# Measuring Relative Attack Surfaces

Jeannette Wing

School of Computer Science Carnegie Mellon University

Joint with Mike Howard and Jon Pincus, Microsoft Corporation

### **Motivation**

- How do we measure progress?
  - What effect has Microsoft's Trustworthy Computing Initiative had on the security of Windows? Has it paid off?
  - What metric can we use to say Windows Server 2003 is "more secure" than Windows 2000?
- One approach: Howard's Relative Attack Surface Quotient (RASQ)

Attack Surface 2 Jeannette M. Wing

# **Attackability**



### **Intuition**

Reduce the ways attackers can penetrate surface

☐ Increase system's security

# Relative Attack Surface

- Intermediate level of abstraction
  - Impartial to numbers or types of code-level bugs, e.g.,
     #buffer overruns
  - More meaningful than counts of CVE/MSRC/CERT bulletins and advisories
- Focus on attack vectors
  - Identify potential features to attack, based on past exploits
     Features to Attack \* Security Bugs = Exploits
  - Fewer features to attack implies fewer exploits
- Focus on *relative* comparisons

# 20 RASQ Attack Vectors for Windows [Howard03]

- Open sockets
- Open RPC endpoints
- Open named pipes
- Services
- Services running by default
- Services running as SYSTEM
- Active Web handlers
- Active ISAPI Filters
- Dynamic Web pages
- Executable vdirs
- Enabled accounts

- Enabled accounts in admin group
- Null Sessions to pipes and shares
- Guest account enabled
- Weak ACLs in FS
- Weak ACLs in Registry
- Weak ACLs on shares
- VBScript enabled
- Jscript enabled
- ActiveX enabled

Attack Surface 5 Jeannette M. Wing

# Relative Attack Surface Quotient

$$\sum\nolimits_{v \in \mathsf{AV}} \; \omega_v \; |V|$$
 simplistic count

where

v attack vector

 $\omega_v$  weight for attack vector

AV set of attack vectors

# RASQ Computations for Three OS Releases



# What's Really Going On?

### **Informal Definitions**

A vulnerability is an error or weakness in design, implementation, or operation.

- "error" => actual behavior — intended behavior

An attack is the means of exploiting a vulnerability.

- "means" => sequence of actions

A threat is an adversary motivated and capable of exploiting a vulnerability.

- "motivated" => GOAL
- "capable" => state entities (processes and data)

[Schneider, editor, Trust in Cyberspace, National Academy Press, 1999]

Attack Surface 9 Jeannette M. Wing

### **State Machines**

$$M = \langle S, I, A, T \rangle$$

S set of states

 $s \in S$ , s: Entities  $\rightarrow$  Values

 $I \subseteq S$  set of initial states

A set of actions

T transition relation



Execution of action a in state s resulting in state s'

We will use a.pre and a.post for all actions  $a \in A$  to specify T.

### **Behaviors**

### An execution of M

$$s_0 a_1 s_1 a_2 ... s_{i-1} a_i s_i ...$$

- $s_0$  ∈ I,  $\forall$  i > 0 < $s_{i-1}$ ,  $a_i$ ,  $s_i$  > ∈ T
- infinite or finite, in which case it ends in a state.

The behavior of state machine M, Beh(M), is the set of all its executions.

The set of reachable states, Reach(M), ...

# System-Under-Attack

System = 
$$\langle S_{sys}, I_{sys}, A_{sys}, T_{sys} \rangle$$
  
Threat =  $\langle S_{thr}, I_{thr}, A_{thr}, T_{thr} \rangle$ 

System-Under-Attack = (System || Threat) X GOAL

- || denotes parallel composition of two state machines, interleaving semantics
- GOAL
  - Predicate on state
  - Intuitively, adversary's goal, i.e., "motivation"

### **Vulnerabilities**

Actual = 
$$\langle S_{act}, I_{act}, A_{act}, T_{act} \rangle$$
  
Intend =  $\langle S_{int}, I_{int}, A_{int}, T_{int} \rangle$ 

### Vul = Beh(Actual) - Beh(Intend)



• 
$$I_{act} - I_{int} \neq \emptyset$$

- $T_{act} T_{int} \neq \emptyset$ For some action  $a \in A_{act} \cap A_{int}$ 
  - $a_{int}$ .pre  $\Rightarrow a_{act}$ .pre, or
  - $a_{int}.post \Rightarrow a_{act}.post$

Informally, we'll say "a is a vulnerability."

