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Background
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• Unix (and its variants) offers a rich system call 
interface. Some examples include:

access()

Checks permissions on a file

open()

Opens a file

link()

Creates a link to an existing file

unlink()

Deletes a link to a file (can also delete the file)
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Background
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setuid()

When a program is executed, run the 
program with the privilege of the owner
(which is typically the root user).

This function is the root of all evil. (Pun intended.)
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setuid()
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• The ‘passwd’ utility is owned by root but can be run 
by unprivileged users. (i.e., mode bits are 755)

• This utility needs to modify sensitive system files 
(e.g, /etc/shadow) which are owned by root.

• When passwd runs, it runs as root, instead of the 
unprivileged user.
� Otherwise, no user could change their password!
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But…
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• It seems as if an unprivileged user can read/modify 
privileged files? 
� Only in ways authorized by the setuid-root 

program in question
� In our example, passwd is part of our TCB

• Utility programmers can use access() to check the 
permission of the real uid (i.e., unprivileged user), 
as opposed to the effective user id (i.e., root)

• If we call access() before open(), we should be 
safe…right?
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Simple setuid-root program
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void main(int argc, char **argv)

{

int fd;

if (access(argv[1], R_OK) != 0)

exit(1);

fd = open(argv[1], O_RDONLY);

}
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So far so good…
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access(“file”, R_OK)

open(“file”, O_RDONLY)
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The problem
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access(“file”, R_OK)

open(“file”, O_RDONLY)
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Victim Attacker

unlink(“file”)

link(“/etc/shadow”, “file”)

Context Switch

Context Switch

This file contains passwords 

(albeit encrypted…)
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Code Snippet
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Victim Code
Attacker Code

(Calls the Victim Code)
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The result
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• The attacker can force a poorly written setuid-

root program into opening a file for which the 

user does not have access.

• This is due to the imprecision inherent in 

treating Unix file-system paths as simple 

strings.
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Key Problem
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access(“file”, R_OK)

open(“file”, O_RDONLY)
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Programmers 
incorrectly 

assume these 
calls are ‘Atomic.’

This leads to the 
TOCTTOU attack. 
(Time Of Check 
To Time Of Use)
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A race to the finish!
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Victim Attacker

If the attacker can interleave code

correctly, they win!
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Existing Defenses
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• This paper invalidates two previously proposed 

defenses to file-system TOCTTOU attacks. 

� Atomic k-Race

� TY-Race

• We look mostly at the Atomic k-Race defense

• The TY-Race is trivially broken if any victim 

system call is delayed by more than 2 seconds.

� We’ll see how this is possible later.
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More Background
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• We’ve seen that the (A)ccess/(O)pen design pattern 
can be broken.
� This is possible because the attacker can 

interleave commands.
� The original call sequence of AO became AsO

Where s = switch to a secret file

• We need a way to make sure that the file we’ve 
checked for access is the file we’ve actually opened.

• What if we can determine something akin to the 
identity of a file before and after usage? (Maybe the 
inode number?)
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System Calls
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• One measure of a file’s identity is the file’s status, 
which takes the form of a ‘stat’ structure

• The status information includes:
� ID of the device containing the file
� inode number
� Mode bits of the file
� number of hard links
� user and group id
� Many more fields…

Most reliable metric of 
file ‘identity’
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System Calls
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• The status information can be retrieved using two 
system calls:

lstat( char* path, struct stat* status )

Retrieves the status of a file.  If the file is a 
symlink, it retrieves its status (as opposed to the 
underlying file.)

fstat( int fd, struct stat* status )

Retrieves the status of an already open file.
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A revised approach
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• What if we called the following in sequence?

� Lstat( char* path) // Get unique identity of path
� Access( char* path )
� Open( char* path) 
� Fstat( int fd ) // Get unique identity of opened file

If the result of lstat() != fstat(),

we likely have a problem.
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A revised approach
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• Unfortunately, the LAOF sequence is still 

susceptible to file-system races!

• LAOF may becomes sLaAsOF

Where s = switch to a secret file

a = switch to an accessible file

• The attacker would need to use lstat() with the 

same secret file he wants to open(). 

• The access check is invalidated if the attacker can 

reroute the check to a file he has access to.
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Atomic k-Trace motivation
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• We can increase the LAOF sequence’s tolerance 

to failure. 

• If we repeatedly apply the LAOF sequence, we 

can achieve a probabilistic defense.

• If we repeat LAOF k-times, how likely is it that an 

attacker can interleave code *every* time?

� It was assumed to be difficult

� Spoiler: It’s not.
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Atomic k-Race
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Atomic k-Race
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This algorithm is essentially 
LAOF, repeated ‘krounds’ 

times.

The security of Atomic k-Race 

is ����� where p is the 
attacker’s ability to win a 

*single* race.
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The attack vector
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• The authors show they can deterministically do an 
arbitrary amount of work between the victim’s system 
calls.

• They can control the OS scheduler.

• The paper shows that the successful interleaving in 
LAOF for *multiple* iterations can be achieved with very 
high success rates.
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The attack vector
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• Pseudo-code:
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sLaAsOsF
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Lstat()

Access()

Open()

Fstat()

Prepare Secret

Prepare Accessible

Prepare Secret

Prepare Secret



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Attack Requirements
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The attacker’s sleep timer 

must expire in the middle of 

the victim’s system call.

The OS scheduler runs 

between the victim’s system 

calls.

The scheduler sees the 

attacker’s expired timer and 

must run the attacker code 

immediately after.
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First Requirement
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• The attacker’s sleep timer must expire in the middle of 
the victim’s system call.

� Problem: 
A sleep command has a much higher granularity 
(measured in milliseconds/seconds) than a 
system call (measured in microseconds).

� Solution: 
Slow down system calls until their granularity 
surpasses that of sleep().
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First Requirement
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• How do we slow down a system call?

• The kernel keeps an LRU cache of all paths provided to 
any system call that requires a path using a hash table.

• Since the attacker knows the particular path it wants to 
access, it also knows the hash digest of the target file.

• The attacker can create a list of thousands of filenames 
that cause hash collisions with the target file. (This is 
the “preparation step”)

• This causes the hash table lookups to operate at the 
worst case of O(n).  
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First Requirement
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• The preparation phase can take up to ten minutes.  
� We can indefinitely suspend the victim (using a 

POSIX signal) while the attacker prepares, thus 
moving the victim completely out of the ready-queue.

• We said that the attacker needs to go to sleep in order 
to be scheduled immediately after a victim system call.
� How can the sleeping attacker un-suspend the 

victim?

� Using a technique they call sleep-walking, the 
attacker can go to sleep and have a helper process 
un-suspend the child.
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Second Requirement
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• The scheduler sees the attacker’s expired timer and 
must run the attacker code immediately after.

� On every POSIX system they tested, the OS 
scheduler runs between system calls.

� Problem: 
The attacker must be selected by the OS scheduler 
between consecutive victim system calls.

� Solution:  
Lower the priority of the victim and increase the 
priority of the attacker. If both are ready, this 
guarantees that the attacker will be called before the 
victim.
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Second Requirement
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• How do you lower the victim’s priority?
• Easy, start it with a lower nice level.

• How do you increase the attackers priority?
� The attacker uses a helper process to: 

1. Do all of its CPU bound work (i.e., the 
preparation of the hash table).

2. Sleep-walking

� This allows the main attacker process to mostly 
sleep.

� The OS scheduler assumes this is an I/O heavy
process and automatically gives it the highest priority.
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Evaluation
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