
Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CCured: Type-safe

Retrofitting of Legacy Code
By Necula, McPeak, Weimer

Presented By: Philip Koshy

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Background

2

• Circa the 1970s, writing fast code was important
�This generally required writing assembly code

• UNIX was first written in assembly.
� They realized they needed something fast and portable.

• C was created by Ken Thompson and Dennis
Ritchie as an alternative to assembly

• UNIX was eventually rewritten in C
�The rest is history

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Ken Thompson & Dennis Ritchie

3

National Medal of Technology,1999
“For co-inventing UNIX and the C programming language”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Why C matters today

4

• Although application development today is largely
done in type safe languages (e.g., Java/C#), there are
many legacy C applications and libraries.

• Kernels are still largely written in C.
� Linux, Unix, Solaris, Windows

• C code is the foundation for
� Billions of dollars of software

� Linux kernel is estimated to be worth $700 million in
programmer productivity

� Millions of lines of code.
� Linux kernel has more than 10 million lines of code

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

What’s wrong with C?

5

• This enormous codebase implicitly comes with all of C’s
strengths and weaknesses…

• As a design decision in the 1970s, type safety was
intentionally sacrificed for flexibility/performance.
� At the time, C still needed to win the hearts and

minds of assembly programmers.

• The paper says that 50% of CERT advisories (in 2002),
were caused by avoidable type safety issues:
• E.g., Array out-of-bounds, buffer overruns, etc.

• Incorrect pointer usage is at the heart of the problem

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

CCured Solution

6

• Assumption # 1: The majority of pointers in C
are used in safe ways, and thus, large portions of
legacy programs should be verifiably safe at
compile-time.

• With CCured, pointer usage is statically analyzed
at compile-time and verified to be type safe.

• For situations where safety cannot be determined
at compile time, run-time checks are inserted.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

CCured Solution

7

• Assumption #2: For many, non-critical
applications, performance penalties (due to run-
time checks) are probably acceptable.

• In performance tests, CCured was between 0 to
150% slower.

• That’s certainly a wide spread…
• Is this really acceptable?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Idealized CCured Workflow

8

Annotated
C Program

CCured
Translator

Instrumented
C Program Compile &

Execute

Halt: Memory
Safety Violation

Success

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Realistic CCured Workflow

9

Un-annotated
C Program

CCured
Translator

Instrumented
C Program Compile &

Execute

Halt: Memory
Safety Violation

Success

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Pointer Usage

10

Most pointer usage is ‘safe.’ These just need to be
checked before dereferencing:

int* p = (int*)malloc(sizeof(int)); // // What if malloc() fails?

if(p == NULL)
return -1;

*p = 3;

printf("p is %d\n", *p);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

SAFE Pointers

11

Check if the pointer is
NULL

If the pointer != NULL, we
can dereference it.

This check can be
performed statically with

CCured.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Pointer Usage

12

It’s possible to perform arithmetic operations on a
pointer before dereferencing.

int i;
int* array = (int*)malloc(5 * sizeof(int));

if(array == NULL)
return -1;

for(i = 0; i < 5; i++)
array[i] = i;

printf("array[2] is %d\n", *(array + 2)); // What if we accidently
// step out of bounds?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

SEQuence Pointers

13

• In addition to checking if pointer
!= NULL:

• A “SEQuence” pointer is checked
to make sure arithmetic
expressions do not move outside
an expected bound.

• This check can also be performed
statically with CCured.

• The bounds data (‘base’ and
‘end’) is stored as metadata
alongside the pointer. This
creates “fat pointers.”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Pointer Usage

14

We can cast pointers to other types of pointers!

int* testValue = (int*)malloc(sizeof(int));
*testValue = 1;

char* lsb = (char*)testValue; // On the rhs, we cast an int* to a char*
// The statically declared type of the lhs
// is misleading, due to this cast.

if(*lsb == 1)
printf("This is a little-endian system\n");

else
printf("This is a big-endian system\n");

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

DYNamic (aka WILD) Pointers

15

• Any pointer that can point to a
heterogeneous type is
considered WILD.

• Any pointer obtained through a
WILD pointer (either through
assignment or deference) must
be inferred as WILD.

• This check is be performed at
run-time with CCured.

• Note the additional metadata.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A contrived example

16

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

A contrived example

17

a = SEQ
Pointer arithmetic on Line 8

p = SAFE
Simple dereference on line 9

e = WILD
Line 5 says it declared as type
(int*) but it is cast in Line 11 as

(int**)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Realistic CCured Workflow

18

C Program
CCured

Translator

Instrumented
C Program Compile &

Execute

Halt: Memory
Safety Violation

Success

How does CCured infer the
pointer type at this stage?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Inference Algorithm

19

• Inference involves solving a constraint problem

• Any pointer obtained through a WILD pointer
(either through assignment or deference) must be
inferred as WILD.
� WILD pointers propagate quickly through programs in

this way.

• Otherwise, it is either SEQ or SAFE.
� If the pointer under consideration is involved in

any pointer arithmetic, it is SEQ
� Otherwise, it is SAFE.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Performance Characteristics

20

SAFE SEQ WILD

Better Worse

This inference algorithm attempts to maximize the
number of SAFE and SEQ pointers.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Performance Results

21

Before performing
these tests, the
authors applied

CCured to the actual
test suite

(SPECINT95).

They found and fixed
several previously
undetected bugs.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Performance Results

22

Their initial
assumption that

most pointers are
used in a ‘safe’
way seem to be
validated here.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

CCured breaks legitimate code

23

• Due to metadata being stored in “fat pointers,”
programmer assumptions about memory may be
invalidated.
� E.g., sizeof() will no longer works as expected on pointers

• CCured uses its own garbage collection
� free()’s are ignored

• Will not work with libraries unless they are
recompiled with CCured
� If we are dealing with legacy code/libraries,

can we assume we have the source code?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

CCured breaks legitimate code

24

int* a = (int*)malloc(sizeof(int));
*a = 5;

// Store the address of ‘a’ into a regular variable
unsigned long addressOfA = (unsigned long)a;

// Cast the variable back to an address and then dereference
int b = *((int*)addressOfA);

printf("b is %d\n", b);