# System-Under-Attack (Revisited)

Actual = 
$$\langle S_{act}, I_{act}, A_{act}, T_{act} \rangle$$
  
Intend =  $\langle S_{int}, I_{int}, A_{int}, T_{int} \rangle$   
Threat =  $\langle S_{thr}, I_{thr}, A_{thr}, T_{thr} \rangle$ 

Adversary can achieve GOAL:

Adversary cannot achieve GOAL:

Attack Surface 14 Jeannette M. Wing

# Attacks in (Actual || Threat) X GOAL

An attack is a sequence of action executions

$$s_0$$
  $a_1 a_2 a_3 \dots a_i \dots a_n$   $s_n$ 

such that

- $s_0 \in I$
- GOAL is true in s<sub>n</sub>
- There exists  $1 \le i \le n$  such that  $a_i$  is a vulnerability.

### Elements of an Attack Surface: State Entities

- Running processes, e.g., browsers, mailers, database servers
- Data resources, e.g., files, directories, registries, access rights
  - carriers
    - extract\_payload: carrier -> executable
    - E.g., viruses, worms, Trojan horses, email messages, web pages
  - executables
    - multiple eval functions, eval: executable -> unit
      - applications (Word, Excel, ...)
      - browsers (IE, Netscape, ...)
      - mailers (Outlook, Oulook Express, Eudora, ...)
      - services (Web servers, databases, scripting engines, ...)
      - application extensions (Web handlers, add-on dll's, ActiveX controls, ISAPI filters, device drivers, ...)
      - helper applications (dynamic web pages, ...)

# Targets and Enablers

data target process target

### Target

- Any distinguished data resource or running process used or accessed in an attack.
  - "distinguished" is determined by security analyst and is likely to be referred to in Goal.

### Enabler

 Any state entity used or accessed in an attack that is not a data or process target.

### Channels and Protocols

- Channels: means of communication
  - Message passing
    - Senders and receivers
    - E.g., sockets, RPC endpoints, named pipes
  - Shared memory
    - Writers and readers
    - E.g., files, directories, and registries
- Protocols: rules for exchanging information
  - Message passing
    - E.g., ftp, RPC, http, streaming
  - Shared memory
    - E.g., single writer blocks all other readers and writers

# **Access Rights**

### Access Rights ⊆ Principals X Objects X Rights

### where

```
Principals = Users ∪ Processes
Objects = Processes ∪ Data
Rights, e.g., {read, write, execute}
```

### Derived relations

- accounts, which represent principals
  - special accounts, e.g., guest, admin
- trust relation or speaks-for relation [LABW92]
  - E.g., ip1 trusts ip2 or Alice speaks-for Bob
- privilege level
  - E.g., none < user < root

# **Attack Surface Dimensions: Summary**

### Channels x Protocols

message passing, shared memory RPC, streaming, ftp, R/W, ...

server-client web connection C

- MSHTML (process target)
- HTTPD web server W (process enabler)
- Browser B (process enabler)
- HTML document D (carrier, enabler)
- Extracted payload E (executable, enabler)

# Targets & Enablers

Processes

Data

- carriers
- executables

Access Rights

Principals x Objects x Rights

Attack Surface 20 Jeannette M. Wing

• Zone Z

# Reducing the Attack Surface

| Colloquial                          |            | Formal                                                                         |
|-------------------------------------|------------|--------------------------------------------------------------------------------|
| Turn off macros                     | <b>———</b> | Eliminate an eval function for one data type.                                  |
| Block attachments in Outlook        |            | Avoid giving any executable as an arg to an eval.                              |
| Secure by default                   |            | Eliminate entire types of targets, enablers, channels; restrict access rights. |
| Check for buffer overruns           |            | Strengthen post-condition of actual to match intended.                         |
| Validate your input.                | -          | Strengthen pre-condition of actual to match intended.                          |
| Change your password every 90 days. |            | Increase likelihood that the authentication mechanism's                        |
| Attack Surface                      | 21         | pre-condition is met.  Jeannette M. Wing                                       |

# **Attack Surface Dimensions: Summary**



Attack Surface 22 Jeannette M. Wing

# Examples

### MS02-005

# Cumulative Patch for Internet Explorer (vulnerability 1)

http://www.microsoft.com/technet/security/bulletin/MS02-005.asp

### Informally:

- An HTML document (a web page sent back from a server or HTML email) can embed another object using the EMBED tag
- the processing for this tag involves a buffer overrun
- so a well-crafted (valid, but long) tag can lead to arbitrary code execution within the security context of the user.

