
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet

Infrastructure Security

Network and Security Research Center

Department of Computer Science and Engineering

Pennsylvania State University, University Park PA

1

Exploiting Unix File-System Races

via Algorithmic Complexity Attacks
By Cai, Gui, Johnson

Presented By: Philip Koshy

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Background

2

• Unix (and its variants) offers a rich system call
interface. Some examples include:

access()

Checks permissions on a file

open()

Opens a file

link()

Creates a link to an existing file

unlink()

Deletes a link to a file (can also delete the file)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Background

3

setuid()

When a program is executed, run the
program with the privilege of the owner
(which is typically the root user).

This function is the root of all evil. (Pun intended.)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

setuid()

4

• The ‘passwd’ utility is owned by root but can be run
by unprivileged users. (i.e., mode bits are 755)

• This utility needs to modify sensitive system files
(e.g, /etc/shadow) which are owned by root.

• When passwd runs, it runs as root, instead of the
unprivileged user.
� Otherwise, no user could change their password!

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

But…

5

• It seems as if an unprivileged user can read/modify
privileged files?
� Only in ways authorized by the setuid-root

program in question
� In our example, passwd is part of our TCB

• Utility programmers can use access() to check the
permission of the real uid (i.e., unprivileged user),
as opposed to the effective user id (i.e., root)

• If we call access() before open(), we should be
safe…right?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Simple setuid-root program

6

void main(int argc, char **argv)

{

int fd;

if (access(argv[1], R_OK) != 0)

exit(1);

fd = open(argv[1], O_RDONLY);

}

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

So far so good…

7

access(“file”, R_OK)

open(“file”, O_RDONLY)

T

i

m

e

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

The problem

8

access(“file”, R_OK)

open(“file”, O_RDONLY)

T

i

m

e

Victim Attacker

unlink(“file”)

link(“/etc/shadow”, “file”)

Context Switch

Context Switch

This file contains passwords

(albeit encrypted…)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Code Snippet

9

Victim Code
Attacker Code

(Calls the Victim Code)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

The result

10

• The attacker can force a poorly written setuid-

root program into opening a file for which the

user does not have access.

• This is due to the imprecision inherent in

treating Unix file-system paths as simple

strings.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Key Problem

11

access(“file”, R_OK)

open(“file”, O_RDONLY)

T

i

m

e

Programmers
incorrectly

assume these
calls are ‘Atomic.’

This leads to the
TOCTTOU attack.
(Time Of Check
To Time Of Use)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A race to the finish!

12

T

i

m

e

Victim Attacker

If the attacker can interleave code

correctly, they win!

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Existing Defenses

13

• This paper invalidates two previously proposed

defenses to file-system TOCTTOU attacks.

� Atomic k-Race

� TY-Race

• We look mostly at the Atomic k-Race defense

• The TY-Race is trivially broken if any victim

system call is delayed by more than 2 seconds.

� We’ll see how this is possible later.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

More Background

14

• We’ve seen that the (A)ccess/(O)pen design pattern
can be broken.
� This is possible because the attacker can

interleave commands.
� The original call sequence of AO became AsO

Where s = switch to a secret file

• We need a way to make sure that the file we’ve
checked for access is the file we’ve actually opened.

• What if we can determine something akin to the
identity of a file before and after usage? (Maybe the
inode number?)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Calls

15

• One measure of a file’s identity is the file’s status,
which takes the form of a ‘stat’ structure

• The status information includes:
� ID of the device containing the file
� inode number
� Mode bits of the file
� number of hard links
� user and group id
� Many more fields…

Most reliable metric of
file ‘identity’

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

System Calls

16

• The status information can be retrieved using two
system calls:

lstat(char* path, struct stat* status)

Retrieves the status of a file. If the file is a
symlink, it retrieves its status (as opposed to the
underlying file.)

fstat(int fd, struct stat* status)

Retrieves the status of an already open file.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A revised approach

17

• What if we called the following in sequence?

