
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center

Department of Computer Science and Engineering

Pennsylvania State University, University Park PA

1

Attack Graphs

Penn State Systems and Internet Infrastructure Security Lab
 Page

Outline

•  Attack Graphs

•  MulVal

•  System-wide Info Flow

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center

Department of Computer Science and Engineering

Pennsylvania State University, University Park PA

3

Towards System-Wide, Deployment-Specific MAC
Policy Generation for Proactive Integrity Mediation

Sandra Rueda, Divya Muthukumaran, Hayawardh
Vijayakumar, Trent Jaeger, Swarat Chaudhuri

Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department

Pennsylvania State University

September, 2011

Penn State Systems and Internet Infrastructure Security Lab
 Page

Talk Outline

4

•  Current State of Security

‣  Attack methods are comprehensive

‣  Defenses are ad hoc

•  Problem: Generate proactive defense automatically

‣  What do we know how to do already?

‣  Develop a solution method built on such techniques

•  How will such a method impact system design/deployment?

‣  Prototype to generate and test system-wide MAC policies

‣  Other talks: (1) integrity measurement protocol that measures
such defenses and (2) process firewall that protects system call
interface

Penn State Systems and Internet Infrastructure Security Lab
 Page

Current Attacks

5

•  Attack unprivileged processes first

‣  Then, escalate privilege incrementally via local exploits

‣  Leverage (unjustified) trust between processes/hosts to propagate
attacks

•  Such Attack Paths are ubiquitous in current systems

‣  Processes are tightly interconnected

•  Historically, all user processes have same privilege and can utilize
system services

‣  Any control flow vulnerability can be leveraged to run any code

•  Return-oriented programming

•  Claim: Adversaries will use any undefended path

Penn State Systems and Internet Infrastructure Security Lab
 Page

Current Defenses

6

•  We have made progress the last 10 years or so

‣  Vulnerable network services galore  hardened, privilege-
separated daemons (OpenSSH)

‣  Default-enabled services  hardened configurations (IIS)

‣  Root system processes galore  Mandatory access control (Linux,
BSD)

‣  Application plug-ins in same address space  Run application code
in separate processes (Chrome, OP browsers)

‣  Email attachments compromise system  Prevent downloaded
content from modifying system (MIC, antivirus)

‣  A process in one host can easily access another host  Limit open
ports (host firewalls, labeled networking)

Penn State Systems and Internet Infrastructure Security Lab
 Page

MAC Operating Systems

•  Mandatory Access Control (MAC) operating systems

‣  Define an immutable set of labels and assign them to every subject and object in
the system

‣  Define a fixed set of authorized operations based on the labels

•  Now available in most commodity operating systems (Trusted Solaris,
TrustedBSD, SELinux, AppArmor, Windows MIC*, etc)

7

OS

Reference

Monitor

Security

Server

a

b

q

p

r

Policy

User Space
 Kernel Space

Penn State Systems and Internet Infrastructure Security Lab
 Page

MAC Enforcement Everywhere

8

•  MAC enforcement in the OS alone is not enough

•  Several applications are designed to serve users with multiple
security requirements

‣  OS cannot control what these applications do

•  OS are not trusted to isolate computing (reference monitor concept)

‣  But virtualization is (for now)

‣  MAC at virtualization layer (VMM, hypervisor) can mediate system
comprehensively

•  OS MAC does not control operations between hosts

‣  Labeled networking assigns labels to all network data (Labeled IPsec and
Secmark Firewall)

Penn State Systems and Internet Infrastructure Security Lab
 Page

We’ve Created a Monster

•  We end up with systems consisting of

‣  Complex programs

‣  Complex program configurations

‣  Complex MAC policies

‣  Systems consisting of many, independent components

•  All these are built with a particular threat model
in mind

‣  Which is likely different than the actual deployment

•  System administrators are left to fix them

9

Penn State Systems and Internet Infrastructure Security Lab
 Page

Taming a Monster

•  Design components to defend threats proactively

‣  Programs: protect at some interfaces; expect high
integrity data at others

‣  OS Distros: protect at some ports, files; expect high
integrity data at others

‣  Hosts: Ditto

•  System administrators create systems from
multiple, independent components, connecting
them to external resources

‣  They would like to know that the use of these
components corresponds to their defenses

•  The two tasks are ultimately the same conceptual
problem

10

system-wide MAC policies
to defend deployments
proactively. We need
automated tools to
generate

Penn State Systems and Internet Infrastructure Security Lab
 Page

What Do We Know How To Do?

•  Compute Attack Paths (from Attack Graphs)

‣  Find the sequence of steps that adversaries can
take to compromise a system

•  Compute Compliance

‣  Find information flow and permission errors in
programs and system MAC policies

•  Identify Attack Surfaces

‣  Find how systems and programs are accessible to
adversaries

•  Attack-Specific Analyses

‣  E.g., input sanitization

11

Penn State Systems and Internet Infrastructure Security Lab
 Page

What Do We Know How To Do?