# MS02-005(1): Vulnerability

Action: Action: MSHTML processes HTML document D in zone Z

**Intended Precondition: true** 

Actual Precondition: D contains < EMBED SRC=X> => length(X) <= 512

### **Intended Postcondition:**

```
[D contains <EMBED SRC=X> and "Run ActiveX Controls and Plugins" is enabled for Z] => display(X) // and many other clauses ...
```

### Actual Postcondition (due to non-trivial precondition):

```
[D contains <EMBED SRC=X> and "Run ActiveX Controls and Plugins" is enabled for Z]
=> [length(X) > 512 & extract_payload(X) = E] => [E.pre => E.post]
and [length(X) <= 512] => display(X)

// and many other clauses ...
```

Attack Surface 25 Jeannette M. Wing

# MS02-005(1): Web server attack on client

# Goal: execute arbitrary code on client via browser

| Resource                       | Carrier? | Channel?    | Target? |
|--------------------------------|----------|-------------|---------|
| HTTPD (Web server; process)    |          |             |         |
| Server-client web connection C |          | Msg Passing |         |
| Browser (process) B            |          |             |         |
| HTML document D                | Y        |             |         |
| MSHTML (process)               |          |             | Y       |

# MS02-005(1): Web Server Attack Details

### Preconditions (for attack):

- victim requests a web page from adversary site S
- victim has mapped S into zone Z
- victim has "Run ActiveX Controls and Plugins" security option enabled for zone Z
- adversary creates HTML document D with a maliciously-formatted embed tag  $\langle EMBED X \rangle$ , where length(X) > 512 and extract payload(X) = E

### **Actions:**

- 1. S sends HTML document D to browser B over connection C
- 2. B passes D to MSHTML (with zone = Z)
- 3. MSHTML processes D in zone Z.

Postcondition (result of attack): arbitrary effects (due to post-condition of evaluating E)

# MS02-005(1): HTML mail attack

# Goal: execute arbitrary code on client via OE

| Resource                        | Carrier? | Channel?    | Target? |
|---------------------------------|----------|-------------|---------|
| Mail server S                   |          |             |         |
| Server-client mail connection C |          | Msg Passing |         |
| Outlook Express (process) OE    |          |             |         |
| HTML document D                 | Y        |             |         |
| MSHTML (process)                |          |             | Y       |

# MS02-005(1): Web Server Attack Details

### Preconditions (for attack):

- victim able to receive mail from adversary
- victim receives HTML e-mail in zone Z (where Z != "Restricted Zone")
- victim has "Run ActiveX Controls and Plugins" security option enabled for zone Z
- adversary creates HTML document D with a maliciously-formatted embed tag  $\langle EMBED X \rangle$ , where length(X)  $\rangle$  512 and extract\_payload(X) = E

### **Actions:**

- 1. adversary sends HTML document D to victim via email (via C)
- 2. victim views (or previews) D in OE
- 3. OE passes D to MSHTML (with zone = Z)
- 4. MSHTML processes D in zone Z.

Postcondition (result of attack): arbitrary effects (due to post-condition of evaluating E)

Estimating attack surface, revisited

# Measuring the Attack Surface

surface\_area = **f**(targets, enablers, channels, access rights)

- **f** is defined in terms of
  - relationships on targets, enablers, channels, ...
    - E.g., number of channels per instance of target type.
  - weights on targets, enablers, channels, ...
    - E.g., to reflect that some targets are more critical than others or that certain instances of channels are less critical than others.
  - Likely to be some function of targets, enablers, channels "subject to" the constraints in access rights.

