
Systems and Internet

Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

LLVM: A Compilation Framework

for Lifelong Program Analysis and

Systems and Internet Infrastructure Security (SIIS) Laboratory

for Lifelong Program Analysis and

Transformation

Chris Lattner and Vikram Adve

Presented by: Nirupama Talele

Security

LLVM: A Compilation Framework

for Lifelong Program Analysis and

Page 1

for Lifelong Program Analysis and

Transformation

Chris Lattner and Vikram Adve

Presented by: Nirupama Talele

Agenda

• What is LLVM

• LLVM Code Representation

• LLVM Compiler Architecture

• Framework Analysis

Systems and Internet Infrastructure Security (SIIS) Laboratory

• Framework Analysis

LLVM Code Representation

LLVM Compiler Architecture

Page 2

LLVM

• “Compiler framework designed to support transparent,

lifelong, program analysis and transformation”

• Provides high level info to compiler transformations

Systems and Internet Infrastructure Security (SIIS) Laboratory

‣ Compile-time

‣ Link-time

‣ Run-time

‣ In-idle-time

“Compiler framework designed to support transparent,

lifelong, program analysis and transformation”

Provides high level info to compiler transformations

Page 3

LLVM

• Program analysis should occur through the
lifetime of a program

‣ Intra-procedural optimizations (link time)

Systems and Internet Infrastructure Security (SIIS) Laboratory

‣ Intra-procedural optimizations (link time)

‣ Machine-dependent optimizations (install time)

‣ Dynamic optimization (run time)

‣ Profile-guided optimizations (idle time)

Program analysis should occur through the

procedural optimizations (link time)

Page

procedural optimizations (link time)

dependent optimizations (install time)

Dynamic optimization (run time)

guided optimizations (idle time)

4

LLVM Difference with VMs

• No high-level constructs

‣ classes, inheritance, etc

Systems and Internet Infrastructure Security (SIIS) Laboratory

• No runtime system or object model

• Does not guarantee safety

‣ type and memory

LLVM Difference with VMs

level constructs

classes, inheritance, etc

Page

No runtime system or object model

Does not guarantee safety

5

LLVM Analysis

• Aim to make lifelong analysis transparent to
programmers

Achieved through two parts:

Systems and Internet Infrastructure Security (SIIS) Laboratory

• Achieved through two parts:

‣ Code Representation

‣ Compiler Architecture

Aim to make lifelong analysis transparent to

Achieved through two parts:

Page

Achieved through two parts:

6

LLVM Code Representation

• Key feature: high and low level

• RISC-like instruction set

‣ SSA-based representation

Systems and Internet Infrastructure Security (SIIS) Laboratory

‣ SSA-based representation

• Low-level, language independent type system

• LLVM is complementary to virtual machines(like

JVM,Microsoft CLI), not an alternative

LLVM Code Representation

Key feature: high and low level

Page

level, language independent type system

LLVM is complementary to virtual machines(like

JVM,Microsoft CLI), not an alternative

7

LLVM Code Representation

• How Support Lifelong Analysis?

• 5 capabilities

‣ Persistent program information

‣ Offline code generation

Systems and Internet Infrastructure Security (SIIS) Laboratory

‣ Offline code generation

‣ User-based profiling/optimization

‣ Transparent runtime model

‣ Uniform, whole program compilation

• No previous system provides all 5

LLVM Code Representation

How Support Lifelong Analysis?

Persistent program information

Offline code generation

Page

Offline code generation

based profiling/optimization

Transparent runtime model

Uniform, whole program compilation

No previous system provides all 5

8

Instruction Set
• Avoids machine specific constraints

• Infinite set of typed virtual registers

‣ In SSA form

‣ Includes support for phi functions

‣ This allows flow insensitive algo to gain benefits of flow

Systems and Internet Infrastructure Security (SIIS) Laboratory

‣ This allows flow insensitive algo to gain benefits of flow

sensitive without expensive Data Flow analysis

• Avoids same code for multiple instructions (overloaded

opcodes)

• Is in load/store form -progr

registers and memory solely via load and store

operations using typed pointers

Avoids machine specific constraints

Infinite set of typed virtual registers

Includes support for phi functions

This allows flow insensitive algo to gain benefits of flow

Page

This allows flow insensitive algo to gain benefits of flow

sensitive without expensive Data Flow analysis

Avoids same code for multiple instructions (overloaded

grams transfer values between

registers and memory solely via load and store

operations using typed pointers

9

Type Information

• Makes all address arithmetic explicit, exposing it
to all LLVM optimizations.

