Static Detection of Security
Vulnerabilities in Scripting Languages

Outline

e Background
— PHP
— SQL Injection
— Basic Blocks
— Symbolic Execution
— Static Analysis Basics
e Xie’s Analysis Tool (XAT)
— CFG and Basic Blocks
— Symbolic Analysis
— Summarization Approach
— Recap of XAT
— Correlating Static Analysis Concepts

My Thoughts

Background

There are some key concepts used before diving
into this static analysis approach

PHP

* Scripting languages are different
— S _GET and S_POST user input
— Stateless execution

* Dynamic native functionality and constructs

— Dynamic includes
* Mimics cut and paste of code into a script
* Inherits runtime state of program at time of include

— Dynamic variable types

— Dynamic hash tables

— Extract function

— Eval function for implicit execution

PHP Code Examples

Some strings are dynamic, some are not
— Svar = “Sother_var”; Svar = ‘Sother_var’;
This function creates different variables based on run-time user
input
— extract(S_GET);
This block loads an include file based on run-time user input

— Soperation =S_GET[‘operation’];
include(“/includes/Soperation.include”);
— Operation include could contain trusted functionality
Hash table using string variable keys
— Sfield = “first_name’;
Sfield_value = S_GET[Sfirst_name];
Possibly unmediated eval call

— Sstring =S_GET[‘string’];
eval(“echo Sstring;”);

— Could contain a value like: ‘NULL; mysql_query(“delete from users”)

SQL Injection

* Unintended user input in database queries

* PHP has native functionality for databases

— Makes it easier to produce vulnerabilities
— No native prepared statement and object type
integration like Java
e Strings are used in queries

— String segments can be composed of one or more
strings

— One string may have influence of many variables,
including user input

SQL Injection Examples

 Code
— Swhatever = S_GET[‘condition’];

— mysqgl_query(“select * from users where
name=‘Swhatever’”)

* Retrieving information
— Requests to page.php?condition=nothing’ or 1=1
— Exposes all user information

* Altering information

— Requests to page.php?condition=nothing’; delete
from users;

— Truncates data in users table

Basic Blocks

* One entry point and one exit point
— Block comprised of one or more lines of code in between

* Basic blocks must terminate on “jumps”
— |F statements, exit command, return command, exceptions
— Calls and returns with functions

* A maximal basic block cannot be extended to include
adjacent blocks without violating a basic block

— The smallest basic block can be one line of code

— Maximal basic blocks create blocks for as many lines of
code as possible until it violates the rules of a basic block

CS 526 Topics 2 and 3: Overview; Control Flow Analysis

Control Flow Graph: CFG

Definitions

Basic Block = a sequence of statements (or instructions) S; ... S,, such that

execution control must reach S, before S5, and, if S; is executed, then
S, ... 5, are all executed in that order (unless one of the statements causes

the program to halt)
Leader = the first statement of a basic block
Maximal Basic Block = a maximal-length basic block

CFG = a directed graph (usually for a single procedure) in which:
® Each node is a single basic block

® Thereis an edge b; — by If block b may be executed after block b; in
some execution

NOTE: A CFG is a conservative approximation of the control flow! Why?

Homework: Read Section 9.4 of Aho, Sethi & Ullman: algorithm to partition a procedure into basic blocks.

University of lllinois at Urbana-Champaign Topics 2 and 3: Overview; Control Flow Analysis - p.8/23

Symbolic Execution

* Applying a symbol to all variables and
maintain state throughout all program paths

e Useful for determining how variables change
throughout a program

* |tis a means of simulating the execution of a
block of code

Static Analysis Concept Review

Abstract domains
— How the behavior of the program is modeled
Control flow graphs (ICFG or CFG)
— Program statements and conditions modeled as nodes
— ICFG is a collection of CFGs accounting for procedures
Context sensitivity
— Join over all paths versus join over all valid paths

— Accounting for differences of calls to the same procedure instead of
summarizing behavior across all the calls

Flow sensitivity

— Differentiating between control-flow paths
Lattice and transition functions

— Specific transitions of the CFG that alter lattice within a path
Concretization function

— Mapping actual values to the abstract model
Sinks and sink sources

— Identifying areas of the code that are meaningful to the analysis
Summary functions (may/must, Sharir/Pnueli)

— A means of generalizing behavior of reused code, especially useful in
interprocedural data flow

CFG Example from Book

int ¥;

void main() {
Bl: iat a = &
nd; y = 1;
nd, na: fipld;
nS: if(...) o
nb: B = 23

at,.n8: fla);

nH:

