
1

Software Control Flow Integrity
Techniques, Proofs, & Security Applications

Jay Ligatti summer 2004 intern work with:
Úlfar Erlingsson and Martín Abadi

2

Motivation I:
Bad things happen

•  DoS
•  Weak authentication
•  Insecure defaults
•  Trojan horse
•  Back door

•  Particularly common: buffer overflows and
machine-code injection attacks

Source: http://www.us-cert.gov

3

Motivation II:
Lots of bad things happen

Source: http://www.cert.org/stats/cert_stats.html

(only Q1 and Q2 of 2004)
**

4

Motivation III:
“Bad Thing” is usually UCIT

•  About 60% of CERT/CC advisories deal with
Unauthorized Control Information Tampering [XKI03]

E.g.: Overflow
buffer to overwrite
return address

Other bugs can
also divert control

• 

• 

5

Motivation IV: Previous Work
Ambitious goals, Informal reasoning, Flawed results

 StackGuard of Cowan et al. [CPM+98] (used in SP2)

“Programs compiled with StackGuard are safe from buffer
overflow attack, regardless of the software engineering
quality of the program.”

 Why can’t an attacker
 learn/guess the canary?

 What about function args?

[CPM+98]

6

Goal:
Provably correct mechanisms that prevent
powerful attackers from succeeding
by protecting against all UCIT attacks

Part of new project: Gleipnir

This Research

…in Norse mythology, is a magic chord used to bind the
monstrous wolf Fenrir, thinner than a silken ribbon yet stronger
than the strongest chains of steel. These chains were crafted for
the Norse gods by the dwarves from “the sound of a cat's footfall and the
woman's beard and the mountain's roots and the bear's sinews and the fish's breath
and bird's spittle.”

7

Attack Model

Powerful Attacker: Can at any time arbitrarily
overwrite any data memory and (most) registers
–  Attacker cannot directly modify the PC
–  Attacker cannot modify our reserved registers

(in the handful of places where we need them)

Few Assumptions:
•  Data memory is Non-Executable *
•  Code memory is Non-Writable *
•  Also… currently limited to whole-program guarantees

(still figuring out how to do dynamic loading of DLLs)

8

Our Mechanism

FA FB

return
call fp

Acall

Acall+1

B1

Bret

CFG excerpt

nop IMM1

if(*fp != nop IMM1) halt

nop IMM2

if(**esp != nop IMM2) halt

NB: Need to ensure bit patterns for nops
appear nowhere else in code memory

9

More Complex CFGs

Maybe statically all we know is that
FA can call any int int function

FA

FB

call fp

Acall
B1

CFG excerpt

C1

FC

nop IMM1
if(*fp != nop IMM1) halt

nop IMM1

Construction: All targets of a computed jump must have
the same destination id (IMM) in their nop instruction

succ(Acall) = {B1, C1}

10

Imprecise Return Information

Q: What if FB can return
 to many functions ?

Bret

Acall+1

CFG excerpt

Dcall+1

FB

FA

return

call FB

FD

call FB

nop IMM2

if(**esp != nop IMM2) halt

nop IMM2

succ(Bret) = {Acall+1, Dcall+1}

CFG Integrity:
Changes to the
PC are only to
valid successor
PCs, per succ().

A: Imprecise CFG

11

No “Zig-Zag” Imprecision

Acall
B1

CFG excerpt

C1

Ecall

Solution I: Allow the imprecision Solution II: Duplicate code
to remove zig-zags

Acall
B1

CFG excerpt

C1A

Ecall C1E

12

Security Proof Outline

•  Define machine code semantics

•  Model a powerful attacker

•  Define instrumentation algorithm

•  Prove security theorem

13

Security Proof I:
Semantics

(an extension of [HST+02])

“Normal” steps:

Attack step:

General steps:

14

Security Proof II:
Instrumentation Algorithm

(1)  Insert new illegal instruction at the end of code
memory

(2)  For all computed jump destinations d
with destination id X, insert “nop X” before d

(3)  Change every jmp rs into:
 addi r0, rs, 0
 ld r1, r0[0]
 movi r2, IMMX
 bgt r1, r2, HALT
 bgt r2, r1, HALT
 jmp r0

 Where IMMX is the bit pattern that decodes into “nop X”
s.t. X is the destination id of all targets of the jmp rs instruction.

15

Security Proof III:
Properties

•  Instrumentation algorithm immediately
leads to constraints on code memory, e.g.:

•  Using such constraints + the semantics,

16

SMAC Extensions

•  In general, our CFG integrity property implies
uncircumventable sandboxing (i.e., safety checks
inserted by instrumentation before instruction X will
always be executed before reaching X).

•  Can remove NX data and NW code assumptions from
language (can do SFI and more!):

NW code
addi r0, rd, 0
bgt r0, max(dom(MD)) - w, HALT
bgt min(dom(MD)) - w, r0, HALT
st r0(w), rs

NX data
addi r0, rs, 0
bgt r0, max(dom(MC)), HALT
bgt min(dom(MC)), r0, HALT
[checks from orig. algorithm]
jmp r0

17

Runtime Precision Increase

•  Can use SMAC to increase precision

•  Set up protected memory for dynamic
information and query it before jumps

•  E.g., returns from functions
– When A calls B, B should return to A not D
– Maintain return-address stack untouchable by

original program

18

Efficient Implementation ?

•  Should be fast (make good use of caches):
+ Checks & IDs same locality as code
–  Static pressure on unified caches and top-level iCache
–  Dynamic pressure on top-level dTLB and dCache

•  How to do checks on x86
  Can implement NOPs using x86 prefetching etc.
  Alternatively add 32-bit id and SKIP over it

•  How to get CFG and how to instrument?
  Use magic of MSR Vulcan and PDB files

19

Microbenchmarks

•  Program calls pointer to “null function” repeatedly
•  Preliminary x86 instrumentation sequences

PIII P4
NOP IMM Forward 11%

 Return 11%
 Both 33%

 Forward 55%
 Return 54%
 Both 111%

SKIP IMM Forward 11%
 Return 221%
 Both 276%

 Forward 19%
 Return 181%
 Both 195%

Normalized Overheads

PIII = XP SP2, Safe Mode w/CMD, Mobile Pentium III, 1.2GHz
P4 = XP SP2, Safe Mode w/CMD, Pentium 4, no HT, 2.4GHz

20

Future Work

•  Practical issues:
  Real-world implementation & testing
  Dynamically loaded code
  Partial instrumentation

•  Formal work:
  Finish proof of security for extended instrumentation
  Proofs of transparency (semantic equivalence) of

instrumented code
  Move to proof for x86 code

21

References

•  [CPM+98] Cowan, Pu, Maier, Walpole, Bakke, Beattie,
Grier, Wagle, Zhang, Hinton. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow
attacks. In Proc. of the 7th Unsenix Security Symposium,
1998.

•  [HST+02] Hamid, Shao, Trifonov, Monnier, Ni. A
Syntactic Approach to Foundational Proof-Carrying
Code. Technical Report YALEU/DCS/TR-1224, Yale
Univ., 2002.

•  [XKI03] Xu, Kalbarczyk, Iyer. Transparent runtime
randomization. In Proc. of the Symposium on Reliable
and Distributed Systems, 2003.

22

End