•  Compute Attack Paths (from Attack Graphs)

‣  Find the sequence of steps that adversaries can
take to compromise a system

•  Compute Compliance

‣  Find information flow and permission errors in
programs and system MAC policies

•  Identify Attack Surfaces

‣  Find how systems and programs are accessible to
adversaries

•  Attack-Specific Analyses

‣  E.g., input sanitization

12

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

•  Evaluating whether a policy permits an adversary to have unauthorized
access (i.e., contains an error) is a compliance problem:

‣  System Policy: describes a system’s behavior

‣  Goal Policy: describes acceptable behavior

‣  Mapping function: relates elements from the system policy to elements in the
goal policy

‣  A compliant system policy is guaranteed to meet the requirements defined by
the goal policy

13

Penn State Systems and Internet Infrastructure Security Lab
 Page

Evaluating OS MAC Policy

•  We represent a single MAC policy with an information flow graph

‣  Used in analyses for SELinux by Tresys, Stoller, Li, Jaeger, etc.

14

etc_t
 var_t
 sbin_t

installer_t
 read,write
 read,write
 read,write

kernel_t
 read,write
 read,write
 read

ftpd_t
 read
 read
 read

var_t

installer_t

kernel_t

ftpd_t

etc_t

sbin_t

read

read,write

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

15

•  The policy compliance problem for a single policy is set up as follows:

•  System policy – The policy that we are analyzing is represented as a
graph

var_t

installer_t

kernel_t

ftpd_t

etc_t

sbin_t

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

16

•  The policy compliance problem for a single policy is set up as follows:

•  System policy – The policy that we are analyzing is represented as a
graph

•  Goal – The security goal is a lattice that defines integrity levels and
rules that guarantee the integrity of the system

High

Low

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

17

•  The policy compliance problem for a single policy is set up as follows:

•  System policy – The policy that we are analyzing is represented as a
graph

•  Goal – The security goal is a lattice that defines integrity levels and
rules that guarantee the integrity of the system

•  Mapping - Assigns integrity levels to policy labels

var_t

installer_t

kernel_t

ftpd_t

etc_t

sbin_t

High

Low

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Problem

18

•  The policy compliance problem for a single policy is set up as follows:

•  System policy – The policy that we are analyzing is represented as a
graph

•  Goal – The security goal is a lattice that defines integrity levels and
rules that guarantee the integrity of the system

•  Mapping - Assigns integrity levels to policy labels

var_t

installer_t

kernel_t

ftpd_t

etc_t

sbin_t

High

Low

Do all flows meet the requirements defined by the goal ?

High

Low

Penn State Systems and Internet Infrastructure Security Lab
 Page

Other Compliance Problems

•  Information flow compliance in programs

‣  Data flow is determined by program data flows – security-typed languages, such
as Jif, Sif, SELinks, FlowCaml

•  Goal policy is not a lattice

‣  Illegal reachability: no path from u G v

‣  Illegal sets of permissions: annotate edges with permissions

•  Goals as obligations

‣  The presence of a node, edge, or path is required

‣  These are functional constraints, rather than security

19

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Challenges

20

•  Construct Data Flow Graph

‣  Multiple independently-developed
policies

•  Different policy languages

•  Different policy concepts

•  Policies may interact in multiple
ways

allow httpd_t self:tcp_socket create_stream_socket_perms;
allow httpd_t self:udp_socket create_socket_perms;

Allow httpd_t to put files in /var/cache/httpd etc
manage_dirs_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_lnk_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)

Allow the httpd_t to read the web servers config files
allow httpd_t httpd_config_t:dir list_dir_perms;

allow httpd_t self:tcp_socket create_stream_socket_perms;
allow httpd_t self:udp_socket create_socket_perms;

Allow httpd_t to put files in /var/cache/httpd etc
manage_dirs_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_lnk_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)

Allow the httpd_t to read the web servers config files
allow httpd_t httpd_config_t:dir list_dir_perms;

VMM

OS

Net

App
App

OS

Net

App

Web

Server

VMM

OS

Net

App

DB

Server

Penn State Systems and Internet Infrastructure Security Lab
 Page

Compliance Challenges

21

•  Goals and mappings are manually-
specified

‣  Lattice policy is not specified

‣  Mapping is not specified

‣  Our experience indicates that
the size of the goal increases
with the size of the distributed
system

‣  Manual specification is prone
to error

‣  Then, how do you fix errors?

allow httpd_t self:tcp_socket create_stream_socket_perms;
allow httpd_t self:udp_socket create_socket_perms;

Allow httpd_t to put files in /var/cache/httpd etc
manage_dirs_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_lnk_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)

Allow the httpd_t to read the web servers config files
allow httpd_t httpd_config_t:dir list_dir_perms;

allow httpd_t self:tcp_socket create_stream_socket_perms;
allow httpd_t self:udp_socket create_socket_perms;

Allow httpd_t to put files in /var/cache/httpd etc
manage_dirs_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_lnk_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)

Allow the httpd_t to read the web servers config files
allow httpd_t httpd_config_t:dir list_dir_perms;

VMM

OS

Net

App
App

OS

Net

App

Web

Server

VMM

OS

Net

App

DB

Server

Penn State Systems and Internet Infrastructure Security Lab
 Page

Attack Surfaces

•  Where are ‘vulnerabilities’?

