
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center

Department of Computer Science and Engineering

Pennsylvania State University, University Park PA

1

Namespaces

Penn State Systems and Internet Infrastructure Security Lab
 Page

Outline

•  Sects 3.4-3.6

•  Unix File Races (Exploits)

•  Unix File Races (Defense)

2

Penn State Systems and Internet Infrastructure Security Lab
 Page

Detecting Buffer Overruns

•  Static analysis tool to detect buffer-overrun vulnerabilities in
C source code

‣  Build ICFG

‣  Collect constraints suitable for a linear program solver

‣  Solve the constraints

‣  Find bugs

3

Penn State Systems and Internet Infrastructure Security Lab
 Page

Detecting Buffer Overruns

•  Static analysis tool to detect buffer-overrun vulnerabilities in
C source code

‣  Build ICFG

‣  Collect constraints suitable for a linear program solver

‣  Solve the constraints

‣  Find bugs

4

Penn State Systems and Internet Infrastructure Security Lab
 Page

Detecting Buffer Overruns

•  Static analysis tool to detect buffer-overrun vulnerabilities in
C source code

‣  Build ICFG

‣  Collect constraints suitable for a linear program solver

•  Compute constraints with flow-insensitive and context-insensitive
approach

•  Remove constraints that trouble the linear program solver – are
infeasible or unbounded

‣  Solve the constraints

‣  Find bugs

5

Penn State Systems and Internet Infrastructure Security Lab
 Page

Detecting Buffer Overruns

•  Static analysis tool to detect buffer-overrun vulnerabilities in
C source code

‣  Build ICFG

‣  Collect constraints suitable for a linear program solver

•  Compute constraints with flow-insensitive and context-sensitive
approach

•  Remove constraints that trouble the linear program solver – are
infeasible or unbounded

‣  Solve the constraints

‣  Find bugs

6

Penn State Systems and Internet Infrastructure Security Lab
 Page

Context Insensitivity

•  At each call-site

•  Assign the actual-in vars to the formal-in vars

•  Assign the formal-out to the actual-out

•  See Figure 3.3

‣  buffer is bound by buf (and header)

‣  cc2 is bound by return of copy_buffer

•  cc1 and cc2 get the same values

‣  Does that seem reasonable?

7

Penn State Systems and Internet Infrastructure Security Lab
 Page

Constraint Inlining

•  Like inlining functions

‣  What is that?

•  Create a fresh constraints for the called function at each call
site

‣  Use unique versions of the local and formal vars for each call site

‣  I.e., actual-in assigned to renamed formal-in

‣  I.e., renamed formal-out are assigned to actual-out

‣  What is the result for analysis?

8

Penn State Systems and Internet Infrastructure Security Lab
 Page

Constraint Inlining Issues

•  Doesn’t work for recursive function calls

•  The number of constraint vars may be exponentially larger
than the number of context-insensitive constraints

•  What can we do?

9

Penn State Systems and Internet Infrastructure Security Lab
 Page

Summary Constraints

•  Goal: Eliminate constraints based on local variables

‣  Call remaining summary constraints

•  Use only formal parameters and globals

‣  See Fig 3.10

•  Variable elimination techniques are known

10

Penn State Systems and Internet Infrastructure Security Lab
 Page

Fourier-Motzkin Elimination

•  Input

‣  Set of constraints C and set of variables V

‣  Variables are formal and globals to be retained

•  Iteratively eliminates variables not in V

‣  copy!alloc!max >= buffer!used!max – 1

‣  copy_buffer!return!alloc!max >= copy!alloc!max

•  Becomes

‣  copy_buffer!return!alloc!max >= buffer!used!max – 1

11

Penn State Systems and Internet Infrastructure Security Lab
 Page

Fourier-Motzkin Elimination

•  Not always that easy in general, however

‣  To eliminate v, where m constraints use v and n constraints define v

‣  Requires m * n constraints

•  Because buffer overflow constraints are difference constraints,
we can be more efficient

‣  Reduces to all-pairs shortest/longest path

12

Penn State Systems and Internet Infrastructure Security Lab
 Page

Fourier-Motzkin Elimination

•  Consider a function that does not call other functions or
only calls functions with summaries

•  To produce summary constraints C in terms of variables V
construct a graph for constraints in C

‣  Vertices are constraint variables in C

‣  Edges for relationships in constraints

•  v1 >= v2 + w results in an edge from v2 to v1 of weight w

‣  Find longest path between any two variables in V

•  Which is two for the example

13

Penn State Systems and Internet Infrastructure Security Lab
 Page

Now for Context-Sensitivity

•  Build constraints between function variables and formal
parameters through above method

