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Agenda

• What is LLVM

• LLVM Code Representation

• LLVM Compiler Architecture

• Framework Analysis
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• Framework Analysis

LLVM Code Representation

LLVM Compiler Architecture
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LLVM

• “Compiler framework designed to support transparent, 

lifelong, program analysis and transformation”

• Provides high level info to compiler transformations
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‣ Compile-time

‣ Link-time

‣ Run-time

‣ In-idle-time

“Compiler framework designed to support transparent, 

lifelong, program analysis and transformation”

Provides high level info to compiler transformations
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LLVM

• Program analysis should occur through the 
lifetime of a program

‣ Intra-procedural optimizations (link time)
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‣ Intra-procedural optimizations (link time)

‣ Machine-dependent optimizations (install time)

‣ Dynamic optimization (run time)

‣ Profile-guided optimizations (idle time)

Program analysis should occur through the 

procedural optimizations (link time)
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procedural optimizations (link time)

dependent optimizations (install time)

Dynamic optimization (run time)

guided optimizations (idle time)
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LLVM Difference with VMs

• No high-level constructs

‣ classes, inheritance, etc
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• No runtime system or object model

• Does not guarantee safety

‣ type and memory

LLVM Difference with VMs

level constructs

classes, inheritance, etc
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No runtime system or object model

Does not guarantee safety
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LLVM Analysis

• Aim to make lifelong analysis transparent to 
programmers

Achieved through two parts:
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• Achieved through two parts:

‣ Code Representation

‣ Compiler Architecture

Aim to make lifelong analysis transparent to 

Achieved through two parts:
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Achieved through two parts:
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LLVM Code Representation

• Key feature: high and low level

• RISC-like instruction set

‣ SSA-based representation
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‣ SSA-based representation

• Low-level, language independent type system

• LLVM is complementary to virtual machines(like 

JVM,Microsoft CLI), not an alternative

LLVM Code Representation

Key feature: high and low level
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level, language independent type system

LLVM is complementary to virtual machines(like 

JVM,Microsoft CLI), not an alternative
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LLVM Code Representation

• How Support Lifelong Analysis?

• 5 capabilities

‣ Persistent program information

‣ Offline code generation
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‣ Offline code generation

‣ User-based profiling/optimization

‣ Transparent runtime model

‣ Uniform, whole program compilation

• No previous system provides all 5

LLVM Code Representation

How Support Lifelong Analysis?

Persistent program information

Offline code generation
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Offline code generation

based profiling/optimization

Transparent runtime model

Uniform, whole program compilation

No previous system provides all 5
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Instruction Set
• Avoids machine specific constraints

• Infinite set of typed virtual registers

‣ In SSA form

‣ Includes support for phi functions

‣ This allows flow insensitive algo to gain benefits of flow 
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‣ This allows flow insensitive algo to gain benefits of flow 

sensitive without expensive Data Flow analysis

• Avoids same code for multiple instructions (overloaded 

opcodes)

• Is in load/store form -progr

registers and memory solely via load and store 

operations using typed pointers

Avoids machine specific constraints

Infinite set of typed virtual registers

Includes support for phi functions

This allows flow insensitive algo to gain benefits of flow 
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This allows flow insensitive algo to gain benefits of flow 

sensitive without expensive Data Flow analysis

Avoids same code for multiple instructions (overloaded 

grams transfer values between 

registers and memory solely via load and store 

operations using typed pointers
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Type Information

• Makes all address arithmetic explicit, exposing it 
to all LLVM optimizations.

Example :- X[i].a = 1;  (assuming a is third field)
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Example :- X[i].a = 1;  (assuming a is third field)%p = getelementptr %xty* %X, long %i, ubyte 3;store int 1, int* %p;
• All addressable objects (“lvalues”) are explicitly 

allocated

Makes all address arithmetic explicit, exposing it 
to all LLVM optimizations.X[i].a = 1;  (assuming a is third field)
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X[i].a = 1;  (assuming a is third field)%p = getelementptr %xty* %X, long %i, ubyte 3;
All addressable objects (“lvalues”) are explicitly 
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Exception Handling

• Exceptions mechanism based on two 
instructions

‣ invoke

‣ unwind
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unwind

• Isolate code to throw/recover from exceptions to 
front-end libraries

• Handling automatic variable destructors:

‣ An invoke instruction is used to halt unwinding, the 

destructor is run, then unwinding is continued with 

the unwind instruction.

