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Outline


•  Attack Graphs


•  MulVal


•  System-wide Info Flow
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Talk Outline
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•  Current State of Security


‣  Attack methods are comprehensive


‣  Defenses are ad hoc


•  Problem: Generate proactive defense automatically


‣  What do we know how to do already?


‣  Develop a solution method built on such techniques


•  How will such a method impact system design/deployment?


‣  Prototype to generate and test system-wide MAC policies


‣  Other talks: (1) integrity measurement protocol that measures 
such defenses and (2) process firewall that protects system call 
interface
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Current Attacks
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•  Attack unprivileged processes first


‣  Then, escalate privilege incrementally via local exploits


‣  Leverage (unjustified) trust between processes/hosts to propagate 
attacks


•  Such Attack Paths are ubiquitous in current systems


‣  Processes are tightly interconnected


•  Historically, all user processes have same privilege and can utilize 
system services


‣  Any control flow vulnerability can be leveraged to run any code


•  Return-oriented programming


•  Claim: Adversaries will use any undefended path
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Current Defenses
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•  We have made progress the last 10 years or so


‣  Vulnerable network services galore  hardened, privilege- 
separated daemons (OpenSSH)


‣  Default-enabled services  hardened configurations (IIS)


‣  Root system processes galore  Mandatory access control (Linux, 
BSD)


‣  Application plug-ins in same address space  Run application code 
in separate processes (Chrome, OP browsers)


‣  Email attachments compromise system  Prevent downloaded 
content from modifying system (MIC, antivirus)


‣  A process in one host can easily access another host  Limit open 
ports (host firewalls, labeled networking)
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MAC Operating Systems


•  Mandatory Access Control (MAC) operating systems


‣  Define an immutable set of labels and assign them to every subject and object in 
the system


‣  Define a fixed set of authorized operations based on the labels


•  Now available in most commodity operating systems (Trusted Solaris, 
TrustedBSD, SELinux, AppArmor, Windows MIC*, etc) 
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MAC Enforcement Everywhere
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•  MAC enforcement in the OS alone is not enough


•  Several applications are designed to serve users with multiple 
security requirements


‣  OS cannot control what these applications do


•  OS are not trusted to isolate computing (reference monitor concept)


‣  But virtualization is (for now)


‣  MAC at virtualization layer (VMM, hypervisor) can mediate system 
comprehensively


•  OS MAC does not control operations between hosts


‣  Labeled networking assigns labels to all network data (Labeled IPsec and 
Secmark Firewall) 
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We’ve Created a Monster


•  We end up with systems consisting of 


‣  Complex programs 


‣  Complex program configurations


‣  Complex MAC policies


‣  Systems consisting of many, independent components


•  All these are built with a particular threat model                               
in mind


‣  Which is likely different than the actual deployment 


•  System administrators are left to fix them


9
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Taming a Monster


•  Design components to defend threats proactively


‣  Programs: protect at some interfaces; expect high 
integrity data at others 


‣  OS Distros: protect at some ports, files; expect high 
integrity data at others


‣  Hosts: Ditto


•  System administrators create systems from 
multiple, independent components, connecting 
them to external resources


‣  They would like to know that the use of these 
components corresponds to their defenses


•  The two tasks are ultimately the same conceptual 
problem


10


system-wide MAC policies 
to defend deployments 
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What Do We Know How To Do?


•  Compute Attack Paths (from Attack Graphs)


‣  Find the sequence of steps that adversaries can 
take to compromise a system


•  Compute Compliance


‣  Find information flow and permission errors in 
programs and system MAC policies


•  Identify Attack Surfaces


‣  Find how systems and programs are accessible to 
adversaries


•  Attack-Specific Analyses


‣  E.g., input sanitization


11
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Compliance Problem


•  Evaluating whether a policy permits an adversary to have unauthorized 
access (i.e., contains an error) is a compliance problem: 


‣  System Policy: describes a system’s behavior


‣  Goal Policy: describes acceptable behavior


‣  Mapping function: relates elements from the system policy to elements in the 
goal policy


‣  A compliant system policy is guaranteed to meet the requirements defined by 
the goal policy


13
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Evaluating OS MAC Policy


•  We represent a single MAC policy with an information flow graph


‣  Used in analyses for SELinux by Tresys, Stoller, Li, Jaeger, etc.
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Compliance Problem 
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•  The policy compliance problem for a single policy is set up as follows:


