Tractable Constraints in Finite Semilattices

Jakob Rehof, Torben Mogensen

Presented by Divya Muthukumaran

Constraint Satisfaction Problem

- Constraint Satisfaction Problem(CSP) Instance:
 - \mathcal{N} : Finite set of variables; e.g. $\{a,b,c,d\}$
 - $-\mathcal{D}$: Domain of values; e.g. $\{0,1\}$
 - C: Set of constraints
 - $\{C(S_1), C(S_2), ..., C(S_c)\},\$
 - $-S_i$: Ordered subset of \mathcal{N} ; e.g. {a,b,c}
 - $-C(S_i)$: Mutually compatible values for variables in S_i
- Solution to CSP: Assignment of values to variables in \mathcal{N} , consistent with all constraints in C

Example

- Assignment of values to variables N={a,b,c,d}
- $C=\{C_0, C_1, C_2, C_3\}$ - $C_0 = \{(1,1,1,1), (1,0,1,1), (0,1,1,0), (1,0,1,0)\}$ - $C_1 = \{(0,1,1,0), (1,0,0,1), (1,0,1,0), (1,0,1,1)\}$ - $C_2 = \{(1,1,1,1), (1,1,1,0), (0,1,1,1), (1,0,1,0)\}$ - $C_3 = \{(1,0,0,1), (1,0,1,0), (1,0,1,1), (0,1,1,1)\}$

Tractability of the CSP

- [Mackworth77] CSP is NP-Complete.
- In practice, problems have special properties
 - Allow them to be solved efficiently
- Tractable: A CSP is tractable if there is a PTIME solution to it.
- Identifying restrictions to the general problem that ensures tractability
 - Structure of Constraints
 - Nature of Constraints
 - Restrictions on domains

Quest for tractability

- [Schaefer78] Studied the CSP problem for Boolean variables
 - States the necessary and sufficient conditions under which a set S of Boolean relations yield <u>polynomial-time</u> problems when the relations of S are used to constrain some of the <u>propositional variables</u>.
 - Identified four classes of sets of Boolean relations for which CSP is in P and proves that all other sets of relations generate an NPcomplete problem.
- [Jeavons95] Generalization of Schaefer's results
 - Identified four classes of tractable constraints, ensuring tractability in whatever way these classes were combined
 - All of them were characterized by a simple algebraic closure condition
 - Tractability is very closely linked to algebraic properties

Jeavons' Classification

- Class 0: Any set of constraints, allows some constant value d to be assigned to every variable.
- Class I: Any set of binary constraints which are 0/1/all.
- Class II: Any set of constraints on ordered domains, each constraint is closed under an ACI operation.
- Class III: Any set of constraints in which each constraint corresponds to a set of linear equations.

Tractable constraints in a POSET

- [Pratt-Tiuryn96]
 - The structure of posets are important for tractability
 - Some structures are intractable Example: Crowns
- [Rehof-Mogensen99]
 - Tractable constraints in finite semi-lattices
 - Shows how to solve certain classes of constraints over finite domains efficiently
 - Characterize those that are not tractable
 - Can help programmers identify when an analysis

Tractable constraints in Finite Semilattices

- Deals with Definite Inequalities:
 - Evolved from the notion of Horn clauses
 - Two point Boolean lattices -> arbitrary finite semilattices
- Developed an algorithm 'D' with properties
 - Algorithm runs in linear time for any fixed finite semilattice
 - Can serve as a general-purpose off-the-shelf solver for a whole range of program analyses

Only Definite Constraints?

- The algorithm only applies to definite constraints
- Can other constraints be transformed into definite constraints?
- If yes, then
 - What is the cost of this transformation?

Monotone Function Problem

- P: Poset
- F: Finite set of monotone functions f with arity af.
- ϕ = (P,F) is a monotone function problem
- T_{ϕ} : Is the set of ϕ terms of range, - T_{ϕ} ::= $\alpha \mid c \mid f(T_1,...,T_{af})$
- A Collection of constants and variables
- $\rho: V \rightarrow P$,
 - − p : Valuation of all variables
 - $-\rho(\alpha)$: value assigned to α

Constraint Satisfiability

- Constraint Set C over Φ
 - − Set of inequalities $\tau \le \tau' \mid \tau, \tau' \in T_{\phi}$
- ρ is a valuation of C in P
 - $\rho \in P^m$, satisfies C iff the constraint holds under the valuation
 - $\rho(\tau) \le \rho(\tau')$ holds for every $\tau \le \tau'$ in C
 - C is satisfiable only if there is a $\rho \in P^m$ that satisfies C
 - ϕ -SAT : Given C over ϕ , is C satisfiable?

