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Motivation I:  
Bad things happen 

•  DoS 
•  Weak authentication 
•  Insecure defaults  
•  Trojan horse 
•  Back door 

•  Particularly common: buffer overflows and 
machine-code injection attacks 

Source: http://www.us-cert.gov 
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Motivation II: 
Lots of bad things happen 

Source: http://www.cert.org/stats/cert_stats.html 

(only Q1 and Q2 of 2004) 
** 
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Motivation III: 
“Bad Thing” is usually UCIT 

•  About 60% of CERT/CC advisories deal with 
Unauthorized Control Information Tampering [XKI03] 

E.g.: Overflow 
buffer to overwrite 
return address 

Other bugs can 
also divert control 

•    

•    
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Motivation IV: Previous Work 
Ambitious goals, Informal reasoning, Flawed results 

 StackGuard of Cowan et al. [CPM+98] (used in SP2) 

“Programs compiled with StackGuard are safe from buffer 
overflow attack, regardless of the software engineering 
quality of the program.”  

            Why can’t an attacker 
            learn/guess the canary? 
      

            What about function args? 

[CPM+98] 
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Goal:  
Provably correct mechanisms that prevent 
powerful attackers from succeeding   
by protecting against all UCIT attacks 

Part of new project: Gleipnir  

This Research 

…in Norse mythology, is a magic chord used to bind the 
monstrous wolf  Fenrir, thinner than a silken ribbon yet stronger 
than the strongest chains of  steel. These chains were crafted for 
the Norse gods by the dwarves from “the sound of  a cat's footfall and the 
woman's beard and the mountain's roots and the bear's sinews and the fish's breath 
and bird's spittle.” 
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Attack Model 

Powerful Attacker: Can at any time arbitrarily 
overwrite any data memory and (most) registers 
–  Attacker cannot directly modify the PC 
–  Attacker cannot modify our reserved registers  

(in the handful of places where we need them) 

Few Assumptions: 
•  Data memory is Non-Executable * 
•  Code memory is Non-Writable * 
•  Also… currently limited to whole-program guarantees  

(still figuring out how to do dynamic loading of DLLs) 
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Our Mechanism 

FA FB 

return 
call fp 

Acall 

Acall+1 

B1 

Bret 

CFG excerpt 

nop IMM1 

if(*fp != nop IMM1) halt 

nop IMM2 

if(**esp != nop IMM2) halt 

NB: Need to ensure bit patterns for nops 
appear nowhere else in code memory 
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More Complex CFGs 

Maybe statically all we know is that  
FA can call any int     int function 

FA 

FB 

call fp 

Acall 
B1 

CFG excerpt 

C1 

FC 

nop IMM1 
if(*fp != nop IMM1) halt 

nop IMM1 

Construction: All targets of a computed jump must have 
the same destination id (IMM) in their nop instruction 

succ(Acall) = {B1, C1} 
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Imprecise Return Information 

Q: What if FB can return 
     to many functions ? 

Bret 

Acall+1 

CFG excerpt 

Dcall+1 

FB 

FA 

return 

call FB 

FD 

call FB 

nop IMM2 

if(**esp != nop IMM2) halt 

nop IMM2 

succ(Bret) = {Acall+1, Dcall+1} 

CFG Integrity: 
Changes to the 
PC are only to 
valid successor 
PCs, per succ(). 

A: Imprecise CFG 
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No “Zig-Zag” Imprecision 

Acall 
B1 

CFG excerpt 

C1 

Ecall 

Solution I: Allow the imprecision Solution II: Duplicate code 
to remove zig-zags 

Acall 
B1 

CFG excerpt 

C1A 

Ecall C1E 
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Security Proof Outline 

•  Define machine code semantics 

•  Model a powerful attacker 

•  Define instrumentation algorithm 

•  Prove security theorem 
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Security Proof I: 
Semantics 

(an extension of [HST+02]) 

“Normal” steps: 

Attack step: 

General steps: 
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Security Proof II: 
Instrumentation Algorithm 

(1)  Insert new illegal instruction at the end of code 
memory 

(2)  For all computed jump destinations d  
with destination id X, insert “nop X” before d 

(3)  Change every jmp rs into: 
   addi  r0,  rs,  0 
   ld  r1,  r0[0] 
   movi  r2,  IMMX 
   bgt  r1,  r2,  HALT 
   bgt  r2,  r1,  HALT 
   jmp  r0 

 Where IMMX is the bit pattern that decodes into “nop X”  
s.t. X is the destination id of all targets of the jmp rs instruction. 
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Security Proof III: 
Properties 

•  Instrumentation algorithm immediately 
leads to constraints on code memory, e.g.: 

•  Using such constraints + the semantics, 
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SMAC Extensions 

•  In general, our CFG integrity property implies 
uncircumventable sandboxing (i.e., safety checks 
inserted by instrumentation before instruction X will 
always be executed before reaching X). 

•  Can remove NX data and NW code assumptions from 
language (can do SFI and more!): 

NW code 
addi r0, rd, 0 
bgt r0, max(dom(MD)) - w, HALT 
bgt min(dom(MD)) - w, r0, HALT 
st r0(w), rs 

NX data 
addi r0, rs, 0 
bgt r0, max(dom(MC)), HALT 
bgt min(dom(MC)), r0, HALT 
[checks from orig. algorithm] 
jmp r0 
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Runtime Precision Increase 

•  Can use SMAC to increase precision 

•  Set up protected memory for dynamic 
information and query it before jumps 

•  E.g., returns from functions 
– When A calls B, B should return to A not D 
– Maintain return-address stack untouchable by 

original program 
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Efficient Implementation ? 

•  Should be fast (make good use of caches): 
+ Checks & IDs same locality as code 
–  Static pressure on unified caches and top-level iCache 
–  Dynamic pressure on top-level dTLB and dCache 

•  How to do checks on x86 
  Can implement NOPs using x86 prefetching etc. 
  Alternatively add 32-bit id and SKIP over it 

•  How to get CFG and how to instrument? 
  Use magic of MSR Vulcan and PDB files 



19 

Microbenchmarks 

•  Program calls pointer to “null function” repeatedly 
•  Preliminary x86 instrumentation sequences 

PIII P4 
NOP IMM  Forward    11% 

 Return    11% 
 Both    33% 

 Forward    55% 
 Return    54% 
 Both  111% 

SKIP IMM  Forward    11% 
 Return  221% 
 Both  276% 

 Forward    19% 
 Return  181% 
 Both  195% 

Normalized Overheads 

PIII = XP SP2, Safe Mode w/CMD, Mobile Pentium III, 1.2GHz 
P4  = XP SP2, Safe Mode w/CMD, Pentium 4, no HT, 2.4GHz 
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Future Work 

•  Practical issues: 
  Real-world implementation & testing 
  Dynamically loaded code 
  Partial instrumentation 

•  Formal work: 
  Finish proof of security for extended instrumentation 
  Proofs of transparency (semantic equivalence) of 

instrumented code 
  Move to proof for x86 code 
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End 