‣  A flaw, accessible to an adversary, with an ability to compromise that flaw

•  Program input interfaces (e.g., read system calls) that are accessible to
adversaries [Howard of Microsoft]

22

httpd_t

Read

 line 357

Pread

 line 421

Read

 line 256

Readahead

 line 559

Readv

 line 987

file

file

Penn State Systems and Internet Infrastructure Security Lab
 Page

Attack Surface Challenges

•  How to identify attack surfaces of individual programs

‣  All interfaces have access to all process permissions

‣  Some interfaces are obvious (network), but others are
questionable

•  Researchers have used value of data behind interface

‣  But this does not say anything about accessibility

•  Difficult to identify attack surfaces from the program alone

‣  Depends on its deployment

•  Goal: Use MAC policies to identify attack surfaces –
defenses must be placed there

23

Penn State Systems and Internet Infrastructure Security Lab
 Page

Goal Statement

Generate a compliant, system-wide MAC policy that minimizes
the cost of defense (attack surfaces) mostly-automatically for
distributed systems consisting of multiple, independent MAC-
enforcing components.

24

Penn State Systems and Internet Infrastructure Security Lab
 Page

Ideally, Approximately

•  Solve as an optimization problem

•  Find the minimum cost solution that satisfies a goal policy
consisting of security and functional constraints (likely, an
NP-complete problem)

‣  Compliance was defined in terms of security policies only (lattice)

‣  Also, need to prevent the removal of necessary function

•  Could apply SMT solver or greedy algorithm to solve such a problem

•  Barrier: While we think that we can predict a meaningful,
conservative set of security constraints, little is known about what
function is permissible

•  Instead: For a particular functional specification, find the minimum cost
solution that complies with a goal policy (security only)

25

Penn State Systems and Internet Infrastructure Security Lab
 Page

Distributed Compliance Evaluation

26

component1

…

1. Evaluate Compliance

2. Resolve Non-Compliant Systems

componentn

Compliant

System-Wide

MAC Policy

Optional

Specification

Penn State Systems and Internet Infrastructure Security Lab
 Page

Distributed Compliance Evaluation

27

Hierarchical

Data Flow

Graph

Task Two:

Bulld
System-Wide
Information
Flow Model

Task One:

Build
System-Wide

Data Flow
Graph

Information

Flow Model

Task Three:

Generate
System-Wide
MAC Policy

System-WIde

MAC Policy

(DIFC-Flume)

MAC

Policies

Integrity

Requirements

+

S
y
s
te

m
 C

o
m

p
o

n
e
n

ts

Penn State Systems and Internet Infrastructure Security Lab
 Page

Example System

28

Server Host

DB

VM

Priv VM

VMMNetwork Servers
(DNS, DHCP)

App Client

Web

VM

MAC MAC

MAC

MAC

Penn State Systems and Internet Infrastructure Security Lab
 Page

System Data Flows?

29

Server

Server
VM

Backend
VM

httpd

process

app

process

Expr

Host Responsibility
(VMM)

Some Responsibility
(VM/OS)

Less Responsibility
(Process)

Client

Process

Network

Some Responsibility
(OS)

Other

External

Penn State Systems and Internet Infrastructure Security Lab
 Page

1. Construct Data Flow Graph

•  We find that MAC-enforcing
components in distributed
systems are

‣  Encapsulated: data flows are
mediated by MAC policy

‣  Hierarchical: each has at most one
parent

‣  Reusable: same flows may appear
multiple times

•  We use an hierarchical graph data
structure defined by Alur et al.
[Alur2004] to concisely represent
data flows

30

component1

…

Construct
Data Flow

Graph

componentn

Penn State Systems and Internet Infrastructure Security Lab
 Page

Data Flow Graph Definition

31

Policy Generation Problem

System-Wide
Information
Flow Policy,

Including
Mediation

Test Policy

Goal Policy

Does Test Comply
with Goal?

Data Flow Graph: G=(V,E)

Integrity Lattice:

Mapping

Sources
and

Sinks:
M: V L

Compliant
 Policy

Yes

Compute
Near-Minimal
Mediation for
Compliance

Integrity
ErrorsNo

Task 1

Task 2

Task 3

Task 4

Compliance Model
plus Mediators

Compliance Model
plus Errors

L = (L,!)