•  System policy – The policy that we are analyzing is represented as a 
graph


var_t


installer_t


kernel_t


ftpd_t

etc_t


sbin_t




Penn State Systems and Internet Infrastructure Security Lab
 Page


Compliance Problem 
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•  The policy compliance problem for a single policy is set up as follows:


•  System policy – The policy that we are analyzing is represented as a 
graph 


•  Goal – The security goal is a lattice that defines integrity levels and 
rules that guarantee the integrity of the system
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Compliance Problem 
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•  The policy compliance problem for a single policy is set up as follows:


•  System policy – The policy that we are analyzing is represented as a 
graph 


•  Goal – The security goal is a lattice that defines integrity levels and 
rules that guarantee the integrity of the system


•  Mapping -  Assigns integrity levels to policy labels 
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Compliance Problem 
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•  The policy compliance problem for a single policy is set up as follows:


•  System policy – The policy that we are analyzing is represented as a 
graph 


•  Goal – The security goal is a lattice that defines integrity levels and 
rules that guarantee the integrity of the system


•  Mapping -  Assigns integrity levels to policy labels 
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Other Compliance Problems


•  Information flow compliance in programs


‣  Data flow is determined by program data flows – security-typed languages, such 
as Jif, Sif, SELinks, FlowCaml


•  Goal policy is not a lattice


‣  Illegal reachability: no path from u G v


‣  Illegal sets of permissions: annotate edges with permissions


•  Goals as obligations


‣  The presence of a node, edge, or path is required


‣  These are functional constraints, rather than security 


19
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Compliance Challenges
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•  Construct Data Flow Graph


‣  Multiple independently-developed 
policies 


•  Different policy languages 


•  Different policy concepts 


•  Policies may interact in multiple 
ways


allow httpd_t self:tcp_socket create_stream_socket_perms;
allow httpd_t self:udp_socket create_socket_perms;

# Allow httpd_t to put files in /var/cache/httpd etc
manage_dirs_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_lnk_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)

# Allow the httpd_t to read the web servers config files
allow httpd_t httpd_config_t:dir list_dir_perms;

allow httpd_t self:tcp_socket create_stream_socket_perms;
allow httpd_t self:udp_socket create_socket_perms;

# Allow httpd_t to put files in /var/cache/httpd etc
manage_dirs_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_lnk_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)

# Allow the httpd_t to read the web servers config files
allow httpd_t httpd_config_t:dir list_dir_perms;
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Compliance Challenges
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•  Goals and mappings are manually-
specified


‣  Lattice policy is not specified


‣  Mapping is not specified


‣  Our experience indicates that 
the size of the goal increases  
with the size of the distributed 
system


‣  Manual specification is prone 
to error


‣  Then, how do you fix errors?


allow httpd_t self:tcp_socket create_stream_socket_perms;
allow httpd_t self:udp_socket create_socket_perms;

# Allow httpd_t to put files in /var/cache/httpd etc
manage_dirs_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_lnk_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)

# Allow the httpd_t to read the web servers config files
allow httpd_t httpd_config_t:dir list_dir_perms;

allow httpd_t self:tcp_socket create_stream_socket_perms;
allow httpd_t self:udp_socket create_socket_perms;

# Allow httpd_t to put files in /var/cache/httpd etc
manage_dirs_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)
manage_lnk_files_pattern(httpd_t, httpd_cache_t, httpd_cache_t)

# Allow the httpd_t to read the web servers config files
allow httpd_t httpd_config_t:dir list_dir_perms;
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Attack Surfaces


•  Where are ‘vulnerabilities’?


‣  A flaw, accessible to an adversary, with an ability to compromise that flaw


•  Program input interfaces (e.g., read system calls) that are accessible to 
adversaries [Howard of Microsoft]
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Attack Surface Challenges


•  How to identify attack surfaces of individual programs


‣  All interfaces have access to all process permissions


‣  Some interfaces are obvious (network), but others are 
questionable


•  Researchers have used value of data behind interface


‣  But this does not say anything about accessibility


•  Difficult to identify attack surfaces from the program alone


‣  Depends on its deployment


•  Goal: Use MAC policies to identify attack surfaces – 
defenses must be placed there


23
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Goal Statement



Generate a compliant, system-wide MAC policy that minimizes 
the cost of defense (attack surfaces) mostly-automatically for 
distributed systems consisting of multiple, independent MAC-
enforcing components.


