X
 - ▶ B must return to X+I
- However, there are difficulties due to imprecision
 - What are these and how are they dealt with?

Metal and MC

- Cast bug finding as a dataflow problem
- Each variable is associated with a state
- Transition rules change among states
 - Source state, pattern, destination state
- Dataflow problem
 - ICFG
 - Join semilattice
 - Initial value
 - Assignment

Information Flow Analysis

- Systems and programs define data flows
 - How do you make a graph?
- Information flow policy as lattice
- Some nodes are labeled using lattice levels
- Find information flow errors
 - What is an information flow error?
 - How does this relate to dataflow problem?

SAT Solvers

- Several different techniques applied
- The exam required Stalmark and Sakallah
- How do those work?

Compiler

- Ccured has a specific goal
 - What is it?
- LLVM paper was about vision
 - What is their vision?

Namespaces

- Each paper has a major claim
 - What are they?
 - What do they mean?
- Chari et al
- Cai et al

Attack Graphs

- MulVal
 - How does it express attacks?
- Datalog
 - Clauses
 - Limitations
- Our approach
 - Information flow and cuts

Call Strings

Call String (CS) approach

12.06.2010

Nikolai Knopp

9

Call Strings

Call String (CS) approach

18

Call Strings

• Let $q \in IVP(r_{main}, n)$ decomposed as:

- $\langle c_1 c_2 \dots c_j \rangle =: \gamma \in \Gamma$ <u>call string</u> (CS) to q in G^* . $\lambda \in \Gamma$ is empty call string (j = 0 in main).
- Γ = space of valid call strings in G^*
- $CM:IVP \to \Gamma$ with $CM(q) = \gamma$

12.06.2010 Nikolai Knopp

21

- Tracks calls, returns
- Prevents invalid flows
 - Why?

- 13 Context inlining
 - Versus summary function approach
- 14 GRASP (Sakallah approach)
 - Adding new constraints
- 15 Ccured
 - Qualifiers? SAFE, SEQ, DYNQ
 - Constraints on qualifier values find valid solution (ARITH, CONV, POINTSTO, TYPEEQ)
 - Constraint solving and minimality

- 16 ROP
 - Stack 10, 20, 30, 50
 - Add constant: 10, CONST, 20, 30, 50
 - Gadget 10 must push output, and gadget 20 must pop constant and output
- 17 Creative
- 18 abstract domain and dataflow problem
 - Domain: A set of states defined by rules
 - CFG: CFG
 - ▶ Join probably a union
 - Initial value is null
 - Assignments transitions in rules

- 19 Code
 - (a) PDS: should be able to do that
 - (b, c) Valid flow should be able to identify valid and invalid flows
 - ▶ (d) P-automaton
 - Configuration {<p, e_main>}
 - $P \rightarrow e_{main} \rightarrow accept$
 - Configuration {<p, e_main ... n6n9>}
 - $P \rightarrow$ sequence of transitions for valid \rightarrow accept

- (e) Prestar
 - Configuration {<p, e_main ... n6n9>}
 - $(p, n5) \rightarrow (p, n6) \& (p, n6) \rightarrow (p, n9) \& (p, n9) \rightarrow (acc,e)$
 - (p, n5, acc)
 - Basically, all reachability paths to n9 via configuration (i.e., in the P-Automaton) lead to accepting state

- 20 Policy
 - (a) Build dataflow graph
 - (b) Reachability from and to t
 - ▶ (c) Stoller rule-specific
 - ▶ (d) Stoller TCB
 - ▶ (e) DLM intersection of readers