}

void f{int b) {
Blld: 1f(...])
nil: y = 2;
alag

nld: § = b

lurlah&ﬁli
n,: y=1
1H£:5F*|Il

call £

|1ﬁ: ret from £ F—-““

I

x }
|m: if(...) b
|In--__ _-'-.
;gj n.: as=2
- .
f Aecfa—2)
f n;: call £

| ng: ret from £ F

heela =T, bh—aslal] -

e mm— 2
n.: iff.. .|
S

-,

-:__: ¥ 2|

lux:jk42|

heelas—T,
b—=cla))]

n,: y=b

fﬁrluxl}—ﬂtﬂﬂl

Xie’s Analysis Tool (XAT)

This presents a summarization approach that
utilizes some of the traditional static analysis
concepts we have looked at in class.

Fundamental Workflow

-*-*- il I e =

Code to AST

e XAT authors wrote or found a tool to convert
the PHP source code into an abstract syntax
tree

e Specific to PHP 5.0.5

* AST is then used to produce a control flow
graph (CFG)

CFG in XAT

* The CFG in the previous example used basic blocks as nodes
— These were not maximal basic blocks but still sensitive to jumps

— More nodes allow for a more precise analysis of the graph by
reasoning about the impact of every line

* XAT uses maximal basic blocks for nodes of a CFG
— Each node can represent multiple lines of code
— The code within the block is summarized by symbolic execution
— Edges still mimic control flow within graph

— Seems to be motivated by Harvard’s SUIF CFG Library
* http://www.eecs.harvard.edu/hube/software/v130/cfg.html

* There are multiple CFGs prepared as functions are found
— Parsing main will uncover function calls
— Each function is parsed into an AST and gets its own CFG

— The CFG is then used in the creation of a summary, described
later

How are the CFGs prepared?

e Start with the primary script, labeled main

— Parse main into an AST
e Document user-defined functions found

— CFG for main is produced by extracting the maximal basic
blocks from the AST
* Edges are the control flow between blocks (jumps)
* Conditional edges are labeled with the branch predicate
* Functions are represented by a single node within a calling CFG
— This references the intraprocedural summary described later
— Unique CFGs are created for each user-defined function
* Parsed into an AST and converted into a CFG
* Also leverages maximal basic blocks

* Recursive — if functions are found, they too are added in the queue
and processed in a similar fashion

Example Code of a “main” script

Function foo(Sx){ ... }
Function bar(Sx, Sy){ }

Svarl = ‘string value’;
Svar2 = ‘string value’; //block 1
Svar3 = foo(Svarl); //block 2
Svar4 = bar(Svar, Svar2); //block 3
if(Svar3 === TRUE){ //branch 1
Svar5 = foo(Svar4); //block 4
Svar6 = foo(Svar2); //block 5
Svar?7 = bar(Svar5, Svar6): //block 6
1

Svar8 = ‘string value’;

iE"xit(); //block 7

Example of CFG

CFG for function MAIN

BAR BLocks | | BLOCKS

VAR3===TRUE»
FOO | ok | f T sLocke ————mm| 500k
==

MAIN | suocxs '

Symbolic Analysis in XAT

Processes each maximal basic block found in the CFG
— Sequential execution that starts at first block of main

— Stops on end of block, return, exit, or call to a user-defined
function that exits

As the analysis progresses, each location is tracked using a
simulation state
— Alocation is a variable or entry in a hash table and has a value

State (I') : Loc — Value

— Example: Location X maps to an initial value X,
— Each hash table entry is tracked uniquely based on key
Analysis updates each location’s simulation state until the

end of the block

— The end state of the block is captured within the block summary
described later

Language Constructs

Type (7) i:=str | bool | int | L
Const (c) ::= string | k | true | false | null
L-val (Iv) := x | Arg#i | l]e]
Expr (e) := ¢ | lv | e binop e | unope (7)e
Stmt (S) i=1lv—e|lv— fle1,....€en)
| return e | exit | include €
binop € {+.—,concat,==,!=,<,>,...}
unop € {—.—}

Figure 3: Language Definition

Reasoning about data types

* The symbolic execution accounts for differences
in data types within the analysis

e String, boolean, integer, and unknown
— Input parameters often start out as unknown types

e Strings are the most fundamental data type

— User input is assumed to be a string when used within
a query

— String concatenation operation consists of other string
segments

* Each segment potentially composed of multiple variable
values

— Particularly useful in analysis of SQL injection to
determine what variables influence a query