Exception Handling

Exceptions mechanism based on two 
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Isolate code to throw/recover from exceptions to 

Handling automatic variable destructors:

An invoke instruction is used to halt unwinding, the 

destructor is run, then unwinding is continued with 
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LLVM Compiler Architecture

• Remember: goal to enable transformations at 
link-time, install-time, run

• Must be transparent to application developers 
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• Must be transparent to application developers 
and end-users

• Efficient enough for use with real
applications

LLVM Compiler Architecture

Remember: goal to enable transformations at 
time, run-time, and idle-time

Must be transparent to application developers 
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Must be transparent to application developers 

Efficient enough for use with real-world 
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LLVM Compiler Architecture
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• This strategy provides the 5 benefits discussed earlier

• Some limitations

‣ Language specific optimizations must be performed on front 
end

‣ Benefit to languages like Ja
systems?

LLVM Compiler Architecture
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This strategy provides the 5 benefits discussed earlier

Language specific optimizations must be performed on front 

Java requiring sophisticated runtime 
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LLVM Compiler Architecture
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• Front-end compiler

‣ Translate source code to LLVM representation

‣ Perform language specific optimizations

‣ Need not perform SSA construction at this time

‣ Invoke LLVM passes for global inter procedural optimization 
at module level

LLVM Compiler Architecture
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Translate source code to LLVM representation

Perform language specific optimizations

Need not perform SSA construction at this time

Invoke LLVM passes for global inter procedural optimization 
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LLVM Compiler Architecture
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• Linker/Interprocedure Optimizer

‣ Various analyses occur

• Points-to analysis

• Mod/Ref analysis

• Dead global elimination, dead argument elimination, constant 
propagation, array bounds check, etc

• Can be speeded up by adding inter

LLVM Compiler Architecture
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Linker/Interprocedure Optimizer

Dead global elimination, dead argument elimination, constant 
propagation, array bounds check, etc

Can be speeded up by adding inter-procedural summaries)
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LLVM Compiler Architecture
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• Native Code Generation

‣ JIT or Offline

‣ Currently supports Sparc V9 and x86 architectures

LLVM Compiler Architecture
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Currently supports Sparc V9 and x86 architectures
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LLVM Compiler Architecture
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• Reoptimizers

‣ Identifies frequently run code and ‘hotspots’

‣ Performs additional optimizations, thus native code 
generation can be performed ahead of time

‣ Idle-time reoptimizer

LLVM Compiler Architecture
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Identifies frequently run code and ‘hotspots’

Performs additional optimizations, thus native code 
generation can be performed ahead of time
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LLVM Analysis

• When compiled to LLVM, a program can 
undergo the following analyses

Systems and Internet Infrastructure Security (SIIS) Laboratory

‣ Flow-insensitive, field-sensitive, context

points-to analysis

‣ Uses Data Structure Analysis (DSA)

When compiled to LLVM, a program can 
undergo the following analyses
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sensitive, context-sensitive 

Uses Data Structure Analysis (DSA)
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LLVM Analysis –

• Relatively compact code size
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Code Size

Relatively compact code size
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Conclusion

• LLVM is language independent

• Optimizations at all stages of software lifetime 
(compile,link, runtime, etc)

• Compact code size
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• Efficient- due to small, uniform instruction set in 
low level representation 

• Future work: can high-level VMs be 
implemented on top of the LLVM runtime 
optimization and code generation framework?

LLVM is language independent

Optimizations at all stages of software lifetime 
(compile,link, runtime, etc)
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due to small, uniform instruction set in 
low level representation 

level VMs be 
implemented on top of the LLVM runtime 
optimization and code generation framework?
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Questions?
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