24
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Ideally, Approximately


•  Solve as an optimization problem


•  Find the minimum cost solution that satisfies a goal policy 
consisting of security and functional constraints (likely, an 
NP-complete problem)


‣  Compliance was defined in terms of security policies only (lattice)


‣  Also, need to prevent the removal of necessary function


•  Could apply SMT solver or greedy algorithm to solve such a problem


•  Barrier: While we think that we can predict a meaningful, 
conservative set of security constraints, little is known about what 
function is permissible 


•  Instead: For a particular functional specification, find the minimum cost 
solution that complies with a goal policy (security only) 


25
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Distributed Compliance Evaluation
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Distributed Compliance Evaluation
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Example System
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System Data Flows?
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1. Construct Data Flow Graph


•  We find that MAC-enforcing 
components in distributed 
systems are


‣  Encapsulated: data flows are 
mediated by MAC policy


‣  Hierarchical: each has at most one 
parent


‣  Reusable: same flows may appear 
multiple times


•  We use an hierarchical graph data 
structure defined by Alur et al.
[Alur2004] to concisely represent 
data flows
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Data Flow Graph Definition
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data structure are well-known [1].
A hierarchical state machine K is a tuple (K1, ...Kn) of

modules, where each module Ki has the following compo-
nents:
• A finite set Vi of nodes.
• A finite set Bi of boxes.
• A subset Ii of Vi, called entry nodes.
• A subset Oi of Vi, called exit nodes.
• An indexing function Yi : Bi → {i + 1, ..., n} that maps

each box of the i-th module to an index greater than i. That
is, if Yi(b) = j for box b of module Ki, then b can be viewed
as a reference to the definition of module Kj .
• If b is a box of the module Ki with j = Yi(b), then pairs

of the form (b, u) with u ∈ Ij are the calls of Ki and pairs
of the form (b, v) with v ∈ Oj are the returns of Ki.
• An edge relation Ei consisting of pairs (u, v), where the

source u is either a node or a return of Ki and v is either a
node or a call of Ki.

The key concept in HSM is a module, which represents
a single graph of nodes and edges within the HSM. Each
component that enforces its own MAC policy is represented
by a module. Components that do not enforce a MAC pol-
icy are represented as nodes. The other important feature
of the HSM model is its flexible model for expressing data
flows between modules. Boxes describe independent data
flows from a parent node to a child node through calls and
returns. This flexibility is important because data may enter
a module from multiple sources, and each of these distinct
inputs may be represented precisely using the HSM model.
Also, a module may receive multiple flows from the same
source with distinct security requirements, but the model
can be constructed to represent such flows precisely while
eliminating redundant flows.

We find that the HSM model can accurately model the
data flows among components in end-to-end systems, be-
cause software layers are arranged hierarchically and com-
ponents are encapsulated by the peer layers, as shown in
Figure 4. A system is hierarchical in that the responsibility
for security decisions is monotonically-reduced from the root
to the leaves. For example, a VMM has full access to the
physical resources of the platform, VMs have a distinct sub-
sets of these resources (e.g., consider physical memory), and
each VM process may only access a subset of the resources
available to its VM. A system is also encapsulated in that all
interactions between two peer components are implemented
by an ancestor layer (usually the parent). For example, an
operating system or VMM provides the only mechanisms
available for two processes to communicate1.

5.2 Compliance Model
Once a model of the end-to-end system is constructed,

there are often information flow integrity errors. We want
to produce mediation placements to resolve these errors that
present a minimal cost of defending the system. Pike [44]
and our prior work [23, 24] independently found that such
mediation placements could be estimated as graph-cuts au-
tomatically. In this work, we use the compliance analysis
model defined below:

1. A directed data flow graph G = (V, E) consisting of a
set of nodes V connected by edges E.

2. A lattice L= {L,#}. For any two levels li, lj ∈ L,
li # lj means that li ‘can flow to’ lj .

3. There is an import mapping function M : V → PL

where PL is the power set of L. i.e., each node is
mapped either to a set of levels in L or to ∅.

4. The lattice imposes security constraints on the infor-
mation flows enabled by the data flow graph. Each
pair u, v ∈ V s.t. [u ↪→G v ∧ (∃lu ∈ M(u), lv ∈ M(v).
lu '#L lv)], where ↪→G means there is a path from u to
v in G, represents an information flow error.

