\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

LLVM: A Compilation Framework
for Lifelong Program Analysis and
Transformation

Chris Lattner and Vikram Adve

Presented by: Nirupama Talele

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

_Zive

What is LLVM
- LLVM Code Representation

- LLVM Compiler Architecture

- Framework Analysis

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

_Zive

“Compiler framework designed to support transparent,
lifelong, program analysis and transformation”

- Provides high level info to compiler transformations
» Compile-time
» Link-time
» Run-time

» In-idle-time

Systems and Internet Infrastructure Security (SIIS) Laboratory

L LV M PENN%TE

- Program analysis should occur through the
lifetime of a program

» Intra-procedural optimizations (link time)
» Machine-dependent optimizations (install time)
» Dynamic optimization (run time)

» Profile-guided optimizations (idle time)

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Difference with VMs ""&"

« No high-level constructs

» classes, inheritance, etc
« No runtime system or object model
- Does not guarantee safety

» type and memory

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Analysis %

- Aim to make lifelong analysis transparent to
programmers

 Achieved through two parts:
» Code Representation

» Gompiler Architecture

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Code Representation ""g"

Key feature: high and low level

RISC-like instruction set

» SSA-based representation

Low-level, language independent type system

LLVM is complementary to virtual machines(like
JVM,Microsoft CLI), not an alternative

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Code Representation "g"

- How Support Lifelong Analysis?
- 5 capabilities
» Persistent program information
» Offline code generation
» User-based profiling/optimization
» Transparent runtime model

» Uniform, whole program compilation

« No previous system provides all 5

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Instruction Set S

Avoids machine specific constraints

Infinite set of typed virtual registers
> In SSA form
» Includes support for phi functions

» This allows flow insensitive algo to gain benefits of flow
sensitive without expensive Data Flow analysis

- Avoids same code for multiple instructions (overloaded
opcodes)

- Is in load/store form -programs transfer values between
registers and memory solely via load and store
operations using typed pointers

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Type Information L

- Makes all address arithmetic explicit, exposing it

to all LLVM optimizations.
Example :- X[i].a=1; (assuming a is third field)
%p = getelementptr %oxty* %X, long %1, ubyte 3;
store int 1, int* %p;

 All addressable objects (“lvalues”) are explicitly
allocated

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Exception Handling S

- Exceptions mechanism based on two
instructions

» Invoke

» unwind

- Isolate code to throw/recover from exceptions to
front-end libraries

- Handling automatic variable destructors:

» An invoke instruction is used to halt unwinding, the
destructor is run, then unwinding is continued with
the unwind instruction.

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Compiler Architecture g

- Remember: goal to enable transformations at
link-time, install-time, run-time, and idle-time

« Must be transparent to application developers
and end-users

- Efficient enough for use with real-world
applications

Systems and Internet Infrastructure Security (SIIS) Laboratory

STATE

LLVM Compiler Architecture g

_ _ exe &
E‘FJ — LMol Offline Reoptimizer
Compiler FE 1 ijriﬂl_ MNative _L_'f'rM . e W BA F'{gffgﬁ'
: | i Linker CodeGen il e ,gpjrurgl.?g.
. ofiles [POVIP A — info | Runtime
Compiler FE N Cum| Optimizer
Figure 4: LLVM svstem architecture diagram

 This strategy provides the 5 benefits discussed earlier

« Some limitations

» Language specific optimizations must be performed on front
end

> Benefit to languages like Java requiring sophisticated runtime
systems?

Page 13

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Compiler Architecture """

. - : E};-E&
E‘FJ — LMol Offline Reoptimizer
Compiler FE 1 LvM| Native oy o W B A Profile
" | f Linker CodeGen e tun &F'-'rurglga' -
¥ ofiles [POVIP A — Inf Funtime
Compiler FEN Cum| Optimizer

Figure 4: LLVM system architecture diagram

- Front-end compiler
> Translate source code to LLVM representation
» Perform language specific optimizations
» Need not perform SSA construction at this time

» Invoke LLVM passes for global inter procedural optimization
at module level

Systems and Internet Infrastructure Security (SIIS) Laboratory

Page 14

STATE

LLVM Compiler Architecture g

_ _ s &
E?J ane & LLVM ol Offline Reoptimizer
Compiler FE 1 LLVM Native [LYM— o W A Profe
- L sGen | ™[t Profile g ™. !
" Linker | |CodeGen e & Trace :

| Runtime
M| Optimizer

Irif

IPO/PA o

Compiler FE N

Figure 4: LLVM svstem architecture diagram

- Linker/Interprocedure Optimizer

» Various analyses occur
- Points-to analysis
- Mod/Ref analysis

- Dead global elimination, dead argument elimination, constant
propagation, array bounds check, etc

- Can be speeded up by adding inter-procedural summaries)

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Compiler Architecture g

: - ENE &
M?J e & LLVM o Offline Reoptimizer
Compiler FE 1 LM Native [LYM— o W B A Profile
' " Linker [|CodeGen TTreine 2 Trmoe &L

| Runtime
M| Optimizer

o files TPOYVIP A Irfis

LLWVM

Compiler FE N

Figure 4: LLVM svstem architecture diagram

« Native Code Generation
» JIT or Offline

» Currently supports Sparc V9 and x86 architectures

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Compiler Architecture g

. - : Ej;la&
E‘FJ — LMol Offline Reoptimizer
Compiler FE 1 LvM| Native oy o W B A Profile
' | " Linker | |CodeGen | s P WA
¥ ofiles [POVIP A — o Inf Funtime
Compiler FEN Cum| Optimizer

Figure 4: LLVM svstem architecture diagram

- Reoptimizers
» ldentifies frequently run code and ‘hotspots’

» Performs additional optimizations, thus native code
generation can be performed ahead of time

> |dle-time reoptimizer

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Analysis %

« When compiled to LLVM, a program can
undergo the following analyses

» Flow-insensitive, field-sensitive, context-sensitive
points-to analysis

» Uses Data Structure Analysis (DSA)

Systems and Internet Infrastructure Security (SIIS) Laboratory

LLVM Analysis — Code Size %

- Relatively compact code size

2500

2250]

LR

1750

1500

1250

150 E;LE:H
750 - | =kl
00 ‘W

e L e

Figure 5. Executable sizes for LLVM, X86, Sparc {in KEB)

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Conclusion e

- LLVM is language independent

- Optimizations at all stages of software lifetime
(compile,link, runtime, etc)

- Compact code size

 Efficient- due to small, uniform instruction set in
ow level representation

- Future work: can high-level VMs be
implemented on top of the LLVM runtime
optimization and code generation framework?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Questions? =

Systems and Internet Infrastructure Security (SIIS) Laboratory

