Declarative Infrastructure
Configuration Synthesis and
Debugging



Overview

Background

Goals
Implementation
Example

Missing clarity
Analysis of solution

Questions



Background

Difficult to verify configuration of large-scale
networking implementations

Well researched constraints and best practices
of network implementations

Common modeling techniques using SAT-
Solvers

Common languages to express logic, like
Prolog



Goals

Formally proving a network configuration over
all known values

Leverage known networking best practices
and previous research

Looking for an “end-to-end” solution that
takes requirements and specifies appropriate
configuration

ldentify problematic configuration for
unsolvable solutions



Implementation

Developed ConfigAssure as a way to do static analysis on a
network

Define requirements and prove a specific configuration
meets the requirements

Inputs:
— General requirements to define networking operations

— Configuration database to model a specific network, in
variables and terms

— Domain of allowable networking values (IP address ranges)

Partial evaluator converts into a quantifier-free form of
Boolean logic statement (QFF)

QFFs sent to a solver (Kodkod/Zchaff SAT Solver)

Solver returns possible solutions or identifies configurations
that are problematic




Requirement Configuration Database

Requirement Solve4

Y
Solution

Figure 1. Requirement Solver



Implementation

Requirements are known constraints, implemented as
Prolog programs

A configuration is a series of terms and variables that
implement a defined requirement

A configuration database is the series of configurations
that define one network instance

Configurations are converted into QFF statements

All QFF statements are solved by Kodkod based on the
Prolog equivalent of the requirement

Kodkod returns a solution or an unsolvable QFF

— A solution is a set of variables and accepting values in
configuration

— An unsolvable QFF identifies a specific configuration that is
not solvable, which assists with mediation



Requirement Configuration database

_____________________________________________________________________

Partial Requirement
Evaluator Solver

Quantifier-free constraint

Y
Kodkod Boolean ZChaff
Model Finder | Constraints SAT Solver

Solution



Implementation

* |f Kodkod can identify problematic
configurations, how do you resolve them?
— Remove the specific configuration
— |dentify how the configuration needs altered
(which changes the implementation)
e ConfigAssure also supports a “relaxable” set of
values for variables
— Each variable can have a set of possible values

— |If Kodkod cannot solve a configuration with
specific values of variables, it will substitute other
values from each variable’s relaxable set



Example

* Requirements example (Prolog)
— All Physical IP Addresses Distinct

eval(all_physical_addresses_distinct, C):-,
findall(X, HNAMAipAddress(H, |, X, M), S),
eval(no_duplicates(S), C).

eval(no_duplicates([]), true).

eval(no_duplicates([UIV]), and(D, E)):-
eval(no_duplicates(V), D),
eval(non_member(U, V), E).

eval(non_member(U, []), true).

eval(non_member(U, [AIB]), and(C, D)):-
check([not(U=A)], C),
eval(non_member(U, B),D).




Example

* Converted configuration into QFF statements
to be evaluated

eval(hsrp_subnet([]), true).

eval(hsrp_subnet([H-]), true).

eval(hsrp_subnet([H1-11, H2-12IRest]), and(C, CRest)):-
hsrp(H1, I1, G1, V1),
hsrp(H2, 12, G2, V2),
ipAddress(H1, 11, A1, M1),
check([contained(A1, M1, V1, 32)], C1),
check([contained(A1, M1, V2, 32)], C2),
check([G1=G2, V1=V2], C3),
andEach([C1, C2, C3], C),
eval(hsrp_subnet([H2-12|Rest]), CRest).




Missing Clarity

* Where is the definition for certain Prolog
functions?
— ipAddress, subnet, hsrp, etc.
— Must be defined as a part of ConfigAssure

* How are the possible variable values generated?

— Does it use all possible values?
* |P-Addressing bounds
* Bounds of IP-addressing within a subnet

— How does the “relaxable” set assist with the variable
values?



Analysis of solution

* |s this useful only for networking? Very likely

— Specific Prolog functions just for networking and no
mention of program language analysis

— |P.address and subnets lend itself well to this solution

e Calculated as: {first quartet}*25673 + {second
quartet}*256.2 + {third quartet}*256 +{fourth quartet}

— Solver only runs on fixed bounds of possible IPs
e Can narrow IP range down based on subnet as well

— Networking supports bitwise operations

— Performance numbers looked positive, but would
likely blow up if implementing the bounds of IPv6



Analysis of solution

 We have read a lot of papers on solvers and static analysis
* Very similar solution to MulVAL mentioned in paper
* What is innovative here?

— ConfigAssure strongly relies on Kodkod and Prolog:

— Created a way to define requirements for a network
and analyze a given configuration

“Relaxed” sets makes this tool more useful

* Although, ConfigAssure does not define what should be in the
set

e Relies on the end user, which could limit the tool’s
effectiveness

* “I will prove this. But if this is meaningless, it will do you no
good”
— Determined some QFFs could be solved more
efficiently outside of Kodkod

\



Questions




