Tractable Constraints in Finite

Semilattices
Jakob Rehof, Torben Mogensen

Divya Muthukumaran

Constraint Satisfaction Problem

e Constraint Satisfaction Problem(CSP) Instance:
— N: Finite set of variables; e.g. {3,b,c,d}
— @O : Domain of values; e.g. {0,1}
— (: Set of constraints
* (C(S1) C(S2)er C(SS))
— Si: Ordered subset of ; e.g. {a,b,c}
— ((Si): Mutually compatible values for variables in ;

* Solution to CSP: Assignment of values to variables in %,
consistent with all constraints in C

Example

e Assignment of values to variables N={a,b,c,d}

e C={Co, C1, Cy, C3}
—Co=1{(1,1,1,1),(1,0,1,1),(0,1,1,0),(1,0,1,0)}
—C1={(0,1,1,0),(1,0,0,1),(1,0,1,0),(1,0,1,1)}
-C>={(1,1,1,1),(1,1,1,0),(0,1,1,1),(1,0,1,0)}
-C3={(1,0,0,1),(1,0,1,0),(1,0,1,1),(0,1,1,1)}

Tractability of the CSP

[Mackworth77] CSP is NP-Complete.

In practice, problems have special properties
— Allow them to be solved efficiently

Tractable: A CSP is tractable if there is a PTIME solution
to it.

ldentifying restrictions to the general problem that
ensures tractability

— Structure of Constraints

— Nature of Constraints

— Restrictions on domains

Quest for tractability

* [Schaefer78] Studied the CSP problem for Boolean variables

States the necessary and sufficient conditions under which a set
S of Boolean relations yield polynomial-time problems when the
relations of S are used to constrain some of the

propositional variables.

|dentified four classes of sets of Boolean relations for which CSP
is in P and proves that all other sets of relations generate an NP-
complete problem.

] Generalization of Schaefer’s results

|dentified four classes of tractable constraints, ensuring tractability
in whatever way these classes were combined

All of them were characterized by a simple algebraic closure
condition

* Tractability is very closely linked to algebraic properties

Jeavons’ Classification

Class 0: Any set of constraints, allows some constant
value d to be assigned to every variable.

Class |: Any set of binary constraints which are 0/1/all.

Class II: Any set of constraints on ordered domains,
each constraint is closed under an ACl operation.

Class lll: Any set of constraints in which each constraint
corresponds to a set of linear equations.

Tractable constraints in a POSET

e [Pratt-Tiuryn96]
— The structure of posets are important for tractability
— Some structures are intractable — Example: Crowns

* [Rehof-Mogensen99]

— Tractable constraints in finite semi-lattices

* Shows how to solve certain classes of constraints over finite
domains efficiently
* Characterize those that are not tractable

e Can help programmers identify when an analysis

Tractable constraints in Finite
Semilattices

* Deals with Definite Inequalities:
— Evolved from the notion of Horn clauses

— Two point Boolean lattices -> arbitrary finite semi-
lattices

* Developed an algorithm ‘D’ with properties

— Algorithm runs in linear time for any fixed finite
semilattice

— Can serve as a general-purpose off-the-shelf solver for
a whole range of program analyses

Only Definite Constraints?

* The algorithm only applies to definite
constraints

e Can other constraints be transformed into
definite constraints ?

* |f yes, then

— What is the cost of this transformation?

Monotone Function Problem

P: Poset

F: Finite set of monotone functions f with arity a'.
®= (P,F) is a monotone function problem
Tgtls the set of ¢ terms of range,

— T¢ s=a| e | f(Ty,..,T,)

A — Collection of constants and variables
p:V->P,

— p : Valuation of all variables

— p(a) : value assigned to a

Constraint Satisfiability

 Constraint Set C over ¢
— Set of inequalitiest< T | T,TU € T,

* pisavaluationof Cin P

— p € P™, satisfies C iff the constraint holds under the
valuation
* p(t)<p () holds foreveryt<t inC
e Cis satisfiable only if there is a p € P™ that satisfies C
« ¢-SAT : Given C over @, is C satisfiable?

More Definitions....

e Definite Constraint Set:

— A constraint set in which every inequality is of the form
T<A

— C={ti £ A} can be written C = Cyar U Censt.
* Simple terms

— Has no nested function applications

e L-Normalization :
— Cuif(..g(t)) <A} =>LC u {f(...vm...) £ A, g(t) £ Vm}

— Monotonicity guarantees that this is equivalent to the
original constraint set

p(B) = L for all eV
WL = {t<B|L, p does not entail T<B}

While WL # @
— 1<B = POP(WL)

— If L, p does not entail t<p

* p(B) =p(B) v p(7)

* For each t<a € C with B € Vars(t')
— WL=WLu {t'<a}

Foreacht€sL e C

— If L, p does not entail T<L

* raise exception

return p

p(B) = L for all eV
WL = {t<B|L, p does not entail T<B}

While WL # @
— 1<B = POP(WL)

_ : Valuation of increases strictly in
If L, p does not entail T<p iy
o — L has finite height.
p(B) =p(B) v p(T) Therefore termination follows.