C
o

m
p

li
a
n

c
e
 M

o
d

e
l

Multiple,
Independent
Components,
defined by:

MAC and
Network
Policies

Functional
Roles in

Deployment

Figure 3: Proactive Integrity Methodology Tasks

VMM

VM
VM

Proc
Proc

Exp

Full Responsibility
(VMM)

Some Responsibility
(VM)

Less Responsibility
(Process)

No Responsibility
(Expression)

Import A

Import B

Figure 4: Systems are encapsulated and hierarchical

data structure are well-known [1].
A hierarchical state machine K is a tuple (K1, ...Kn) of

modules, where each module Ki has the following compo-
nents:
• A finite set Vi of nodes.
• A finite set Bi of boxes.
• A subset Ii of Vi, called entry nodes.
• A subset Oi of Vi, called exit nodes.
• An indexing function Yi : Bi → {i + 1, ..., n} that maps

each box of the i-th module to an index greater than i. That
is, if Yi(b) = j for box b of module Ki, then b can be viewed
as a reference to the definition of module Kj .
• If b is a box of the module Ki with j = Yi(b), then pairs

of the form (b, u) with u ∈ Ij are the calls of Ki and pairs
of the form (b, v) with v ∈ Oj are the returns of Ki.
• An edge relation Ei consisting of pairs (u, v), where the

source u is either a node or a return of Ki and v is either a
node or a call of Ki.

The key concept in HSM is a module, which represents
a single graph of nodes and edges within the HSM. Each
component that enforces its own MAC policy is represented
by a module. Components that do not enforce a MAC pol-
icy are represented as nodes. The other important feature
of the HSM model is its flexible model for expressing data
flows between modules. Boxes describe independent data
flows from a parent node to a child node through calls and
returns. This flexibility is important because data may enter
a module from multiple sources, and each of these distinct
inputs may be represented precisely using the HSM model.
Also, a module may receive multiple flows from the same
source with distinct security requirements, but the model
can be constructed to represent such flows precisely while
eliminating redundant flows.

We find that the HSM model can accurately model the
data flows among components in end-to-end systems, be-
cause software layers are arranged hierarchically and com-
ponents are encapsulated by the peer layers, as shown in
Figure 4. A system is hierarchical in that the responsibility
for security decisions is monotonically-reduced from the root
to the leaves. For example, a VMM has full access to the
physical resources of the platform, VMs have a distinct sub-
sets of these resources (e.g., consider physical memory), and
each VM process may only access a subset of the resources
available to its VM. A system is also encapsulated in that all
interactions between two peer components are implemented
by an ancestor layer (usually the parent). For example, an
operating system or VMM provides the only mechanisms
available for two processes to communicate1.

5.2 Compliance Model
Once a model of the end-to-end system is constructed,

there are often information flow integrity errors. We want
to produce mediation placements to resolve these errors that
present a minimal cost of defending the system. Pike [44]
and our prior work [23, 24] independently found that such
mediation placements could be estimated as graph-cuts au-
tomatically. In this work, we use the compliance analysis
model defined below:

1. A directed data flow graph G = (V, E) consisting of a
set of nodes V connected by edges E.

2. A lattice L= {L,#}. For any two levels li, lj ∈ L,
li # lj means that li ‘can flow to’ lj .

3. There is an import mapping function M : V → PL

where PL is the power set of L. i.e., each node is
mapped either to a set of levels in L or to ∅.

4. The lattice imposes security constraints on the infor-
mation flows enabled by the data flow graph. Each
pair u, v ∈ V s.t. [u ↪→G v ∧ (∃lu ∈ M(u), lv ∈ M(v).
lu '#L lv)], where ↪→G means there is a path from u to
v in G, represents an information flow error.

It has been shown that programs can be automatically
translated into such a model [35], as used by King et al. [24],
and we show that a MAC policy can also be translated into
the model automatically, based on previous work [44, 55,
50, 8, 21]. In a MAC policy, operations can be classified
as read-only, write-only, and read-write, between subject la-
bels and object labels in the policy. From this classifica-
tion, a directed data flow graph can be constructed where
1While two processes may setup shared memory to commu-
nicate without OS intervention, the OS must authorize such
memory mappings.

Policy Generation Problem

System-Wide
Information
Flow Policy,

Including
Mediation

Test Policy

Goal Policy

Does Test Comply
with Goal?

Data Flow Graph: G=(V,E)

Integrity Lattice:

Mapping

Sources
and

Sinks:
M: V L

Compliant
 Policy

Yes

Compute
Near-Minimal
Mediation for
Compliance

Integrity
ErrorsNo

Task 1

Task 2

Task 3

Task 4

Compliance Model
plus Mediators

Compliance Model
plus Errors

L = (L,!)

