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Background
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• Circa the 1970s, writing fast code was important
�This generally required writing assembly code

• UNIX was first written in assembly. 
� They realized they needed something fast and portable.

• C was created by Ken Thompson and Dennis 
Ritchie as an alternative to assembly

• UNIX was eventually rewritten in C
�The rest is history
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Ken Thompson & Dennis Ritchie
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National Medal of Technology,1999
“For co-inventing UNIX and the C programming language”
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Why C matters today
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• Although application development today is largely 
done in type safe languages (e.g., Java/C#), there are 
many legacy C applications and libraries.

• Kernels are still largely written in C.
� Linux, Unix, Solaris, Windows

• C code is the foundation for
� Billions of dollars of software

� Linux kernel is estimated to be worth $700 million in 
programmer productivity

� Millions of lines of code.
� Linux kernel has more than 10 million lines of code
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What’s wrong with C?
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• This enormous codebase implicitly comes with all of C’s 
strengths and weaknesses…

• As a design decision in the 1970s, type safety was 
intentionally sacrificed for flexibility/performance.
� At the time, C still needed to win the hearts and 

minds of assembly programmers.

• The paper says that 50% of CERT advisories (in 2002), 
were caused by avoidable type safety issues:
• E.g., Array out-of-bounds, buffer overruns, etc.

• Incorrect pointer usage is at the heart of the problem



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

CCured Solution
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• Assumption # 1:  The majority of pointers in C 
are used in safe ways, and thus, large portions of 
legacy programs should be verifiably safe at 
compile-time.

• With CCured, pointer usage is statically analyzed 
at compile-time and verified to be type safe.

• For situations where safety cannot be determined
at compile time, run-time checks are inserted.
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CCured Solution
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• Assumption #2:  For many, non-critical 
applications, performance penalties (due to run-
time checks) are probably acceptable.

• In performance tests, CCured was between 0 to 
150% slower.

• That’s certainly a wide spread…
• Is this really acceptable?
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Idealized CCured Workflow
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Annotated
C Program

CCured
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C Program Compile &

Execute
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Safety Violation

Success
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Realistic CCured Workflow
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Un-annotated
C Program

CCured
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Instrumented
C Program Compile &

Execute

Halt: Memory
Safety Violation

Success
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Pointer Usage
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Most pointer usage is ‘safe.’ These just need to be 
checked before dereferencing:

int* p = (int*)malloc( sizeof(int) ); // // What if malloc() fails?

if( p == NULL )
return -1;

*p = 3;

printf( "p is %d\n", *p );
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SAFE Pointers
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Check if the pointer is 
NULL

If the pointer != NULL, we 
can dereference it.

This check can be 
performed statically with 

CCured.
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Pointer Usage
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It’s possible to perform arithmetic operations on a 
pointer before dereferencing.

int i;
int* array = (int*)malloc( 5 * sizeof(int) );

if( array == NULL )
return -1;

for( i = 0; i < 5; i++ )
array[i] = i;

printf( "array[2] is %d\n", *(array + 2) );  // What if we accidently
// step out of bounds?
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SEQuence Pointers
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• In addition to checking if pointer 
!= NULL:

• A “SEQuence” pointer is checked 
to make sure arithmetic 
expressions do not move outside 
an expected bound.

• This check can also be performed 
statically with CCured.

• The bounds data (‘base’ and 
‘end’) is stored as metadata 
alongside the pointer.  This 
creates “fat pointers.”
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Pointer Usage
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We can cast pointers to other types of pointers!

int* testValue = (int*)malloc( sizeof(int) );
*testValue = 1;

char* lsb = (char*)testValue; // On the rhs, we cast an int* to a char*
// The statically declared type of the lhs 
// is misleading, due to this cast.

if( *lsb == 1 )
printf("This is a little-endian system\n");

else
printf("This is a big-endian system\n");
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DYNamic (aka WILD) Pointers

15

• Any pointer that can point to a 
heterogeneous type is 
considered WILD.

• Any pointer obtained through a 
WILD pointer (either through 
assignment or deference) must 
be inferred as WILD.

• This check is be performed at 
run-time with CCured.

• Note the additional metadata.



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A contrived example

16



Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A contrived example
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a = SEQ
Pointer arithmetic on Line 8

p = SAFE
Simple dereference on line 9

e = WILD
Line 5 says it declared as type 
(int*) but it is cast in Line 11 as 

(int**)
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Realistic CCured Workflow
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C Program
CCured

Translator

Instrumented
C Program Compile &

Execute

Halt: Memory
Safety Violation

Success

How does CCured infer the 
pointer type at this stage?
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Inference Algorithm
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• Inference involves solving a constraint problem

• Any pointer obtained through a WILD pointer 
(either through assignment or deference) must be 
inferred as WILD.
� WILD pointers propagate quickly through programs in 

this way.

• Otherwise, it is either SEQ or SAFE.
� If the pointer under consideration is involved in 

any pointer arithmetic, it is SEQ
� Otherwise, it is SAFE.
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Performance Characteristics
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SAFE SEQ WILD

Better Worse

This inference algorithm attempts to maximize the 
number of SAFE and SEQ pointers.
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Performance Results
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Before performing 
these tests, the 
authors applied 

CCured to the actual 
test suite 

(SPECINT95).

They found and fixed 
several previously 
undetected bugs.
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Performance Results
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Their initial 
assumption that 

most pointers are 
used in a ‘safe’ 
way seem to be 
validated here.
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CCured breaks legitimate code
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• Due to metadata being stored in “fat pointers,” 
programmer assumptions about memory may be 
invalidated.
� E.g., sizeof() will no longer works as expected on pointers

• CCured uses its own garbage collection
� free()’s are ignored

• Will not work with libraries unless they are 
recompiled with CCured
� If we are dealing with legacy code/libraries, 

can we assume we have the source code?
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CCured breaks legitimate code
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int* a = (int*)malloc( sizeof(int) );
*a = 5;

// Store the address of ‘a’ into a regular variable
unsigned long addressOfA = (unsigned long)a;

// Cast the variable back to an address and then dereference
int b = *((int*)addressOfA); 

printf( "b is %d\n", b );