* For each U'<a € C with B € Vars(t') | p does not entail
<P
— WL=WLu {t'<a}

For eacht<ce C

— If L, p does not entail t<c
* raise exception

return p

RM Example
C={L1 £ Bo, L2ABo < B1, Bo AB1< B2}
Bo= L 31= 1 3= 1
—L1<Bo=Po=L1
Bo=1L1 31= 1 B2=L1
— Lo ABoSPr=P1=LiAL:
Bo=L1 Bi=Lianly B2=1
—BoAB1SB2=P2=L1A L
Bo=L1 Bi=Linly PB2=LiAL2

p(B) = L for all eV

WL = {t<B|L, p does not entail t<B}

While WL # @
— 1<B = POP(WL)

— If L, p does not entail tSB4

* p(B) =p(B) v p(7)

It can only increase till h(L)

WL each time bounded by |C|

(" Valuation at B strictly increases)
Total number of constraints added to

Total checks done is bound by h(L).|C|

J

* For each U'<a € C with B € Vars(t')

— WL=WLu {t'<a}
Foreach t<ce C

— If L, p does not entail t<c

* raise exception

return p

Extensions

* To a finite meet-semilattice:
— Add top element to P
— If any atom is valued at top then FAIL

* Relational constraints (RC):
— Inequality constraints special case of RC’s
— A RCP is a pair ={P,S} with P:finite poset, S:finite set of
relations over P

— A RCP is satisfiable if there exists a valuation p of Cin P s.t.
(p(A1),...., p(Aar)) € R for every R(A1,..., Aar)

Relational Constraints

* How many relational constraint problems can be
efficiently solved using algorithm D?

— How many problems can be transformed into definite inequality
problems and what is the cost of the transformation?

— Characterize the class of relational problem that can be solved by
the algorithm D as follows

— Let I'={P,S} where P : meet-semilattice,then it can be represented
as a definite inequality problem iff I is meet-closed.

— Cover I can be represented by a definite a simple constraint set

C’ with [C’'| £ m(m+2).|C|

Boolean Representation

Translating sets of definite inequalities to propositional formulae

— Direct correspondence between solutions to the propositional system and solutions
to the lattice inequalities.

Translation to Boolean constraints will expand exponentially in the arity
of functionsin F

— This conversion should only be done when the function arities are
small.

Satisfiability of translation: Each constraint in the translation is of the
form

— a1A a2A asA... am< ao Where are atoms ranging over {0,1}.

— Isomorphic to Horn-clauses, can be solved in time linear in the
size of the constraint set using the algorithm for HORNSAT

Extensibility

* Can algorithm be extended to cover more
relations than the meet-closed ones?

* Proved that no such extension is possible for
any meet-semilattice L
—“Algorithm D is complete for a
maximal tractable class of problems
i.e. meet closed ones”

Program flow as constraints

Check if program enforces information safety.

Information security policy specified as a
lattice.

Variables in program assigned labels from
lattice.

Generate flow constraints from program.

Program Flow security as
Constraints

e Security enforcing compilers verify that a
program correctly enforces a security policy.

Program Flow security as
Constraints

e Security enforcing compilers verify that a
program correctly enforces a security policy.

* Programmer specifies a policy as a security
lattice.

Program Flow security as
Constraints

e Security enforcing compilers verify that a
program correctly enforces a security policy.

* Programmer specifies a policy as a security
lattice.

— Lattice L governs security, contains levels [related
by <.
—If I < F, then lis allowed to flow to /".

— Information Flow Security: Information at a level /

can only affect information for all I’ such that | <
[

Program Flow security as
Constraints

e Security enforcing compilers verify that a
program correctly enforces a security policy.

* Programmer specifies a policy as a security
lattice.

 Compiler performs source code analysis to
identify information flows.

— If a flows to b, the constraint L(a) < L(b) is
generated.

— Type system for constraints.

Program Flow security as
Constraints

e Security enforcing compilers verify that a
program correctly enforces a security policy.

Programmer specifies a policy as a security
lattice.

Compiler performs source code analysis to
identify information flows.

T

WRONG

Flags information flow errors. WAY

— There exists a constraint L(a) < L(b) that is not
satisfied.

Program Flow security as
Constraints

e Constraint type system:
— v=e <=>1l(e) < L(v)
* Method calls:
— Actual Call: x(al, a2,.., an)
— Method Signature: x(f1, 2, .., fn)
— L(ai) < L(fi)for1<i<n

e Similar idea for returns.

Context sensitivity

Example:

int sum(int x, inty) {
int z;
z=x*y;

Return z; }

int main{

inta__secret_ ,b,c,d,p,q __public__;
p=sum(a,b);

q=sum(c,d); }

Constraints will fail if contexts are not
separated.

Constraints
Secret < L(a)

L(a)<
L(b) <
L(x)
L(z)

L(q) <

A

L(x), L(c) <
L(y), L(d) <
L(z), L(y) <
<L(p), L(2) <
< Public

L(x)

L(y)
L(z)

L(q)

Context sensitivity

Example:

Constraints
int sum(int x, inty) { e Secret < L(a)
o . L(a)= L(x_1), L(c) < L(x_2)
Return z; } e L(b) < (y_1), L(d) < L(y_2)
o * L(x_1) <k(z_1), L(y_1)
int main{ <|_(_1)
inta__secret_ ,b,c,d,p,q __public__;
p=sum(a,b); * L(X—2) <I—(Z 2) L(y 2)
g=sum(c,d); } <L(z_2)

* L(z_1) <L(p), L(z_2) <L(q)

Constraints will not fail; valuation exists. . L(q) < PUb'IC