‣  Figure 3.12

•  Find relationship between cc2 and formal parameters using
DAG

14

Penn State Systems and Internet Infrastructure Security Lab
 Page

Results

15

Program
 LOC
 Warnings
 Errors

wu-ftpd-2.6.2
 18K
 178
 14

wu-ftpd-2.5.0
 16K
 139
 Confirmed errors

sendmail-8.7.6
 38K
 295
 >2

sendmail-8.11.6
 68K
 453
 Confirmed errors

Talk daemon
 900
 4
 0

Telnet daemon
 9400
 40
 >1

Penn State Systems and Internet Infrastructure Security Lab
 Page

Specific Results

•  Good

‣  Wu-ftpd: track relationship between pointers and buffers
accurately enough

•  Track user input

‣  Telnet: found a violating use of a supposedly safe function: strncpy

‣  Sendmail: find failed conditional checks that cause overflow

•  Less Good

‣  Wu-ftpd: False positive do to lack of flow-sensitivity

‣  Talk: all warnings were false alarms (although due to system)

16

Penn State Systems and Internet Infrastructure Security Lab
 Page

Performance

•  Constraints

‣  Pre-taint: 22K and 104K, respectively

‣  Post-taint: 15K and 24K, respectively

17

Wu-ftpd-2.6.2
 Sendmail-8.7.6

Codesurfer
 12.54s
 30.09s

Generator
 74.88s
 266.39s

Taint
 9.32s
 28.66s

LP Solve
 3.81s
 13.10s

Hier Solve
 10.08s
 25.82s

Penn State Systems and Internet Infrastructure Security Lab
 Page

Context Sensitivity Impact

•  Number of range variables that were refined

‣  Wu-ftpd: for 7310 vars, 72 were made more precise

•  For a 1% increase in constraints

‣  Compared to a 5.8x increase for constraints for inlining

•  However, inlining is more precise

•  Why?

18

Penn State Systems and Internet Infrastructure Security Lab
 Page

Pointer Analysis

•  Remove false negatives by handling dereferencing

‣  Although not aliasing in general

•  Sendmail

‣  251 warnings with pointer analysis off (295 when on)

•  Tough problem

19

Penn State Systems and Internet Infrastructure Security Lab
 Page

Shortcomings

•  Flow-insensitivity

‣  Creates false positives

‣  Can use slicing to help identify

‣  But, manual process to remove false positives

‣  Solution: use SSA approach – lots of constraint vars

•  Pointers to buffers

‣  Creates false negatives

‣  Because pointer analysis algorithms are flow- and context-
insensitive

‣  Need better algorithms – but costs time

20

Penn State Systems and Internet Infrastructure Security Lab
 Page

Namespaces

•  Fundamental system mechanism

‣  Simply resolves a name to an object reference for use

‣  F(space, name)  reference

•  Namespaces are everywhere

‣  Filesystems, Domain Name Service

‣  D-Bus, Android – future: cloud computing

•  What kinds of problems can occur?

21

Penn State Systems and Internet Infrastructure Security Lab
 Page

Name Resolution

Name1
 Name2
 Name3
 Name4

Obj1
 Obj2
 Obj3

C

Nameserver

Request: Resolve Name2

Reply: Obj1

Resolution

Algorithm

Penn State Systems and Internet Infrastructure Security Lab
 Page

Threat Model

Name1
 Name2
 Name3
 Name4

Obj1
 Obj2
 Obj3

V

Nameserver

Request: Resolve Name2

Reply: Obj1

Resolution

Algorithm

•  Victim process and adversary process

•  Adversary uses any permissions it has to try to
affect name resolution

A

Force victim process to obtain wrong resource

Introduce untrusted

bindings/resources

Penn State Systems and Internet Infrastructure Security Lab
 Page

Untrusted Bindings – Pre-Binding

Name1
 Name2
 Name3
 Name4

Obj1
 Obj2
 Obj3

V

Nameserver

Request: Resolve Name2

Reply: Obj1

•  Adversary pre-creates bindings that victim follows

‣  Prerequisite: Predictable names

A

Introduce untrusted

bindings

Penn State Systems and Internet Infrastructure Security Lab
 Page

Pre-Binding Example

Name1
 /tmp/somefile

Passwd
File
 Obj2

V

Nameserver

Request: Resolve /tmp/somefile

Reply: passwd file inode

•  Bash script predictable temporary file

A

Introduce untrusted

bindings

Adversary:

/* Link /tmp/somefile to point to /etc/passwd */

ln -s /etc/passwd /tmp/somefile

Victim:

script.sh:

…

echo $tmpstate > /tmp/somefile

Penn State Systems and Internet Infrastructure Security Lab
 Page

Untrusted Bindings - Re-binding

•  Adversary modifies an already existing binding

Name1
 Name2
 Name3
 Name4

Obj1
 Obj2
 Obj3

V

Nameserver

Request: Resolve Name2

Reply: Obj2

A

Introduce untrusted

bindings

Penn State Systems and Internet Infrastructure Security Lab
 Page

Re-Binding Example

•  Linux filesystem namespace

‣  Time-of-check-to-time-of-use (TOCTTOU) attack

Victim:

obj_stat = stat(“name2”);

/* Check obj_stat properties */

/* open obj */

obj = open(“name2”);

Adversary:

/* Change name2 to point to obj2 from obj1 */

obj_stat != obj
 Name1
 Name2
 Name3
 Name4

Obj1
 Obj2
 Obj3

V

Nameserver

Request: Resolve Name2

Reply: Obj2

A

Introduce untrusted

bindings

Penn State Systems and Internet Infrastructure Security Lab
 Page

Improper Name Attack

•  Adversary forces victim process to request an improper
name

‣  Usually due to a bug in the program

Name1
 Name2
 Name3
 Name4

Obj1
 Obj2
 Obj3

V

Nameserver

Request: Resolve Name1

Reply: Obj2

A

Force victim process to request wrong name

Penn State Systems and Internet Infrastructure Security Lab
 Page

Improper Name Example

•  Directory Traversal Attack

‣  V is a web/FTP server

/etc/passwd
 /var/www/index.html

Valid
Webpage

Passwd
File

V

Nameserver

Request: Resolve /etc/passwd

Reply: passwd file

A

GET ../../../etc/
passwd

Penn State Systems and Internet Infrastructure Security Lab
 Page

Access Control is Insufficient

•  Traditional access control is insufficient to solve the
problem

‣  Takes into account subject, object and operation
requested by subject on the object

•  However, different name resolutions valid in
different contexts for a single subject

Penn State Systems and Internet Infrastructure Security Lab
 Page

Access Control Is Insufficient

•  Webserver vulnerable to directory traversal

•  Therefore, namespace resolution enforcement needs
additional context than traditional access control

‣  In this case, interface in the webserver making the call

Webserver

Password

File

Web Pages

Name
1

Name
2

Passw
d File

Web
Pages

Access Control:

OK

Access Control:

OK

Name
1

Name
2

Passwd
File

Web
Pages

Penn State Systems and Internet Infrastructure Security Lab
 Page

Questions

•  Generic defense against namespace attacks

‣  What is a generic defense?

‣  Where to implement?

Penn State Systems and Internet Infrastructure Security Lab
 Page

Existing Program Defenses

•  Program API to convey intended context to OS

‣  E.g.,

•  O_EXCL flag in open(): if a binding already exists, fail

•  mkstemp creates an unpredictable name

•  Programmers do not always use APIs properly

‣  TOCTTOU attacks first published by Bishop et al. [1996]

‣  Buffer overflows known for decades

•  Other bugs in programs allow circumvention

•  Hence, we propose a system-level solution for namespace
problems

Penn State Systems and Internet Infrastructure Security Lab
 Page

Capabilities

•  Give process a capability to access a resource

•  Bypass namespace completely

•  Limitations

‣  Resolution has to be done at some stage to get capabilities

‣  Developers find indirection convenient

‣  Programmers choose capabilities

Request

Reply

Name3
Name1
 Name2
 Name4

Obj1
 Obj2
 Obj3

Nameserver

V

Penn State Systems and Internet Infrastructure Security Lab
 Page

Firewalls

•  Restriction on the resource fetched (by resource ID)

•  Traditional Example: Network Firewalls

•  IP addresses (resources) that can be accessed is limited,

even if namespace (DNS) is compromised by adversarial
bindings

‣  E.g., pharming, locally changing hosts file

•  Limitations

‣  Policy manually specified

‣  Applies to network only

‣  Fake IP addresses

x.com
 y.com
 z.com

2.3.4.5
 6.7.8.9
1.2.3.4

Penn State Systems and Internet Infrastructure Security Lab
 Page

Namespace Management

•  Restrict introduction of bindings to only trusted entities

•  Example: Private namespaces

‣  Used by container virtualization to isolate VMs (LXC, OpenVZ)

•  Limitations

‣  In some cases, retrieving low-integrity objects through low-integrity bindings

is necessary for functionality

Name3
Name1
 Name2
 Name4

Obj1
 Obj2
 Obj3

Nameserver
V

Penn State Systems and Internet Infrastructure Security Lab
 Page

Namespace Management

•  In recent work, Chari et al. [2010] introduce heuristics for
traversing bindings in a Linux filesystem

‣  Only trusted bindings (created by the same user or root) should be

traversed

‣  More complex heuristics for untrusted bindings

•  Certain cases (improper name attack) cannot be solved this
way

‣  Also, false positives are possible

•  Cai et al. showed

‣  Guarantees require program knowledge [Oakland 2009]