C
o

m
p

li
a
n

c
e
 M

o
d

e
l

Multiple,
Independent
Components,
defined by:

MAC and
Network
Policies

Functional
Roles in

Deployment

Figure 3: Proactive Integrity Methodology Tasks

VMM

VM
VM

Proc
Proc

Exp

Full Responsibility
(VMM)

Some Responsibility
(VM)

Less Responsibility
(Process)

No Responsibility
(Expression)

Import A

Import B

Figure 4: Systems are encapsulated and hierarchical

data structure are well-known [1].
A hierarchical state machine K is a tuple (K1, ...Kn) of

modules, where each module Ki has the following compo-
nents:
• A finite set Vi of nodes.
• A finite set Bi of boxes.
• A subset Ii of Vi, called entry nodes.
• A subset Oi of Vi, called exit nodes.
• An indexing function Yi : Bi → {i + 1, ..., n} that maps

each box of the i-th module to an index greater than i. That
is, if Yi(b) = j for box b of module Ki, then b can be viewed
as a reference to the definition of module Kj .
• If b is a box of the module Ki with j = Yi(b), then pairs

of the form (b, u) with u ∈ Ij are the calls of Ki and pairs
of the form (b, v) with v ∈ Oj are the returns of Ki.
• An edge relation Ei consisting of pairs (u, v), where the

source u is either a node or a return of Ki and v is either a
node or a call of Ki.

The key concept in HSM is a module, which represents
a single graph of nodes and edges within the HSM. Each
component that enforces its own MAC policy is represented
by a module. Components that do not enforce a MAC pol-
icy are represented as nodes. The other important feature
of the HSM model is its flexible model for expressing data
flows between modules. Boxes describe independent data
flows from a parent node to a child node through calls and
returns. This flexibility is important because data may enter
a module from multiple sources, and each of these distinct
inputs may be represented precisely using the HSM model.
Also, a module may receive multiple flows from the same
source with distinct security requirements, but the model
can be constructed to represent such flows precisely while
eliminating redundant flows.

We find that the HSM model can accurately model the
data flows among components in end-to-end systems, be-
cause software layers are arranged hierarchically and com-
ponents are encapsulated by the peer layers, as shown in
Figure 4. A system is hierarchical in that the responsibility
for security decisions is monotonically-reduced from the root
to the leaves. For example, a VMM has full access to the
physical resources of the platform, VMs have a distinct sub-
sets of these resources (e.g., consider physical memory), and
each VM process may only access a subset of the resources
available to its VM. A system is also encapsulated in that all
interactions between two peer components are implemented
by an ancestor layer (usually the parent). For example, an
operating system or VMM provides the only mechanisms
available for two processes to communicate1.

5.2 Compliance Model
Once a model of the end-to-end system is constructed,

there are often information flow integrity errors. We want
to produce mediation placements to resolve these errors that
present a minimal cost of defending the system. Pike [44]
and our prior work [23, 24] independently found that such
mediation placements could be estimated as graph-cuts au-
tomatically. In this work, we use the compliance analysis
model defined below:

1. A directed data flow graph G = (V, E) consisting of a
set of nodes V connected by edges E.

2. A lattice L= {L,#}. For any two levels li, lj ∈ L,
li # lj means that li ‘can flow to’ lj .

3. There is an import mapping function M : V → PL

where PL is the power set of L. i.e., each node is
mapped either to a set of levels in L or to ∅.

4. The lattice imposes security constraints on the infor-
mation flows enabled by the data flow graph. Each
pair u, v ∈ V s.t. [u ↪→G v ∧ (∃lu ∈ M(u), lv ∈ M(v).
lu '#L lv)], where ↪→G means there is a path from u to
v in G, represents an information flow error.

It has been shown that programs can be automatically
translated into such a model [35], as used by King et al. [24],
and we show that a MAC policy can also be translated into
the model automatically, based on previous work [44, 55,
50, 8, 21]. In a MAC policy, operations can be classified
as read-only, write-only, and read-write, between subject la-
bels and object labels in the policy. From this classifica-
tion, a directed data flow graph can be constructed where
1While two processes may setup shared memory to commu-
nicate without OS intervention, the OS must authorize such
memory mappings.

Penn State Systems and Internet Infrastructure Security Lab
 Page

Policies to Data Flow Graph

32

Secmark Host Firewall Policies:

Web VM: iptables -t mangle -A OUTPUT -p tcp --dport
3306 -s <srcIP> -d <tgtIP> -j SECMARK --selctx
system_u:object_r:db_client_port_t:s0

DB VM: iptables -t mangle -A INPUT -p tcp --dport
3306 -s <srcIP> -d <tgtIP> -j SECMARK --selctx
system_u:object_r:db_server_port_t:s0

apache_t

Web VM

mysqld_t

...

Web VM
 DB VM

db_

client_port

VMM

db_server_

port

DB VM

SELinux OS MAC Policies

Xen Security Modules Flask/sHype Policies

Penn State Systems and Internet Infrastructure Security Lab
 Page

Information Flow Model

33

System policy:

Goal:

Mapping function:

Compliance:

Information Flow Errors:

k-db

...

