Software Control Flow Integrity
Techniques, Proofs, & Security Applications

Jay Ligatti summer 2004 intern work with:
Ulfar Erlingsson and Martin Abadi

Motivation I
Bad things happen

DoS VULNERABILITY RESOURCES

Updated Aug 10 11:47:19 EDT 2004

Weak authentication
New and Notable Yulnerabilities

Insecure defaults e AOL Instant Messenger vulnerable
to buffer overflow

TrOJan horse e Microsoft Windows Task Scheduler
Buffer Overflow
Back door

Source: http://www.us-cert.gov

Particularly common: buffer overflows and
machine-code Injection attacks

Motivation lI:
Lots of bad things happen

4500-
4000-
3500+
3000+
2500+
2000+
1500
1000
g a AL
1995 1997 1999 2001 2003 *

(only Q1 and Q2 of 2004)

Software

=
n K
O L
= O
%B
v @
T)
£t
-

> &
o

Year

Source: http://www.cert.org/stats/cert_stats.html

Motivation Il
“‘Bad Thing” is usually UCIT

« About 60% of CERT/CC advisories deal with
Unauthorized Control Information Tampering [XKI03]

/\/\‘

« E.g.: Overflow Attack Code
buffer to overwrite
return address

rliElessd PO golsiar

FanNEanyming

« Other bugs can

also divert control
Garbage

Motivation IV: Previous Work

Ambitious goals, Informal reasoning, Flawed results

StackGuard of Cowan et al. [CPM+98] (used in SP2)

“Programs compiled with StackGuard are safe from buffer
overflow attack, regardless of the software engineering
quality of the program.’ [CPM+98]

Process Address Space

OXFFFF | Top of Stack Why Can,t dan attaCker
learn/guess the canary?

Return Address

Canarv Word

Return Address
Canary word

, | Local Variables . What about function args?
buffer

0x0000
Figure 2: Canary Word Next to Return Address

This Research

Goal:
Provably correct mechanisms that prevent

powerful attackers from succeeding
by protecting against all UCIT attacks

Part of new project: Gleipnir

...in Norse mythology, is a magic chord used to bind the

monstrous wolf Fenrir, thinner than a silken ribbon yet stronger
than the strongest chains of steel. These chains were crafted for
the Norse gods by the dwarves from “zhe sound of a cat's footfall and the
woman's beard and the mountain's roots and the bear's sinews and the fish's breath
and bird's spittle.”’

Attack Model

Powerful Attacker: Can at any time arbitrarily
overwrite any data memory and (most) registers

— Attacker cannot directly modify the PC

— Attacker cannot modify our reserved registers
(in the handful of places where we need them)

Few Assumptions:
 Data memory is Non-Executable *

« Code memory is Non-Writable *

* Also... currently limited to whole-program guarantees
(still figuring out how to do dynamic loading of DLLSs)

Our Mechanism

Fg

I:A
% nop IMM,

if(*fp != nop IMM,) halt
call fp if(**esp != nop IMM,) halt

nop IMM, ¢ return
% CFG excerpt

A — B,

call

NB: Need to ensure b?t patterns for nops A4 B
appear nowhere else in code memory

More Complex CFGs

Maybe statically all we know is that

F, can call any int— int function

Fa

:

if(*fp != nop IMM) halt
call fp

%

|:B
nop IMM,

|:
nop IMM,

CFG excerpt

> B,

Acall \

C,
SUCC(Ag,) = {B4, C4}

Construction: All targets of a computed jump must have
the same destination id (IMM) in their nop instruction

Imprecise Return Information

Q: What if Fg can return CFG excerpt
to many functions ?

A: Imprecise CFG Acalls+1 1\
D ... ¢e&—

call+1

Fg

:

SUCC(Bret) = {Acall+1’ DcaII+1}

CFG Integrity:
Changes to the
PC are only to
valid successor
PCs, per succ().

No “Zig-Zag” Imprecision

Solution |: Allow the imprecision Solution II: Duplicate code
to remove zig-zags

CFG excerpt CFG excerpt

> B, A > B,

Acall>< call \
A C, Cia

EcaII Ecall\ C1 =

% Security Proof Outline

 Define machine code semantics

 Model a powerful attacker

» Define instrumentation algorithm

* Prove security theorem

Security Proof I;
Semantlcs

“Normal’ steps: L, |U, R pe 5 1), when e + 1€ dom(3L)
add rg,rs, 14 (M | Mg, R{rqg— R(rs)+ R(ry)},pc+1),
(an extension of [HST+02]) when pe + 1 € dom(M) |

addi rq,re,w (M Mg, R{rqg— R(rs)+w},pc+ 1),
when pc —|— 1 € dom(M,)

movi 14, w (M| Mg, R{rqg — w},pc+1),
when pc + 1 € dom(M,.)