More Definitions....

Definite Constraint Set:

- A constraint set in which every inequality is of the form τ ≤ A
- C = {τ_i ≤ A_i} can be written C = C_{var} ∪ C_{cnst.}

Simple terms

- Has no nested function applications
- L-Normalization :
 - $-C' \cup \{f(...g(\tau)) \leq A\} \rightarrow_{L} C' \cup \{f(...v_{m}...) \leq A, g(\tau) \leq v_{m}\}$
 - Monotonicity guarantees that this is equivalent to the original constraint set

- $\rho(\beta) = \bot$ for all $\beta \in V$
- WL = $\{\tau \leq \beta \mid L, \rho \text{ does not entail } \tau \leq \beta\}$
- While WL ≠ Ø
 - $-\tau \leq \beta = POP(WL)$
 - If L, ρ does not entail τ≤β
 - $\rho(\beta) = \rho(\beta) \vee \rho(\tau)$
 - For each $\tau' \le \alpha \in C$ with $\beta \in Vars(\tau')$
 - WL = WL ∪ {τ'≤α}
- For each τ≤L ∈ C
 - If L, ρ does not entail τ≤L
 - raise exception
- return ρ

- $\rho(\beta) = \bot$ for all $\beta \in V$
- WL = $\{\tau \leq \beta \mid L, \rho \text{ does not entail } \tau \leq \beta \}$
- While WL ≠ Ø
 - τ≤β = POP(WL)
 - If L, ρ does not entail τ≤β
 - $\rho(\beta) = \rho(\beta) \vee \rho(\tau)$

Valuation of β increases strictly in the order of *L*. *L* has finite height.

Therefore termination follows.

For each τ'≤α ∈ C with β ∈ Vars(τ') | ρ does not entail
 τ≤β

$$-$$
 WL = WL ∪ {τ'≤α}

- For each $\tau \le c \in C$
 - If L, ρ does not entail τ≤c
 - raise exception
- return ρ

RM Example

- C={L₁ $\leq \beta_0$, L₂ $\wedge \beta_0 \leq \beta_1$, $\beta_0 \wedge \beta_1 \leq \beta_2$ }
- $\beta_0 = \bot$ $\beta_1 = \bot$ $\beta_2 = \bot$ $L_1 \le \beta_0 \Rightarrow \beta_0 = L_1$
- $\beta_0 = L_1$ $\beta_1 = \bot$ $\beta_2 = \bot$ $-L_2 \land \beta_0 \le \beta_1 \Rightarrow \beta_1 = L_1 \land L_2$
- $\beta_0 = L_1$ $\beta_1 = L_1 \wedge L_2$ $\beta_2 = \bot$ $-\beta_0 \wedge \beta_1 \le \beta_2 \Rightarrow \beta_2 = L_1 \wedge L_2$
- $\beta_0 = L_1$ $\beta_1 = L_1 \wedge L_2$ $\beta_2 = L_1 \wedge L_2$

- $\rho(\beta) = \bot$ for all $\beta \in V$
- WL = $\{\tau \leq \beta \mid L, \rho \text{ does not entail } \tau \leq \beta \}$
- While WL ≠ Ø
 - τ≤β = POP(WL)
 - If L, ρ does not entail τ≤β
 - $\rho(\beta) = \rho(\beta) \vee \rho(\tau)$
 - For each $\tau' \le \alpha \in C$ with $\beta \in Vars(\tau')$
 - WL = WL ∪ {τ'≤α}
- For each $\tau \le c \in C$
 - If L, ρ does not entail τ≤c
 - raise exception
- return ρ

Valuation at β strictly increases
It can only increase till h(L)
Total number of constraints added to
WL each time bounded by |C|
Total checks done is bound by h(L).|C|

Extensions

- To a finite meet-semilattice:
 - Add top element to P
 - If any atom is valued at top then FAIL
- Relational constraints (RC):
 - Inequality constraints special case of RC's
 - A RCP is a pair Γ={P,S} with P:finite poset, S:finite set of relations over P
 - − A RCP is satisfiable if there exists a valuation ρ of C in P s.t. $(\rho(A_1),...,\rho(A_{aR})) \in R$ for every $R(A_{1,...,}A_{aR})$