...

u

v

...

...

...

ext

k-web k-db

k-dom0

VMM

ext

db web

G = (V,E)
L = (L,!)
map : V ′ → L, V ′ ⊆ V

∃u, v ∈ V. u ↪→G v ∧map(u) %↪→L map(v)

∀u, v ∈ V. (u ↪→G v) → (map(u) ↪→L map(v))

Penn State Systems and Internet Infrastructure Security Lab
 Page

2. Build the Info Flow Model

•  Problem: No explicit security constraint
information

•  Problem: Distributed systems are too large to
annotate manually

•  Insight: It’s all around

34

Penn State Systems and Internet Infrastructure Security Lab
 Page

Identify Integrity Levels

•  Problem: No explicit security constraint
information

•  Problem: Distributed systems are too large to
annotate manually

•  Insight: It’s all around

•  (1) Trusted Computing Bases: (OS) modify
kernel objects and (VMM) modify VMM objects

•  (2) Application Data: Deploy VMs with a
particular application in mind

•  (3) Apps trust TCB

•  (4) Some Apps Depend on Others: E.g., Web
applications depend on DB

35

k-web k-db

k-dom0

VMM

ext

db web

Penn State Systems and Internet Infrastructure Security Lab
 Page

Identify Integrity Levels

•  Problem: No explicit security constraint
information

•  Problem: Distributed systems are too large to
annotate manually

•  Insight: It’s all around

•  (1) Trusted Computing Bases: (OS) modify
kernel objects and (VMM) modify VMM objects

•  (2) Application Data: Deploy VMs with a
particular application in mind

•  (3) Apps trust TCB

•  (4) Some Apps Depend on Others: E.g., Web
applications depend on DB

36

k-web k-db

k-dom0

VMM

ext

db web

Penn State Systems and Internet Infrastructure Security Lab
 Page

Relate Integrity Levels

•  Problem: No explicit security constraint
information

•  Problem: Distributed systems are too large to
annotate manually

•  Insight: It’s all around

•  (1) Trusted Computing Bases: (OS) modify
kernel objects and (VMM) modify VMM objects

•  (2) Application Data: Deploy VMs with a
particular application in mind

•  (3) Apps trust TCB

•  (4) Some Apps Depend on Others: E.g., Web
applications depend on DB

37

k-web k-db

k-dom0

VMM

ext

db web

Penn State Systems and Internet Infrastructure Security Lab
 Page

Relate Integrity Levels

•  Problem: No explicit security constraint
information

•  Problem: Distributed systems are too large to
annotate manually

•  Insight: It’s all around

•  (1) Trusted Computing Bases: (OS) modify
kernel objects and (VMM) modify VMM objects

•  (2) Application Data: Deploy VMs with a
particular application in mind

•  (3) Apps trust TCB

•  (4) Some Apps Depend on Others: E.g., Web
applications depend on DB

38

k-web k-db

k-dom0

VMM

ext

db web

Penn State Systems and Internet Infrastructure Security Lab
 Page

Expert Knowledge

39

Examples

Level/Mapping inference:

-  Resources to protect :

map(VM, boot_t,ID),ID=‘k-’+VM

map(webvm,boot_t,k-webvm)

Lattice inference:

-  Order: VMs depend on the underlying VMM

flow(H,L):- component(L,H,_)

flow(VMM,k-webvm)

•  Level/Mapping inference

•  Lattice inference

Integrity Goal

ext ext

k-webvm

apache_t

webvm

db_client_

port

http_server
_port

boot_t

bootloader_
t

dns_

port

apache_

config_t

web

VMM

k-webvm

 ext

web

Mapping

Order

Penn State Systems and Internet Infrastructure Security Lab
 Page

Resolve by Mediation

40

•  We resolve a information flow errors by suggesting mediators

‣  A mediator is a program expected to implement procedures to sanitize inputs
so the integrity of the data raises (endorsement)

k-web k-db

k-dom0

VMM

db web

ext

db

k-db

k-dom0

m1

...

...

...

...

...

m2

ext

mediators

k-db

k-dom0

Penn State Systems and Internet Infrastructure Security Lab
 Page
 41

3a. Place Mediators

•  [McCamant and Ernst PLDI 2008]: Solve max flow
problem to quantify information leakage. Inspired us
to look into min-cut.

•  View information flow constraints as a graph between
incomparable security labels.

•  A cut of the graph should correspond to places in the
code where mediation statements should be placed
such that all information flow errors are resolved.

Penn State Systems and Internet Infrastructure Security Lab
 Page

Multicut Problem

42

•  Finding a minimum cost set of mediation points for an arbitrary lattice
is a multicut problem for directed graphs which is NP-hard

k-web k-db

k-dom0

VMM

ext

db web

db

k-db

k-dom0

m1

...