Boolean and Integer Types

e Boolean variables are useful for sanitization

functions
— Conditionally, a bool can influence sanitizing one or
more other variables

— Untaint(F-set, T-set) maps to each bool variable
* F-set defines the list of sanitized variables when the boolean

is false
e T-set defines the list of sanitized variables when boolean is

true
* Integers are tracked but “less emphasized”
— Really only useful for when casting as a string or
boolean
— Of note: True=1, False=0

Data Type Value Representation

RECALL:
State (I') : Loc — Value

LIST OF POSSIBLE VALUES:

Loc (1) := x| I[string] | I[L]
Init-Values [f}] = Iy
Segment (3) ::= string | contains(c)
String (5] = [B1,.... 3]
Boolean (f}] = true | false | untaint(og, o)
Loc-set(c) 1= {fl [n}
Integer (i) ::=
Value(?]:5|b|z|m_

Hash Tables Case Study

PROGRAM:
1 $hash = $_POST:;
2 $key = ’userid’;

3 $userid = $hash[$key];

INITIALIZE:

[' = {hash = hasho, key = keyq. .POST = _POSTy.
_POST [userid] = _-POST userid|o }

SYMBOLIC EXECUTION (Black Magic):

* hash -> _POST,
* key -> ‘userid’
* Hash[key] ->_POST[userid],
e userid -> _POST([userid],

Include Files
* This is a special case, specific to scripting languages
* Dynamically inserting code into a program

— Inherits variable scope at the point of include statement
— Like a “cut and paste” of code into current location

* Aninclude file is processed by... (Draw on board)
— Parse as an AST and convert into a CFG

— Extract new user defined functions and process them with their
own AST and CFG

— Remove include statement from the original code and split
block into two at point of include (splice operation)

— Create an edge from the first original calling block to the first
block of the include CFG

— Create an edge for all return blocks of the include CFG to the
original second calling block

— Remove all return statements from blocks produced from
include

Summarization Concept

Should now have an idea of the running program
represented as CFGs

Can now run the analysis using the simulation state
tracking of locations and values

— Analysis tracks information about data throughout each
block

Input to analysis: Source code, query functions,
sanitization functions

— User defined input is assumed to be not sanitized

Goal is to track sanitization of variables

— Analyze simulation state throughout entire execution of the
program and across procedure calls

Summarization Approach

XAT summarizes the relevant information for SQL Injection

— Starts at the first block of the main CFG and traverses through using
symbolic execution

— Updates the simulation state as the analysis progresses

— Function calls trigger the interprocedural analysis
* Main calls foo, foo calls bar, etc...

Interprocedural Analysis

— The current simulation state of main passed to an instance of the particular
intraprocedural summary

— If no intraprocedural summary exists, it is created and then analysis
continues

Intraprocedural Summary

— A summary of all block summaries that belong to a function

— If no block summaries exist, they are created and then analysis continues
Block Summary

— Summary of a maximal basic block (node in a CFG)

Block Summary

* Characterizes a CFG node
e Six Tuple:<E,D, F, T, R, U>
— E (Error Set): Locations that flow into a query and need to
be sanitized before entering the block
— D (Definitions): Locations defined in current block

— F (Value flow): Substring concept, pair of memory
locations <L,, L,> where L, is a substring of L, on exit of
the block

— T (Termination): A true/false value if the block exits or if
the block contains a call to a function that exits

— R (Return value): The return value or undefined

— U (Untaint set): Analyze each successor of a block. Define
the set of sanitized values for each successor

Intraprocedural Summary

 Summarize each of the block summaries within a procedure
 Four Tuple: <E, R, S, X>
— E (Error set): Locations that flow into a query and need to be

sanitized before calling the function

» Backward reachability analysis, start with each return block and traverse to
the first block of the procedure

* LeverageE, D, F, U of block summary to calculate a global E across all blocks
in procedure

* Main must not include any user input
— R (Return set): Set of locations that correspond to the segments of
the string returned
* Only returns a set if it is a string
— S (Sanitization set): Set of parameters or global variables sanitized
within the function

* Forward reachability analysis, start with first block and traverse to each
return block

* Intersection of each path corresponds to the sanitization set (flow sentivity)
— X (Program exit): True/false value if this terminates across all paths

Intraprocedural Summary

BAR
(Intraprocedural
Summary)

FOO
(Intraprocedural
Summary)