It has been shown that programs can be automatically
translated into such a model [35], as used by King et al. [24],
and we show that a MAC policy can also be translated into
the model automatically, based on previous work [44, 55,
50, 8, 21]. In a MAC policy, operations can be classified
as read-only, write-only, and read-write, between subject la-
bels and object labels in the policy. From this classifica-
tion, a directed data flow graph can be constructed where
1While two processes may setup shared memory to commu-
nicate without OS intervention, the OS must authorize such
memory mappings.
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of the form (b, v) with v ∈ Oj are the returns of Ki.
• An edge relation Ei consisting of pairs (u, v), where the

source u is either a node or a return of Ki and v is either a
node or a call of Ki.

The key concept in HSM is a module, which represents
a single graph of nodes and edges within the HSM. Each
component that enforces its own MAC policy is represented
by a module. Components that do not enforce a MAC pol-
icy are represented as nodes. The other important feature
of the HSM model is its flexible model for expressing data
flows between modules. Boxes describe independent data
flows from a parent node to a child node through calls and
returns. This flexibility is important because data may enter
a module from multiple sources, and each of these distinct
inputs may be represented precisely using the HSM model.
Also, a module may receive multiple flows from the same
source with distinct security requirements, but the model
can be constructed to represent such flows precisely while
eliminating redundant flows.

We find that the HSM model can accurately model the
data flows among components in end-to-end systems, be-
cause software layers are arranged hierarchically and com-
ponents are encapsulated by the peer layers, as shown in
Figure 4. A system is hierarchical in that the responsibility
for security decisions is monotonically-reduced from the root
to the leaves. For example, a VMM has full access to the
physical resources of the platform, VMs have a distinct sub-
sets of these resources (e.g., consider physical memory), and
each VM process may only access a subset of the resources
available to its VM. A system is also encapsulated in that all
interactions between two peer components are implemented
by an ancestor layer (usually the parent). For example, an
operating system or VMM provides the only mechanisms
available for two processes to communicate1.

5.2 Compliance Model
Once a model of the end-to-end system is constructed,

there are often information flow integrity errors. We want
to produce mediation placements to resolve these errors that
present a minimal cost of defending the system. Pike [44]
and our prior work [23, 24] independently found that such
mediation placements could be estimated as graph-cuts au-
tomatically. In this work, we use the compliance analysis
model defined below:

1. A directed data flow graph G = (V, E) consisting of a
set of nodes V connected by edges E.

2. A lattice L= {L,#}. For any two levels li, lj ∈ L,
li # lj means that li ‘can flow to’ lj .

3. There is an import mapping function M : V → PL

where PL is the power set of L. i.e., each node is
mapped either to a set of levels in L or to ∅.

4. The lattice imposes security constraints on the infor-
mation flows enabled by the data flow graph. Each
pair u, v ∈ V s.t. [u ↪→G v ∧ (∃lu ∈ M(u), lv ∈ M(v).
lu '#L lv)], where ↪→G means there is a path from u to
v in G, represents an information flow error.

It has been shown that programs can be automatically
translated into such a model [35], as used by King et al. [24],
and we show that a MAC policy can also be translated into
the model automatically, based on previous work [44, 55,
50, 8, 21]. In a MAC policy, operations can be classified
as read-only, write-only, and read-write, between subject la-
bels and object labels in the policy. From this classifica-
tion, a directed data flow graph can be constructed where
1While two processes may setup shared memory to commu-
nicate without OS intervention, the OS must authorize such
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Policies to Data Flow Graph
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Secmark Host Firewall Policies:

Web VM: iptables -t mangle -A OUTPUT -p tcp --dport 
3306 -s <srcIP> -d <tgtIP> -j SECMARK --selctx 
system_u:object_r:db_client_port_t:s0 

DB VM: iptables -t mangle -A INPUT -p tcp --dport 
3306 -s <srcIP> -d <tgtIP> -j SECMARK --selctx 
system_u:object_r:db_server_port_t:s0
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Information Flow Model
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2. Build the Info Flow Model


•  Problem: No explicit security constraint 
information


•  Problem: Distributed systems are too large to 
annotate manually


•  Insight: It’s all around


34
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Identify Integrity Levels


•  Problem: No explicit security constraint 
information


•  Problem: Distributed systems are too large to 
annotate manually


•  Insight: It’s all around


•  (1) Trusted Computing Bases: (OS) modify 
kernel objects and (VMM) modify VMM objects