...

...

...

...

m2

ext

mediators

Penn State Systems and Internet Infrastructure Security Lab
 Page

Mediation Dominance

43

•  Greedy approach: cut per sink and unions solutions

•  We take advantage of the lattice ordering

‣  if then solving a cut problem in graph G for label li solves any
overlapping cut problem for a label lj

db

k-db

k-dom0

s

...

...

...

...

...

...

ext k-web k-db

k-dom0

VMM

ext

db web
k-dom0

Penn State Systems and Internet Infrastructure Security Lab
 Page

Mediation Constraints

•  Not all nodes can mediate for all sinks

‣  We compute mediation constraints based on the hierarchical
structure of the components

44

db

k-db

k-dom0

s

...

...

...

...

r

...

ext

k-dom0

^[k-db]

Root

VMM

VM

App

k-web k-db

k-dom0

VMM

ext

db web

Penn State Systems and Internet Infrastructure Security Lab
 Page

Mediation Resolution

•  Result

‣  Set of mediators that resolve all information flow errors

45

cutset(k-dom0) = {s}

cutset(k-db)={}

db

k-db

k-dom0

s

...

...

...

...

...

...

ext

k-dom0

Penn State Systems and Internet Infrastructure Security Lab
 Page

Mediators to System-Wide Policy

•  After resolution we have:

‣  An integrity lattice and the corresponding mapping to MAC policies

‣  A set of mediators

•  Since we do not have functional requirements we do not modify the
original policies (future work)

‣  Use subset of operations (see Evaluation)

•  We generate a system-wide MAC policy capable of expressing
mediation

‣  Recent “practical integrity” models – We chose the Flume policy

‣  We automate generation of Flume integrity policy for a deployment

46

Penn State Systems and Internet Infrastructure Security Lab
 Page

Flume

•  Lattice-based integrity policy

‣  Label: set of integrity tags, L = {kernel,appx}

‣  Ordered under the subset relation

•  Each process, p, has an integrity label Ip

‣  For every id t in Ip, p has endorsed every input to satisfy t

‣  Communication: sender’s integrity must be higher than receiver’s integrity

‣  Some processes have capabilities so they can change their labels (add/remove
tags)

47

{kernel,appx}

{appx}

Client

Ic={appx}

Server

Is={serverx,appx}

Ds={serverx}

{appx} {serverx,appx}
⊆
request

answer

request:

answer:

Penn State Systems and Internet Infrastructure Security Lab
 Page

3b. Generating Flume Policy

•  Processes with capabilities correspond to our mediators

•  We want to generate Flume labels and capabilities

‣  Mediator m:

•  Lm: GLB of the integrity levels that reach the node

•  Dm: integrity levels that may reach m

‣  Non-mediator n:

•  Ln: GLB of the integrity levels that reach the node

•  Dn: {}

•  Convert from levels to Flume tags

‣  Flume label == levels dominated

48

Ls=k-dom0

Ds={k-dom0,db,ext }

db

k-db

k-dom0

s

...

...

...

...

...

...

ext

k-dom0

Penn State Systems and Internet Infrastructure Security Lab
 Page

Modeling Mediation Cost

•  We want to minimize the cost of mediation

‣  The cost of mediators making information flow decisions correctly

•  How is this determined?

‣  Cuts identify the set of programs that must enforce information flow requirements

•  What is mediation in programs?

49

Penn State Systems and Internet Infrastructure Security Lab
 Page

Mediation Cost Options

•  Per program

‣  The mediation requirements of each program are the same

•  Implies reusing same programs in multiple mediation cases

•  Per level transformation

‣  Each mediation decision is the same

•  Implies that the number of Flume capabilities is the cost (default solution for multicut)

•  Per program entry point

‣  Adversaries may access the program in multiple ways (attack surface)

•  Implies program has subset of interfaces that may require mediation

•  How do we know which interfaces are accessible?

50

Penn State Systems and Internet Infrastructure Security Lab
 Page

Attack Surface Cost

•  Minimize attack surface size per cut problem

‣  Result is the number of security decisions X number of entry points
accessible to adversaries

‣  Reuse same interfaces in subsequent cuts (may require multiple
mediations at same interface)

‣  Estimate from runtime analysis (like MAC policies themselves)

51

k-db

k-dom0

s

...

...

...

...

...

k-dom0

db

ext

Read

 line 56

Pread

 line 216

Read

 line 296

Readv

 line 456

Read

 line 897

Penn State Systems and Internet Infrastructure Security Lab
 Page

The Goal

•  How should systems be built and deployed to achieve compliance?

•  Build Software

‣  Define mediated interfaces for programs

‣  Which system calls are allowed to receive adversary data?