� Lstat(char* path) // Get unique identity of path
� Access(char* path)
� Open(char* path)
� Fstat(int fd) // Get unique identity of opened file

If the result of lstat() != fstat(),

we likely have a problem.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A revised approach

18

• Unfortunately, the LAOF sequence is still

susceptible to file-system races!

• LAOF may becomes sLaAsOF

Where s = switch to a secret file

a = switch to an accessible file

• The attacker would need to use lstat() with the

same secret file he wants to open().

• The access check is invalidated if the attacker can

reroute the check to a file he has access to.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Atomic k-Trace motivation

19

• We can increase the LAOF sequence’s tolerance

to failure.

• If we repeatedly apply the LAOF sequence, we

can achieve a probabilistic defense.

• If we repeat LAOF k-times, how likely is it that an

attacker can interleave code *every* time?

� It was assumed to be difficult

� Spoiler: It’s not.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Atomic k-Race

20

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Atomic k-Race

21

This algorithm is essentially
LAOF, repeated ‘krounds’

times.

The security of Atomic k-Race

is ����� where p is the
attacker’s ability to win a

single race.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

The attack vector

22

• The authors show they can deterministically do an
arbitrary amount of work between the victim’s system
calls.

• They can control the OS scheduler.

• The paper shows that the successful interleaving in
LAOF for *multiple* iterations can be achieved with very
high success rates.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

The attack vector

23

• Pseudo-code:

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

sLaAsOsF

24

Lstat()

Access()

Open()

Fstat()

Prepare Secret

Prepare Accessible

Prepare Secret

Prepare Secret

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Attack Requirements

25

The attacker’s sleep timer

must expire in the middle of

the victim’s system call.

The OS scheduler runs

between the victim’s system

calls.

The scheduler sees the

attacker’s expired timer and

must run the attacker code

immediately after.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

First Requirement

26

• The attacker’s sleep timer must expire in the middle of
the victim’s system call.

� Problem:
A sleep command has a much higher granularity
(measured in milliseconds/seconds) than a
system call (measured in microseconds).

� Solution:
Slow down system calls until their granularity
surpasses that of sleep().

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

First Requirement

27

• How do we slow down a system call?

• The kernel keeps an LRU cache of all paths provided to
any system call that requires a path using a hash table.

• Since the attacker knows the particular path it wants to
access, it also knows the hash digest of the target file.

• The attacker can create a list of thousands of filenames
that cause hash collisions with the target file. (This is
the “preparation step”)

• This causes the hash table lookups to operate at the
worst case of O(n).

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

First Requirement

28

• The preparation phase can take up to ten minutes.
� We can indefinitely suspend the victim (using a

POSIX signal) while the attacker prepares, thus
moving the victim completely out of the ready-queue.

• We said that the attacker needs to go to sleep in order
to be scheduled immediately after a victim system call.
� How can the sleeping attacker un-suspend the

victim?

� Using a technique they call sleep-walking, the
attacker can go to sleep and have a helper process
un-suspend the child.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Second Requirement

29

• The scheduler sees the attacker’s expired timer and
must run the attacker code immediately after.

� On every POSIX system they tested, the OS
scheduler runs between system calls.

� Problem:
The attacker must be selected by the OS scheduler
between consecutive victim system calls.

� Solution:
Lower the priority of the victim and increase the
priority of the attacker. If both are ready, this
guarantees that the attacker will be called before the
victim.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Second Requirement

30

• How do you lower the victim’s priority?
• Easy, start it with a lower nice level.

• How do you increase the attackers priority?
� The attacker uses a helper process to:

1. Do all of its CPU bound work (i.e., the
preparation of the hash table).

2. Sleep-walking

� This allows the main attacker process to mostly
sleep.

� The OS scheduler assumes this is an I/O heavy
process and automatically gives it the highest priority.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Evaluation

31

