
Differential Slicing:
Identifying Causal Execution
Differences for Security Applications
Noah M. Johnson1, Juan Caballero2, Kevin Zhijie Chen1,
Stephen McCamant1, Pongsin Poosankam1, 3, Daniel Reynaud1,
and Dawn Song1

1University of California, Berkeley
2IMDEA Software Institute
3Carnegie Mellon University

2011 IEEE Symposium on Security and Privacy

左昌國
Seminar @ ADLab, NCU-CSIE

•  Introduction
• Problem Definition and Overview
•  Trace Alignment
• Slice-Align
• Evaluation
• Related Work
• Conclusion

Outline

2

• Why does the program crash?

• At what situation does the malware do malicious
behaviors?

• How do you solve above problems if you don’t have the
source code?

Introduction

3

•  Static analysis
•  Dynamic analysis
•  …
•  Too much time spent

•  This paper,
•  proposes “Differential Slicing”

•  Given 2 execution traces of a program with a target difference
•  Automatically finds the input and environment differences that caused

the target difference
•  Generates a causal difference graph

•  Simply expressed what happened

Introduction

4

•  The goal is to “understand” the target difference
•  To identify the input differences that caused the target difference.
•  To understand the sequence of events that let from the input

differences to the target difference.

 To build the causal difference graph

Problem Definition and Overview

5

Problem Definition and Overview

6

$ vuln_cmp bar bazaar
Strings are not equal

$ vuln_cmp “” foo
<<crashed at line 11>>

Passing trace

Failing trace

Then the passing trace and
the failing trace can be used
for Trace Alignment.

Input
differences?
(byte level)

Target
difference

Problem Definition and Overview

7

• 

Aligned
region

Disaligned
region

8

Divergence
point

Flow
difference

Value
difference

Flow differences =
disaligned statements

• Causal difference graph
•  The causal difference graph contains the sequences of execution

differences leading from the input differences to the target
differences.

Problem Definition and Overview

9

•  6k lines of Objective Caml code
•  Trace alignment and post-dominator module : 4k lines
•  Slice-Align module : 2k lines

Problem Definition and Overview

10

• Dominate
•  A node d dominates node n iff every path from entry node to n

passes through d. (node d is a dominator of node n)
•  Node id immediately dominates n if id dominates n, and no other

node p such that id dominates p and p dominates n. (id is the only
immediate dominator of n)

• Post Dominate
•  Same as dominate, from node n to the exit node
•  Immediate post dominator

Trace Alignment

11

A

B C

D E

F

G

• Execution Indexing
•  Execution Indexing captures the structure of the program at any

given point in the execution, identifying the execution point, and
uses that structure to establish a correspondence between
execution points across multiple executions of the program.

•  Xin et al. use an indexing stack to deal with branch or method call.

Trace Alignment

12

A

B C

D E

F

G

G
F

Current node

A
C
D
F
G

stack

Trace Alignment

13

A

B C

D E

F

G

G
F

Current node

A
C
D
F
G

stack
G

A
B

G

• worklist
•  A pool of instructions to be
 operated

Slice-Align

14

Slice-Align

15

worklist

Input
difference

• Edge pruning and address normalization
•  Pruning edges in the graph when an operand of an aligned

instruction has the same value in both execution traces.
•  Heap pointer pruning

•  The pointer is pruned if
1.  The allocation site for the live buffers that contain the pointed-to addresses

are aligned
2.  The offset of those pointed-to addresses, with respect to the start address of

the live buffer they belong to, is the same

•  Stack pointer pruning
•  (in the thread stack range) normalized by subtracting the stack base

address
•  Data section pointer pruning

•  (in the same module) normalized by subtracting the module base
address

Slice-Align

16

Evaluation

17

• Evaluating the Causal Difference Graph

Evaluation

18

• Graph size
•  #IDiff = number of input differences

Evaluation

19

• Performance
•  Less than 1 hour to generate a graph

evaluation

20

• User Study(informal)
•  Subject A: an analyst at a commercial security research company
•  Subject B: a research scientist

Evaluation

21

•  Identifying input differences in malware analysis
• W32/Conficker.A

•  Keyboard layout: Ukrainian(failing trace), US-English(passing
trace)

•  Target difference: CreateThread API call
•  Result:

•  Input difference: user32.dll::GetKeyboardLayoutList function
return value

• W32/Netsky.C
•  Makes the computer speaker beep continuously if the system time

between 6am and 9pm on Feb. 26, 2004
•  Target Difference: Beep function call
•  Resault:

•  Input difference: kernel32.dll::GetLocalTime system call

Evaluation

22

• Producing causal difference graph
•  Input difference information
•  Execution difference from input difference to target difference

• Reducing the graph size
• Reducing the input difference candidates

Conclusion

23