•  Build OS Distributions

‣  Create OS distribution deployment by specifying: (1) packages and network/
VMM policies; (2) MAC policy; and (3) information flow model (semi-automated)

‣  Generate MAC policy for deployment that complies with information flow
model using program mediation (or revise model or MAC policy)

•  Deploy Systems

‣  Select OS distributions, choose program configurations, define network policy

‣  Verify automatically that the deployment satisfies information flow model – can
use in remote attestations also (for tomorrow’s talk)

52

Penn State Systems and Internet Infrastructure Security Lab
 Page

Experimental Testbed

•  Distributed system with

‣  XSM/Flask at the VMM layer

‣  SELinux in the guest VMs

‣  iptables with the Secmark extension
governing network communications

•  We customized the SELinux
policies according to the
applications the VMs would run:

‣  Dom0

‣  Database server

‣  Web server

‣  User VM

53

VMM

OS

Net

App
App

OS

Net

App

Web
Server

OS

Net

App

DB
server

Penn State Systems and Internet Infrastructure Security Lab
 Page

Questions

•  We use our tool to explore different configurations for a distributed
system

1.  How many interfaces do developers need to mediate to make this
deployment compliant ?

2.  How do changes to functional requirements affect the mediation
results ?

54

Penn State Systems and Internet Infrastructure Security Lab
 Page

Question 1

1.  How many interfaces do developers need to adjust to make this deployment
compliant ?

‣  Summarizing mediators (cut set)

‣  Unique subjects: some subjects are repeatedly picked as mediators across different VMs
(insmod_t for kernel_dom0, kernel_dbsrv, etc.)

‣  The size of the cut represents the effort to implement filtering interfaces where needed

55

Sub
 Int

32
 1069

0
 0

3
 91

6
 469

3
 288

6
 101

50
 2018

Sink

Kernel-dom0

Kernel-dbsrv

dbdata

Kernel-uservm

Kernel-websrv

webdata

Total

Static

Big Effort!

•  Sub: Subjects

•  Int: Interfaces

TCB subjects

APP subjects

Penn State Systems and Internet Infrastructure Security Lab
 Page

Question 2

2.  How do changes to functional requirements affect the mediation results ?

‣  Runtime: permissions that are actually exercised at run time

‣  The main difference between static and runtime data is caused by definition of attributes
in the MAC policy

56

Sub
 Int
 Sub
 Int

32
 1069
 23
 197

0
 0
 0
 0

3
 91
 2
 22

6
 469
 7
 138

3
 288
 2
 104

6
 101
 1
 37

50
 2018
 35
 498

Sink

Kernel-dom0

Kernel-dbsrv

dbdata

Kernel-uservm

Kernel-websrv

webdata

Total

Static policy
 Runtime data

Reduction.

Runtime could guide policy tightening!

Penn State Systems and Internet Infrastructure Security Lab
 Page

Execution Time

57

HSM
 GCM
 Cut
 DIFC

18.7
 1.0
 32.6
 8.2

18.7
 0.8
 13.7
 4.9

•  HSM: Parse policies and generate HSM model

•  GCM: Generate graph-cut model

•  Cuts: Compute system-wide cuts

•  DIFC: Generate DIFC policy

VMs
 nodes
 edges

Q1
 4
 8905
 77091

Q2
 4
 8610
 35105

System Configurations
 Time (sec)

Penn State Systems and Internet Infrastructure Security Lab
 Page

Project Tasks

•  Collect and represent policies in OpenStack cloud system

‣  Can we generate data flow graphs and compliance models for MAC and other
relevant policies in OpenStack cloud system?

•  Formalize definitions for cut problem, including cost functions and
solution composition, for cloud systems

‣  Can we resolve realistic system-wide compliance problems with minimum cost
(approximately)?

•  Explore methods to produce reasonable functional options to explore

‣  Can we generate options/constraints for the policy designer that enables them
to determine which permissions to authorize?

•  Extend the research system to support solving such problems and
testing on real cloud deployments

‣  Can we produce cloud deployments that proactively protect themselves?

58

Penn State Systems and Internet Infrastructure Security Lab
 Page

Summary

•  We have made a lot of progress improve host security over the last
ten years, but we are still reactive

•  To defend systems proactively, we must design security defenses for
the deployment

•  We define a methodology to generate system-wide MAC policies that
comply with information flow requirements automatically

•  Such a methodology enables OS distributors to create compliant
systems that system administrators and remote parties can verify
automatically – proactive evaluation end-to-end

59

Hierarchical

Data Flow

Graph

Task Two:

Bulld
System-Wide
Information
Flow Model

Task One:

Build
System-Wide

Data Flow
Graph

Information

Flow Model

Task Three:

Generate
System-Wide
MAC Policy

System-WIde

MAC Policy

(DIFC-Flume)

MAC

Policies

Integrity

Requirements

+

S
y
s
te

m
 C

o
m

p
o

n
e
n

ts

Penn State Systems and Internet Infrastructure Security Lab
 Page

Questions

60