Relational Constraints

- How many relational constraint problems can be efficiently solved using algorithm D?
 - How many problems can be transformed into definite inequality problems and what is the cost of the transformation?
 - Characterize the class of relational problem that can be solved by the algorithm D as follows
 - Let Γ ={P,S} where P : meet-semilattice, then it can be represented as a definite inequality problem iff Γ is meet-closed.
 - C over Γ can be represented by a definite a simple constraint set
 C' with |C'| ≤ m(m+2).|C|

Boolean Representation

- Translating sets of definite inequalities to propositional formulae
 - Direct correspondence between solutions to the propositional system and solutions to the lattice inequalities.
- Translation to Boolean constraints will expand exponentially in the arity of functions in F
 - This conversion should only be done when the function arities are small.
- Satisfiability of translation: Each constraint in the translation is of the form
 - $a_1 \land a_2 \land a_3 \land ... a_m \le a_0$ where are atoms ranging over $\{0,1\}$.
 - Isomorphic to Horn-clauses, can be solved in time linear in the size of the constraint set using the algorithm for HORNSAT

Extensibility

- Can algorithm be extended to cover more relations than the meet-closed ones?
- Proved that no such extension is possible for any meet-semilattice L
 - -"Algorithm D is complete for a maximal tractable class of problems i.e. meet closed ones"

Program flow as constraints

- Check if program enforces information safety.
- Information security policy specified as a lattice.
- Variables in program assigned labels from lattice.
- Generate flow constraints from program.

 Security enforcing compilers verify that a program correctly enforces a security policy.

- Security enforcing compilers verify that a program correctly enforces a security policy.
- Programmer specifies a policy as a *security lattice*.

- Security enforcing compilers verify that a program correctly enforces a security policy.
- Programmer specifies a policy as a *security lattice*.
 - Lattice L governs security, contains levels I related by ≤.
 - If $I \leq I'$, then I is allowed to flow to I'.
 - Information Flow Security: Information at a level I can only affect information for all I' such that I ≤ I'.

- Security enforcing compilers verify that a program correctly enforces a security policy.
- Programmer specifies a policy as a *security lattice*.
- Compiler performs source code analysis to identify *information flows*.
 - If a flows to b, the constraint L(a) ≤ L(b) is generated.
 - Type system for constraints.

- Security enforcing compilers verify that a program correctly enforces a security policy.
- Programmer specifies a policy as a *security lattice*.
- Compiler performs source code analysis to identify information flows.
- Flags information flow errors.
 - There exists a constraint $L(a) \leq L(b)$ that is not satisfied.

- Constraint type system:
 - $v=e \iff L(e) \leqslant L(v)$
- Method calls:
 - Actual Call: x(a1, a2,.., an)
 - Method Signature: x(f1, f2, .., fn)
 - L(ai) ≤ L(fi) for 1 ≤ i ≤ n
- Similar idea for returns.

Context sensitivity

Example:

```
int sum(int x, int y) {
int z;
z=x*y;
Return z; }

int main{
int a __secret__ ,b,c,d,p,q __public__;
p=sum(a,b);
q=sum(c,d); }
```

Constraints will fail if contexts are not separated.

Constraints

- Secret ≤ L(a)
- $L(a) \leq L(x), L(c) \leq L(x)$
- $L(b) \leq L(y)$, $L(d) \leq L(y)$
- $L(x) \leq L(z), L(y) \leq L(z)$
- $L(z) \leq L(p), L(z) \leq L(q)$
- L(q) ≤ Public

Context sensitivity

Example:

```
int sum(int x, int y) {
int z;
z=x*y;
Return z; }

int main{
int a __secret__ ,b,c,d,p,q __public__;
p=sum(a,b);
q=sum(c,d); }
```

• Constraints will not fail; valuation exists.

Constraints

- Secret ≤ L(a)
- $L(a) \le L(x_1), L(c) \le L(x_2)$
- $L(b) \le L(y_1), L(d) \le L(y_2)$
- L(x_1) ≤L(z_1), L(y_1) ≤L(z_1)
- L(x_2) ≤L(z_2), L(y_2) ≤L(z_2)
- $L(z_1) \leq L(p), L(z_2) \leq L(q)$
- L(q) ≤ Public