Interprocedural Analysis

Instances of function calls map the current
simulation state to the parameters used in

intraprocedural summaries

Function f has a summary tuple <E,S,R,X> which
maps to an actual call f(e,, e,,...,e,) in a block

This is the concretization function, which
substitutes simulation state values to the
summaries (abstract domain)

Simulation state reflects the current state at the
location the function is called

More Interprocedural Details

Pre-conditions: Map simulation state to elements in E based on the
parameters of the specific function call

— All members of E must be sanitized before calling function, errors thrown
if any global variable or parameter is not sanitized before call

— Warnings thrown on unknown types due to inability to sanitize

Exit condition: Block marked as an exit block, outgoing edges removed
Post-condition: Identify and mark sanitized parameters or global
variables after execution

— If there is conditional sanitization, the intersection of the untaint set is
used

— This is useful for the analysis of the next block

Return value: This is based on the data type of returned variable

— Boolean: return untaint true and false sets based on actual parameters or
global values

— String: return the actual parameters or global values that correlate to the
segments of the string returned

— Transfers sanitized data back to the block that called and its simulation
state is updated accordingly

Recap of XAT

Parse source files into ASTs for main and functions

Convert ASTs into CFGs for functions and main
— Maximal basic block for nodes
— “Cut and paste” splice for include files

Run analysis on the CFGs
— Maintain simulation state through symbolic analysis
— Trigger interprocedural summaries

— Trigger intraprocedural summaries for each procedure
called

— Trigger block summaries for all blocks in a procedure called

Analysis should report errors for all non-sanitized data

— Warnings returned for unknown data type variables used
in queries

Results

Err Msgs Bugs (FP) Wal n

el07 16 16 (0)
News Pro & 8 (0) 8
myBloggie 16 16 (0) 23
DCP Portal 39 39 (0) Hd
PHP Webthings 2() 20 (0) 6
~Total 09 99 (0) 115

Table 1: Summary of experiments. Err Msgs: num-
ber of reported errors. Bugs: number of confirmed
bugs from error reports. FP: number of false pos-
itives. Warn: number of unique warning messages
for variables of unresolved origin (uninspected).

PHP Fusion

e Use of extract function created a lot of
undefined data type variables in the analysis

— This generated a lot of warnings

* Regular expressions created a difficulty in
modeling

Correlating Static Analysis Concepts

Sinks and sink sources
— Database query functions and user-defined input, respectively
— User-defined input is assumed to be tainted

Sanitization functions

Lattice: sanitized or not sanitized

Abstract domains: summarization tuples and mapping to simulation
state

Soundness: It is sound since it returns errors for known issues
(known data types) and warnings for issues it could not reason
about (unable to model data type or dynamic functionality)

— Sanitization set intersection of intraprocedural analysis could cause

false positives though

Completeness: Not complete; Authors admitted to struggles
modeling all dynamic functionality (regular expressions, unknown
data types)

— Regular expression difficulties

More Static Analysis Concepts

* Context-sensitivity

— It is fundamentally not context-sensitive since it does not
process each function call uniquely — it uses summaries

— This analysis does account for differences between different
calls to functions due to the mapping of the simulation state and
the ability to return different sanitization sets

— Does the summarization remove data critical to context-
sensitivity? Yes, according to the post-condition of the
interprocedural analysis

— JOP versus JOVP
* Flow sensitivity

— It is not flow sensitive since the intraprocedural summary
generalizes all of the control-flow paths of the blocks

— This is seen in the intersection of the untaint set of boolean
returns in intraprocedural summaries

My Thoughts

Ease of coding and dynamic functionality make PHP very difficult to
model

— A lot of dynamic functionality
— Heavy reliance on run-time data
— | believe that XAT was fairly effective at trying to reason about this

Neglected evaluated code
— This is a logical extension of the sanitized/unsanitized string processing
done in paper
— Eval(“Sr = mysqgl_query(\”delete from Stable\”)”);
— This is not an explicit function call
Left out native PHP functions
— How are they modeled?

Left out PHP constants and DEFINE statements
— Mimics variables but uses non-traditional syntax
— Can be used within strings

More Thoughts

 PHP 5.x has object orientation
— PHP 5.3 includes namespaces
— No mention of any of this

* No mention of association of data type to specific
sanitization function
— Does not make any sense to run is_numeric on a string
— Add_slashes for a number, not validated

* This approach would work well across database

platforms, since different functions can be passed
for sanitization and for database queries

Questions?