•  (2) Application Data: Deploy VMs with a 
particular application in mind


•  (3) Apps trust TCB


•  (4) Some Apps Depend on Others: E.g., Web 
applications depend on DB
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Identify Integrity Levels


•  Problem: No explicit security constraint 
information


•  Problem: Distributed systems are too large to 
annotate manually


•  Insight: It’s all around


•  (1) Trusted Computing Bases: (OS) modify 
kernel objects and (VMM) modify VMM objects


•  (2) Application Data: Deploy VMs with a 
particular application in mind


•  (3) Apps trust TCB


•  (4) Some Apps Depend on Others: E.g., Web 
applications depend on DB
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Relate Integrity Levels


•  Problem: No explicit security constraint 
information


•  Problem: Distributed systems are too large to 
annotate manually


•  Insight: It’s all around


•  (1) Trusted Computing Bases: (OS) modify 
kernel objects and (VMM) modify VMM objects


•  (2) Application Data: Deploy VMs with a 
particular application in mind


•  (3) Apps trust TCB


•  (4) Some Apps Depend on Others: E.g., Web 
applications depend on DB
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Relate Integrity Levels


•  Problem: No explicit security constraint 
information


•  Problem: Distributed systems are too large to 
annotate manually


•  Insight: It’s all around


•  (1) Trusted Computing Bases: (OS) modify 
kernel objects and (VMM) modify VMM objects


•  (2) Application Data: Deploy VMs with a 
particular application in mind


•  (3) Apps trust TCB


•  (4) Some Apps Depend on Others: E.g., Web 
applications depend on DB
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Expert Knowledge
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Examples


Level/Mapping inference:

-  Resources to protect : 

map(VM, boot_t,ID),ID=‘k-’+VM

map(webvm,boot_t,k-webvm)


Lattice inference:

-  Order: VMs depend on the underlying VMM

flow(H,L):- component(L,H,_)

flow(VMM,k-webvm)


•  Level/Mapping inference


•  Lattice inference


Integrity Goal


ext ext 

k-webvm 

apache_t
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db_client_

port


http_server
_port


boot_t


bootloader_
t


dns_
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apache_

config_t

web 

VMM 

k-webvm 

 ext 
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Mapping


Order
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Resolve by Mediation


40


•  We resolve a information flow errors by suggesting mediators


‣  A mediator is a program expected to implement procedures to sanitize inputs 
so the integrity of the data raises (endorsement)
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VMM 

db web 
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m1


...


...


...


...


...


m2


ext 
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3a. Place Mediators


•  [McCamant and Ernst PLDI 2008]: Solve max flow 
problem to quantify information leakage. Inspired us 
to look into min-cut.  


•  View information flow constraints as a graph between 
incomparable security labels.


•  A cut of the graph should correspond to places in the 
code where mediation statements should be placed 
such that all information flow errors are resolved. 
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Multicut Problem


42


•  Finding a minimum cost set of mediation points for an arbitrary lattice 
is a multicut problem for directed graphs which is NP-hard
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Mediation Dominance
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•  Greedy approach: cut per sink and unions solutions


•  We take advantage of the lattice ordering


‣  if               then solving a cut problem in graph G for label li solves any 
overlapping cut problem for a label lj
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Mediation Constraints


•  Not all nodes can mediate for all sinks


‣  We compute mediation constraints based on the hierarchical 
structure of the components
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Mediation Resolution


•  Result


‣  Set of mediators that resolve all information flow errors
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cutset(k-dom0) = {s}

cutset(k-db)={}
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Mediators to System-Wide Policy


•  After resolution we have: 


‣  An integrity lattice and the corresponding mapping to MAC policies


‣  A set of mediators 


•  Since we do not have functional requirements we do not modify the 
original policies (future work)


‣  Use subset of operations (see Evaluation)


•  We generate a system-wide MAC policy capable of expressing 
mediation


‣  Recent “practical integrity” models – We chose the Flume policy


‣  We automate generation of Flume integrity policy for a deployment
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Flume


•  Lattice-based integrity policy


‣  Label: set of integrity tags, L = {kernel,appx}


‣  Ordered under the subset relation


•  Each process, p, has an integrity label Ip


‣  For every id t in Ip, p has endorsed every input to satisfy t


‣  Communication: sender’s integrity must be higher than receiver’s integrity


‣  Some processes have capabilities so they can change their labels (add/remove 
tags)
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{appx}


