
MulVAL: A logic-based
network security analyzer

Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel
Princeton University

14th USENIX Security Symposium, August 2005

Outline

MulVAL: A logic-based network security analyzer 2

  Introduction
  Representation
  Vulnerability Specification
  The MulVAL Reasoning System
  Examples
  Hypothetical Analysis
  Performance and Scalability
  Related Work
  Conclusion

Introduction

MulVAL: A logic-based network security analyzer 3

  Two features are critical for vulnerability analysis tool
  Can automatically integrate formal vulnerability spec
  Be able to scale to networks with thousands of machine

  MulVAL
  An end-to-end framework and reasoning system

  Conducts multi-host, multi-stage vulnerability analysis

  Adopt Datalog as modeling language
  Bug spec, configuration, reasoning rules, system permission, privilege

  The authors can leverage existing vulnerability database and
scanning tools by Datalog and feeding it into MulVAL reasoning
engine to perform analysis in seconds.
  for networks with thousands of machines

Introduction

MulVAL: A logic-based network security analyzer 4

  One of a sysadmin’s daily chores is
  to read bug reports from various sources

  such as CERT, BugTraq etc
  to understand which reported bugs are actually security

vulnerabilities in the context of his own network
  to assessment of their security impact on the network
  patch and reboot, reconfigure a firewall, dismount a file-server

partition, and so on

  A vulnerability analysis tool can be useful,
  if it can automatically do so,
  and only if it is scalable.

The inputs to MulVAL’s analysis are

MulVAL: A logic-based network security analyzer 5

  Advisories
  What vulnerabilities have been reported and do they exist on my

machines?
  Host configuration

  What software and services are running on my hosts, and how are
they configured?

  Network configuration
  How are my network routers and firewalls configured?

  Principals
  Who are the users of my network?

  Interaction
  What is the model of how all these components interact?

  Policy
  What accesses do I want to permit?

Representation (1/2)

MulVAL: A logic-based network security analyzer 6

  Advisories
  vulExists(webServer, ’CAN-2002-0392’, httpd)
  vulProperty(’CAN-2002-0392’, remoteExploit,

privilegeEscalation)

  Host configuration
  networkService(webServer, httpd, TCP, 80, apache)

  Network configuration
  hacl(internet, webServer, TCP, 80) // host access control lists

  Principals
  hasAccount(user, projectPC, userAccount)
  hasAccount(sysAdmin, webServer, root)

Representation (2/2)

MulVAL: A logic-based network security analyzer 7

  Interaction
  execCode(Attacker, Host, Priv) :-

 vulExists(Host, VulID, Program),
 vulProperty(VulID, remoteExploit, privEscalation),
 networkService(Host, Program, Protocol, Port, Priv),
 netAccess(Attacker, Host, Protocol, Port),
 malicious(Attacker).

  Policy
  allow(Everyone, read, webPages)
  allow(systemAdmin, write, webPages)

Vulnerability Specification

MulVAL: A logic-based network security analyzer 8

  A specification of a security bug consists of two parts
  how to recognize the existence of the bug on a system
  what is the effect of the bug on a system

  Formal, machine-readable formats
  OVAL (Open Vulnerability Assessment Language)

  a formal specification language for recognizing vulnerabilities
  http://oval.mitre.org/documents/docs-03/intro/intro.html

  ICAT (or National Vulnerability Database)
  a database that provides a vulnerability’s effect
  http://icat.nist.gov/icat.cfm

The MulVAL framework

MulVAL: A logic-based network security analyzer 9

The OVAL language and scanner

MulVAL: A logic-based network security analyzer 10

  XML-based language
  an OVAL definition can specify how to check a machine

for the existence of a new software vulnerability
  an OVAL-compatible scanner will conduct the specified

tests and report the result

  networkService(Host, Program, Protocol, Port, Priv).
  clientProgram(Host, Program, Priv).
  setuidProgram(Host, Program, Owner).
  filePath(H, Owner, Path).
  nfsExport(Server, Path, Access, Client).
  nfsMountTable(Client, ClientPath, Server, ServerPath).

Vulnerability effect (in ICAT)

MulVAL: A logic-based network security analyzer 11

  exploitable range
  Local: a local exploit requires that the attacker already have

some local access on the host
  Remote

  consequence
  confidentiality loss
  integrity loss
  denial of service
  privilege escalation

Example:

vulProperty(’CVE-2004-00495’,
 localExploit,
 privEscalation).

The MulVAL Reasoning System

MulVAL: A logic-based network security analyzer 12

  A literal, p(t1, . . . , tk) is a predicate applied to its arguments,
each of which is either a constant or a variable.

  Let L0, . . . ,Ln be literals, a sentence in MulVAL is
represented as L0 :- L1, . . . ,Ln

  Semantically, it means if L1, . . . ,Ln are true then L0 is also true.

  A clause with an empty body (right-hand side) is called a fact.
  A clause with a nonempty body is called a rule.