# Mike's Sample Attack Vectors

### Channels:

- Open sockets
- Open RPC endpoints
- Open named pipes
- Null Sessions to pipes and shares

### Process Targets:

- Services
- Services running by default \*
- Services running as SYSTEM \*
- Active Web handlers
- Active ISAPI Filters

### Data Targets:

- Dynamic Web pages
- Executable vdirs
- Enabled Accounts
- Enabled Accounts in admin group \*
- Guest account enabled \*
- Weak ACLs in FS \*
- Weak ACLs in Registry \*
- Weak ACLs on shares \*

\* = constrained by access rights

# Computing RASQ (Mike's model)

$$RASQ = surf_{ch} + surf_{pt} + surf_{dt}$$

### where

 $surf_{ch} = channel surface$ 

surf<sub>pt</sub> = process target surface

surf<sub>dt</sub> = data target surface

(each as constrained by access rights)

# Computing "channel surface" (Mike's model)

chtypes = { socket, endpoint, namedpipe, nullsession }

$$surf_{ch} = \begin{bmatrix} \sum & \sum weight(c_i) \end{bmatrix} | A$$

$$c \varepsilon \quad i = 1$$

$$chtypes$$

### Where

```
weight(s: socket) = 1
weight(e: endpoint) = 0.9
weight(n: namedpipe) = 0.8
weight(n: nullsession) = 0.9
```

### Computing "process target surface" (Mike's model)

pttypes = { service, webhandler, isapi, dynpage }

$$surf_{pt} = \begin{bmatrix} \sum & \sum weight(p_i) \end{bmatrix} | A$$

$$p \varepsilon \quad i = 1$$

$$pttypes$$

### Where

```
weight(s: service) = 0.4 + default (s) + admin (s)
where default (s) = 0.8 if s = default, 0 otherwise
admin (s) = 0.9 if s = admin, 0 otherwise
weight(w: webhandler) = 1.0
weight(i: isapi) = 1.0
weight(d: dynpage) = 0.6
```

Attack Surface 35 Jeannette M. Wing

### Computing "data target surface" (Mike's model)

dttypes = { accounts, files, regkeys, shares, vdirs}

$$|d| \\ surf_{dt} = [\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} weight(d_i)]|A \\ d \varepsilon \quad i = 1 \\ dttypes$$

### Where

```
weight(a: account) = 0.7 + admin(a) + guest(a)
where admin(a) = 0.9 if a ∈ AdminGroup, 0 otherwise
    guest(a) = 0.9 if a.name = "Guest", 0 otherwise.
weight(f: file) = 0.7 if weakACL(f), 0 otherwise
weight(r: regkey) = 0.4 if weakACL(r), 0 otherwise
weight(s: share) = 0.9 if weakACL(s), 0 otherwise
weight(v: vdir) = 1.0 if v is executable, 0 otherwise
```

Attack Surface 36 Jeannette M. Wing

# RASQ Computations for OS Releases



### MS02-005a: Cumulative Patch for IE

### **Attack Sequence:**

- 1. HTTPD web server W sends document D to browser B over connection C.
- 2. B passes D to MSHTML in zone Z.
- 3. MSHTML processes D in zone Z, extracting and evaluating E.

Attacker's Goal: Execute arbitrary code E on client

**Vulnerability** = Actual Behavior — Intended Behavior

# Actual Behavior: D contains <EMBED SRC=X> ^"Run ActiveX Controls" is enabled for Z ^ length(X) > 512 => extract\_payload(X) = E and eval(E) extract\_payload: carrier → executable eval: executable → ()

Attack Surface 38 Jeannette M. Wing

### Caveats

- RASQ numbers are for a given configuration of a running system.
  - They say NOTHING about the inherent "security" of the system after you've turned on the features that were initially off by default!
- It's better to look at numbers for individual attack vector classes rather than read too much into overall RASQ number.
- Mustn't compare apples to oranges.
  - Attack vectors for Linux will be different than those for Windows.
  - Threat models are different.

# Short-term technical challenges

- Missing some vectors (ActiveX, enablers like scripting engines, etc.)
  - Approach: analyze MSRC bulletins
- "not all sockets are created equal"
  - Approach: include notion of protocols in RASQ
- Does it really mean anything?
  - Approach: validate with lockdown scenarios, Win2k3 experiences

Attack Surface 40 Jeannette M. Wing

# Research opportunities

### Research on RASQ

- Measurement aspects: "weights", combining by adding
- Applying to things other than the OS
- Extend to privacy (PASQ?)
- Finer granularity than "whole system"
  - What things compose?

### Related areas

- Interactions with threat modeling, attack graphs
- Identifying opportunities for mitigation
- Relating to architecture and design principles

Attack Surface 41 Jeannette M. Wing