Client 

Ic={appx}
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Is={serverx,appx}


Ds={serverx}
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⊆
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3b. Generating Flume Policy


•  Processes with capabilities correspond to our mediators


•  We want to generate Flume labels and capabilities 


‣  Mediator m:


•  Lm: GLB of the integrity levels that reach the node


•  Dm: integrity levels that may reach m


‣  Non-mediator n:


•  Ln: GLB of the integrity levels that reach the node


•  Dn: {}


•  Convert from levels to Flume tags 


‣  Flume label == levels dominated
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Modeling Mediation Cost


•  We want to minimize the cost of mediation


‣  The cost of mediators making information flow decisions correctly


•  How is this determined?


‣  Cuts identify the set of programs that must enforce information flow requirements


•  What is mediation in programs?
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Mediation Cost Options


•  Per program


‣  The mediation requirements of each program are the same


•  Implies reusing same programs in multiple mediation cases


•  Per level transformation


‣  Each mediation decision is the same


•  Implies that the number of Flume capabilities is the cost (default solution for multicut)


•  Per program entry point


‣  Adversaries may access the program in multiple ways (attack surface)


•  Implies program has subset of interfaces that may require mediation


•  How do we know which interfaces are accessible?
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Attack Surface Cost


•  Minimize attack surface size per cut problem


‣  Result is the number of security decisions X number of entry points 
accessible to adversaries


‣  Reuse same interfaces in subsequent cuts (may require multiple 
mediations at same interface)


‣  Estimate from runtime analysis (like MAC policies themselves)
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The Goal


•  How should systems be built and deployed to achieve compliance?


•  Build Software


‣  Define mediated interfaces for programs


‣  Which system calls are allowed to receive adversary data?


•  Build OS Distributions


‣  Create OS distribution deployment by specifying: (1) packages and network/
VMM policies; (2) MAC policy; and (3) information flow model (semi-automated)


‣  Generate MAC policy for deployment that complies with information flow 
model using program mediation (or revise model or MAC policy)


•  Deploy Systems


‣  Select OS distributions, choose program configurations, define network policy


‣  Verify automatically that the deployment satisfies information flow model – can 
use in remote attestations also (for tomorrow’s talk)
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Experimental Testbed


•  Distributed system with 


‣  XSM/Flask at the VMM layer 


‣  SELinux in the guest VMs 


‣  iptables with the Secmark extension 
governing network communications


•  We customized the SELinux 
policies according to the 
applications the VMs would run:


‣  Dom0


‣  Database server


‣  Web server


‣  User VM
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Questions


•  We use our tool to explore different configurations for a distributed 
system


1.  How many interfaces do developers need to mediate to make this 
deployment compliant ?


2.  How do changes to functional requirements affect the mediation 
results ?
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Question 1


1.  How many interfaces do developers need to adjust to make this deployment 
compliant ?


‣  Summarizing mediators (cut set)


‣  Unique subjects: some subjects are repeatedly picked as mediators across different VMs 
(insmod_t for kernel_dom0, kernel_dbsrv, etc.)


‣  The size of the cut represents the effort to implement filtering interfaces where needed
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Question 2


2.  How do changes to functional requirements affect the mediation results ?


‣  Runtime: permissions that are actually exercised at run time


‣  The main difference between static and runtime data is caused by definition of attributes 
in the MAC policy
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Execution Time
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Project Tasks


•  Collect and represent policies in OpenStack cloud system


‣  Can we generate data flow graphs and compliance models for MAC and other 
relevant policies in OpenStack cloud system?


•  Formalize definitions for cut problem, including cost functions and 
solution composition, for cloud systems


‣  Can we resolve realistic system-wide compliance problems with minimum cost 
(approximately)?


•  Explore methods to produce reasonable functional options to explore


‣  Can we generate options/constraints for the policy designer that enables them 
to determine which permissions to authorize?  


•  Extend the research system to support solving such problems and 
testing on real cloud deployments


‣  Can we produce cloud deployments that proactively protect themselves?
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Summary


•  We have made a lot of progress improve host security over the last 
ten years, but we are still reactive


•  To defend systems proactively, we must design security defenses for 
the deployment


•  We define a methodology to generate system-wide MAC policies that 
comply with information flow requirements automatically


•  Such a methodology enables OS distributors to create compliant 
systems that system administrators and remote parties can verify 
automatically – proactive evaluation end-to-end
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Questions
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