Exploit rules

MulVAL: A logic-based network security analyzer 13

  execCode(P, H, UserPriv)
  Principal P can execute arbitrary code with privilege UserPriv

on machine H

  netAccess(P, H, Protocol, Port)
  Principal P can send packets to Port on machine H through

Protocol

Example: remote exploit of a client program
execCode(Attacker, Host, Priv) :-

 vulExists(Host, VulID, Program),
 vulProperty(VulID, remoteExploit, privEscalation),
 clientProgram(Host, Program, Priv),
 malicious(Attacker).

* 84% of vulnerabilities are labeled with privilege escalation or only labeled with DoS

Multistage attacks

MulVAL: A logic-based network security analyzer 14

  if an attacker P can access machine H with Owner’s
privilege, then he can have arbitrary access to files owned
by Owner.
  accessFile(P, H, Access, Path) :-

 execCode(P, H, Owner),
 filePath(H, Owner, Path).

  if an attacker can modify files under Owner’s directory, he
can gain privilege of Owner.
  execCode(Attacker, H, Owner) :-

 accessFile(Attacker, H, write, Path),
 filePath(H, Owner, Path),
 malicious(Attacker).

Host Access Control List/ Policy spec

MulVAL: A logic-based network security analyzer 15

  hacl(Source, Destination, Protocol, DestPort)

  Multihop network access
  netAccess(P, H2, Protocol, Port) :-

 execCode(P, H1, Priv),
 hacl(H1, H2, Protocol, Port).

  allow(Principal, Access, Data)
  allow(Everyone, read, webPages).
  allow(user, Access, projectPlan).
  allow(sysAdmin, Access, Data).

Binding information / Algorithm

MulVAL: A logic-based network security analyzer 16

  hasAccount(user, projectPC, userAccount).
  hasAccount(sysAdmin, webServer, root).
  dataBind(projectPlan,workstation,’/home’).
  dataBind(webPages, webServer, ’/www’).

  access(P, Access, Data) :-
 dataBind(Data, H, Path),
 accessFile(P, H, Access, Path).

  policyViolation(P, Access, Data) :-
 access(P, Access, Data),
 not allow(P, Access, Data).

Example

MulVAL: A logic-based network security analyzer 17

Security policy:
The administrators need to ensure that
the confidentiality and the integrity of
users’ files will not be compromised
by an attacker.

 allow(Anyone, read, webPages).
 allow(user, AnyAccess, projectPlan).
 allow(sysAdmin, AnyAccess, Data).

Hypothetical analysis

MulVAL: A logic-based network security analyzer 18

  One important usage of vulnerability reasoning tools is to
conduct “what if” analysis.
  The authors introduce a predicate bugHyp to represent

hypothetical software vulnerabilities

  vulExists(Host, VulID, Prog) :-
 bugHyp(Host, Prog, Range, Consequence).

  vulProperty(VulID, Range, Consequence) :-
 bugHyp(Host, Prog, Range, Consequence).

Execution time for hypothetical analysis

MulVAL: A logic-based network security analyzer 19

Since the hypothetical
analysis goes through
all combination of
programs to inject
bugs, the running time
is dependent on both
the number of programs
and the number of
hypothetical bugs.

Related Work

MulVAL: A logic-based network security analyzer 20

  Old works did not how to automatically integrate
vulnerability specifications from the bug-reporting
community into the reasoning model.

  The difference between Datalog and model-checking is
that derivation in Datalog is a process of accumulating
true facts.
  Since the number of facts is polynomial in the size of the

network, the process will terminate efficiently.
  Model checking checks temporal properties of every

possible state-change sequence.
  The number of all possible states is exponential in the size of

the network

Related Work (cont’d)

MulVAL: A logic-based network security analyzer 21

  For network attacks, one can assume the monotonicity
property—gaining privileges does not hurt an attacker’s
ability to launch more attacks.

  If at a certain stage an attacker has multiple choices for
his next step, the order in which he carries out the next
attack steps is irrelevant for vulnerability analysis under
the monotonicity assumption.

  While it is possible that a model checker can be tuned to
utilize the monotonicity property and prune attack paths
that do not need to be examined
  model checking is intended to check rich temporal properties

of a state-transition system.

Conclusion

MulVAL: A logic-based network security analyzer 22

  We have demonstrated how to model a network system
in Datalog so that network vulnerability analysis can be
performed automatically and efficiently.

  A simple Prolog programcan perform “what-if” analysis
for hypothetical software bugs efficiently.

Comments

MulVAL: A logic-based network security analyzer 23

  Including all the possible “elements” to describe attack’s
behaviors/host configurations/vulnerability/network.
  It’s difficult to design a model to fit into all different kinds of

attacks.

  The “security policy” is a little bit weak (only base on
access privilege)?
  Limit to vulnerability-exploit attack

  Using Prolog is a good design.
  “What if” is attractive.

