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• Why does the program crash? 

• At what situation does the malware do malicious 
behaviors?  

• How do you solve above problems if you don’t have the 
source code? 

Introduction 
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•  Static analysis 
•  Dynamic analysis 
•  … 
•  Too much time spent 



•  This paper, 
•  proposes “Differential Slicing” 

•  Given 2 execution traces of a program with a target difference 
•  Automatically finds the input and environment differences that caused 

the target difference 
•  Generates a causal difference  graph 

•  Simply expressed what happened 
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•  The goal is to “understand” the target difference 
•  To identify the input differences that caused the target difference. 
•  To understand the sequence of events that let from the input 

differences to the target difference. 

 To build the causal difference graph 

Problem Definition and Overview 
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$ vuln_cmp bar bazaar 
Strings are not equal 

$ vuln_cmp “” foo 
<<crashed at line 11>> 

Passing trace 

Failing trace 

Then the passing trace and  
the failing trace can be used 
for Trace Alignment. 

Input 
differences? 
(byte level) 

Target 
difference 
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•    
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Disaligned 
region 
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Divergence 
point 

Flow 
difference 

Value 
difference 

Flow differences =  
disaligned statements 



• Causal difference graph 
•  The causal difference graph contains the sequences of execution 

differences leading from the input differences to the target 
differences. 

Problem Definition and Overview 
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•  6k lines of Objective Caml code 
•  Trace alignment and post-dominator module : 4k lines 
•  Slice-Align module : 2k lines 

Problem Definition and Overview 
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• Dominate 
•  A node d dominates node n iff every path from entry node to n 

passes through d. (node d is a dominator of node n) 
•  Node id immediately dominates n if id dominates n, and no other 

node p such that id dominates p and p dominates n. (id is the only 
immediate dominator of n) 

• Post Dominate 
•  Same as dominate, from node n to the exit node 
•  Immediate post dominator 

Trace Alignment 
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• Execution Indexing 
•  Execution Indexing captures the structure of the program at any 

given point in the execution, identifying the execution point, and 
uses that structure to establish a correspondence between 
execution points across multiple executions of the program. 

•  Xin et al. use an indexing stack to deal with branch or method call. 

Trace Alignment 
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• worklist 
•  A pool of instructions to be  
   operated  

Slice-Align 
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• Edge pruning and address normalization 
•  Pruning edges in the graph when an operand of an aligned 

instruction has the same value in both execution traces. 
•  Heap pointer pruning 

•  The pointer is pruned if 
1.  The allocation site for the live buffers that contain the pointed-to addresses 

are aligned 
2.  The offset of those pointed-to addresses, with respect to the start address of 

the live buffer they belong to, is the same 

•  Stack pointer pruning 
•  (in the thread stack range) normalized by subtracting the stack base 

address 
•  Data section pointer pruning 

•  (in the same module) normalized by subtracting the module base 
address 

Slice-Align 

16 



Evaluation 

17 



• Evaluating the Causal Difference Graph 

Evaluation 
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• Graph size 
•  #IDiff = number of input differences 

Evaluation 
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• Performance 
•  Less than 1 hour to generate a graph 

evaluation 
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• User Study(informal) 
•  Subject A: an analyst at a commercial security research company 
•  Subject B: a research scientist 

Evaluation 

21 



•  Identifying input differences in malware analysis 
• W32/Conficker.A 

•  Keyboard layout: Ukrainian(failing trace), US-English(passing 
trace) 

•  Target difference: CreateThread API call 
•  Result: 

•  Input difference: user32.dll::GetKeyboardLayoutList function 
return value 

• W32/Netsky.C 
•  Makes the computer speaker beep continuously if the system time 

between 6am and 9pm on Feb. 26, 2004 
•  Target Difference: Beep function call 
•  Resault: 

•  Input difference: kernel32.dll::GetLocalTime system call 
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• Producing causal difference graph 
•  Input difference information 
•  Execution difference from input difference to target difference 

• Reducing the graph size 
• Reducing the input difference candidates 

Conclusion 
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