bgt rs. 1w (M. Mg, R, w), when R(ry) > R(r;) A w € dom(M,)
(M.|My,R,pc+1),

De(M.(pc)) = gmp rs R(rg) € dom(M.,)
(M:|Mgy, R, pc) =, (M.|My, R, R(79))

Attack step:

(ﬂ[c|Md‘ RO_Q|R3_91 , PC) —a (ﬂ[clﬁ'fle- RO—Q|R3—5’1/-

General steps:

Security Proof |l
Instrumentation Algorithm

(1) Insert new illegal instruction at the end of code
memory

(2) For all computed jump destinations d
with destination id X, insert “nop X" before d

Change every jmp r, into:
addi r, rg, 0
Id ry, rol0]
movi , IMMy
bgt ry, Iy HALT
bgt r,, Iy HALT
jmp 1

Where IMM, is the bit pattern that decodes into “nop X"
s.t. X is the destination id of all targets of the jmp rg instruction.

Security Proof IlI:
Properties

Instrumentation algorithm immediately
leads to Constraints on code memory, e.g.:

[I-Jmp|] VM, Va € dom(M.) Vry:
/ 37 (M.(a = 5)) = addi ro,7,,0 A
\.I' ((1 —4))=1d ri,70(0) A
3111 Jws Va' € dom(M,) :
De(M.(a—3))= movi ra,w; A
D((u 1) = nop wy A
I.(a')) = nop wy = a' € succ(M,,a) A
I.(a — 2)) = bgt r1, 12, w3 A
I.(a—1))= bgt ro,r1, w3 A
I.(ws)) = illegal A

Dc(M.(a)) = jmprg =

Using such Consraints + the semantics,

I(So.M.) A
Theorem 6 So—= S = .= S,
Vn >0 VS..S, Vi€ {0..(n—1)}: =
(Si =a Sit1 A Siy1.pc = Si.pc) V
(S; =n Sit1 A Sii1.pe € succe(Sy. M., S;.pc))

SMAC Extensions

* In general, our CFG integrity property implies
uncircumventable sandboxing (i.e., safety checks
inserted by instrumentation before instruction X will
always be executed before reaching X).

Can remove NX data and NW code assumptions from
language (can do SFI and more!):

NX data NW code

addiry, rg, O addiry, ry, O

bgt r,, max(dom(M;)), HALT bgt r,, max(dom(Mp)) - w, HALT
bgt min(dom(M)), r,, HALT bgt min(dom(Mp)) - w, ry, HALT
[checks from orig. algorithm] st ry(w), rg

jmp ry

Runtime Precision Increase

* Can use SMAC to increase precision

* Set up protected memory for dynamic

information and query it before jumps

* E.g., returns from functions
— When A calls B, B should return to A not D

— Maintain return-address stack untouchable by
original program

Efficient Implementation ?

« Should be fast (make good use of caches):
+ Checks & |IDs same locality as code
— Static pressure on unified caches and top-level iCache
— Dynamic pressure on top-level dTLB and dCache

e How to do checks on x86

= Can implement NOPs using x86 prefetching etc.
= Alternatively add 32-bit id and SKIP over it

 How to get CFG and how to instrument?
= Use magic of MSR Vulcan and PDB files

Microbenchmarks

* Program calls pointer to “null function” repeatedly
* Preliminary x86 instrumentation sequences

Normalized Overheads

Plli P4

NOP IMM Forward 11% Forward 55%
Return 11% Return 54%
Both 33% Both 111%
SKIP IMM Forward 11% Forward 19%
Return 221% Return 181%
Both 276% Both 195%

Plll = XP SP2, Safe Mode w/CMD, Mobile Pentium Ill, 1.2GHz
P4 = XP SP2, Safe Mode w/CMD, Pentium 4, no HT, 2.4GHz

Future Work

* Practical issues:
» Real-world implementation & testing
= Dynamically loaded code
= Partial instrumentation

 Formal work:
» Finish proof of security for extended instrumentation

» Proofs of transparency (semantic equivalence) of
instrumented code

= Move to proof for x86 code

References

« [CPM+98] Cowan, Pu, Maier, Walpole, Bakke, Beattie,
Grier, Wagle, Zhang, Hinton. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow
attacks. In Proc. of the 71" Unsenix Security Symposium,

1998.

[HST+02] Hamid, Shao, Trifonov, Monnier, Ni. A
Syntactic Approach to Foundational Proof-Carrying
Code. Technical Report YALEU/DCS/TR-1224, Yale
Univ., 2002.

[XKIO3] Xu, Kalbarczyk, lyer. Transparent runtime
randomization. In Proc. of the Symposium on Reliable
and Distributed Systems, 2003.