Example :- X[i].a = 1; (assuming a is third field)

Systems and Internet Infrastructure Security (SIIS) Laboratory

Example :- X[i].a = 1; (assuming a is third field)%p = getelementptr %xty* %X, long %i, ubyte 3;store int 1, int* %p;
• All addressable objects (“lvalues”) are explicitly

allocated

Makes all address arithmetic explicit, exposing it
to all LLVM optimizations.X[i].a = 1; (assuming a is third field)

Page

X[i].a = 1; (assuming a is third field)%p = getelementptr %xty* %X, long %i, ubyte 3;
All addressable objects (“lvalues”) are explicitly

10

Exception Handling

• Exceptions mechanism based on two
instructions

‣ invoke

‣ unwind

Systems and Internet Infrastructure Security (SIIS) Laboratory

unwind

• Isolate code to throw/recover from exceptions to
front-end libraries

• Handling automatic variable destructors:

‣ An invoke instruction is used to halt unwinding, the

destructor is run, then unwinding is continued with

the unwind instruction.

Exception Handling

Exceptions mechanism based on two

Page

Isolate code to throw/recover from exceptions to

Handling automatic variable destructors:

An invoke instruction is used to halt unwinding, the

destructor is run, then unwinding is continued with

11

LLVM Compiler Architecture

• Remember: goal to enable transformations at
link-time, install-time, run

• Must be transparent to application developers

Systems and Internet Infrastructure Security (SIIS) Laboratory

• Must be transparent to application developers
and end-users

• Efficient enough for use with real
applications

LLVM Compiler Architecture

Remember: goal to enable transformations at
time, run-time, and idle-time

Must be transparent to application developers

Page

Must be transparent to application developers

Efficient enough for use with real-world

12

LLVM Compiler Architecture

Systems and Internet Infrastructure Security (SIIS) Laboratory

• This strategy provides the 5 benefits discussed earlier

• Some limitations

‣ Language specific optimizations must be performed on front
end

‣ Benefit to languages like Ja
systems?

LLVM Compiler Architecture

Page

This strategy provides the 5 benefits discussed earlier

Language specific optimizations must be performed on front

Java requiring sophisticated runtime

13

LLVM Compiler Architecture

Systems and Internet Infrastructure Security (SIIS) Laboratory

• Front-end compiler

‣ Translate source code to LLVM representation

‣ Perform language specific optimizations

‣ Need not perform SSA construction at this time

‣ Invoke LLVM passes for global inter procedural optimization
at module level

LLVM Compiler Architecture

Page

Translate source code to LLVM representation

Perform language specific optimizations

Need not perform SSA construction at this time

Invoke LLVM passes for global inter procedural optimization

14

LLVM Compiler Architecture

Systems and Internet Infrastructure Security (SIIS) Laboratory

• Linker/Interprocedure Optimizer

‣ Various analyses occur

• Points-to analysis

• Mod/Ref analysis

• Dead global elimination, dead argument elimination, constant
propagation, array bounds check, etc

• Can be speeded up by adding inter

LLVM Compiler Architecture

Page

Linker/Interprocedure Optimizer

Dead global elimination, dead argument elimination, constant
propagation, array bounds check, etc

Can be speeded up by adding inter-procedural summaries)
15

LLVM Compiler Architecture

Systems and Internet Infrastructure Security (SIIS) Laboratory

• Native Code Generation

‣ JIT or Offline

‣ Currently supports Sparc V9 and x86 architectures

LLVM Compiler Architecture

Page

Currently supports Sparc V9 and x86 architectures

16

LLVM Compiler Architecture

Systems and Internet Infrastructure Security (SIIS) Laboratory

• Reoptimizers

‣ Identifies frequently run code and ‘hotspots’

‣ Performs additional optimizations, thus native code
generation can be performed ahead of time

‣ Idle-time reoptimizer

LLVM Compiler Architecture

Page

Identifies frequently run code and ‘hotspots’

Performs additional optimizations, thus native code
generation can be performed ahead of time

17

LLVM Analysis

• When compiled to LLVM, a program can
undergo the following analyses

Systems and Internet Infrastructure Security (SIIS) Laboratory

‣ Flow-insensitive, field-sensitive, context

points-to analysis

‣ Uses Data Structure Analysis (DSA)

When compiled to LLVM, a program can
undergo the following analyses

Page

sensitive, context-sensitive

Uses Data Structure Analysis (DSA)

18

LLVM Analysis –

• Relatively compact code size

Systems and Internet Infrastructure Security (SIIS) Laboratory

Code Size

Relatively compact code size

Page 19

Conclusion

• LLVM is language independent

• Optimizations at all stages of software lifetime
(compile,link, runtime, etc)

• Compact code size

Systems and Internet Infrastructure Security (SIIS) Laboratory

• Efficient- due to small, uniform instruction set in
low level representation

• Future work: can high-level VMs be
implemented on top of the LLVM runtime
optimization and code generation framework?

LLVM is language independent

Optimizations at all stages of software lifetime
(compile,link, runtime, etc)

Page

due to small, uniform instruction set in
low level representation

level VMs be
implemented on top of the LLVM runtime
optimization and code generation framework?

20

Questions?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