Penn State Systems and Internet Infrastructure Security Lab
 Page
 38

Pathname Manipulators

•  Users who can influence the result of a namespace
resolution

‣  Root users modify system namespace

‣  Normal users modify their own namespace

•  U belongs to the manipulators of a name if the resolution
of that name visits directories owned or writable by U

•  Be careful when others are manipulators

‣  Programmers often make mistakes

‣  So, implement a principled solution

Penn State Systems and Internet Infrastructure Security Lab
 Page
 39

Unsafe Subtrees

•  Identify “unsafe subtrees” of the filesystem

•  A directory is unsafe for a user if

‣  anyone other than the user (or root) can write it

•  Take precautions when using them

‣  Resolve a pathname unit by unit

‣  Enforce safe resolution conditions

•  Directly focus on resolution

Penn State Systems and Internet Infrastructure Security Lab
 Page
 40

Safe and Unsafe Names

•  A name is safe for some user if

‣  only that user can manipulate it

•  System safe:

‣  Only manipulate by root

•  Safe for U:

‣  Only U and root can manipulate

•  Unsafe

‣  Otherwise

Penn State Systems and Internet Infrastructure Security Lab
 Page
 41

Options to Limit Risk

•  Don’t open symbolic links

‣  Prevents redirection to other subtrees

‣  But, may need to use symbolic links

•  Don’t open files with multiple hard links

‣  Prevent good and bad guys from creating links

‣  Easy denial of service

•  Also, these defenses aren’t strong enough

‣  What about resolutions in middle of pathname?

Penn State Systems and Internet Infrastructure Security Lab
 Page
 42

Safe-Open Property

•  If a file has safe-names for U, then safe-open will not
open it with unsafe names

•  Assumes

‣  Directory tree appears only once (no loop-back mounts)

‣  Mounted in only safe locations (NFS)

‣  Each directory has one parent

‣  Good guys don’t induce a race

•  Proof: unsafe uses will be detected

‣  Consider a file with safe and unsafe names, use unsafe

‣  More than one hard link to file – arrive in unsafe mode

‣  One hard link – either safe or would be blocked (no .. or symlink)

Penn State Systems and Internet Infrastructure Security Lab
 Page
 43

Implementation

•  Extension to user-space library

‣  Use openat, readlinkat, fstatat to perform reads using
descriptors of directories rather than file names

‣  Check each directory for “safety”

‣  Prevent side effects

‣  Include other safe operation, such as safe-create

Penn State Systems and Internet Infrastructure Security Lab
 Page
 44

Use

•  Found vulnerabilities

‣  CUPS – unprivileged process could replace file in shared directory

‣  MySQL – creates a file as root in a directory owned by mysqld

‣  HAL daemon – opens a file as root in a directory owned by hald

•  Found policy issues (false positives)

‣  Man pages – man user

‣  Temporary directories – use ..

‣  gdm – group write

•  Web site

‣  Lots of owners, so breaks by default (MAC has more principals)

‣  Instead, restrict only if file to be opened has another safe name

Penn State Systems and Internet Infrastructure Security Lab
 Page

System Defenses

•  We have seen defenses against namespace resolution
attacks

•  Insight: All these enforce two invariants

Penn State Systems and Internet Infrastructure Security Lab
 Page

Invariant 1 - Resource

•  i-resource(namespace, name, context)

‣  Resource fetched for name in namespace is appropriate for that context

Is reply

appropriate?

Name1
 Name2
 Name3
 Name4

Obj1
 Obj2
 Obj3

V

Nameserver

Request: Resolve Name2

Reply: Obj1

A

Force victim process to request wrong name

Introduce untrusted

bindings/resources

Penn State Systems and Internet Infrastructure Security Lab
 Page

Invariant 2 - Binding

•  i-binding(namespace, name, context)

‣  Binding used to resolve name in namespace is appropriate for that context

Is binding

appropriate?

Name1
 Name2
 Name3
 Name4

Obj1
 Obj2
 Obj3

V

Nameserver

Request: Resolve Name2

Reply: Obj1

A

Force victim process to request wrong name

Introduce untrusted

bindings/resources

Penn State Systems and Internet Infrastructure Security Lab
 Page
 48

Summary

•  Namespace Resolution Attacks

‣  Redirect the victim to another resource

•  Lots of distinct attacks redirect victims

•  Chari et al. describe a system-only defense using
restrictions on the bindings accessed

‣  Some limitations and false positives

•  Cai et al. show that such limitations are inherent for
redirection attacks

‣  Some combination of false positives or missed attacks or
program info needed

Penn State Systems and Internet Infrastructure Security Lab
 Page

Questions

49

