\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

CCured: Type-safe

Retrofitting of Legacy Code
By Necula, McPeak, Weimer

Presented By: Philip Koshy

ucture Security (SIIS) Laboratory

PENNSTATE

Background =

« Circa the 1970s, writing fast code was important
» This generally required writing assembly code

« UNIX was first written in assembly.
» They realized they needed something fast and portable.

» (C was created by Ken Thompson and Dennis
Ritchie as an alternative to assembly

« UNIX was eventually rewritten in C
» The rest is history

Systems and Internet Infrastructure Security (SI1S) Laboratory

Ken Thompson & Dennis Ritchie PENN%TE

National Medal of Technology,1999
For co-inventing UNIX and the C programming language”

Systems and Internet Infrastructure Security (SI1S) Laboratory

PENNSTATE

Why C matters today ~

« Although application development today is largely
done in type safe languages (e.g., Java/C#), there are
many legacy C applications and libraries.

« Kernels are still largely written in C.
» Linux, Unix, Solaris, Windows

 (C code is the foundation for
» Billions of dollars of software
> Linux kernel is estimated to be worth $700 million in
programmer productivity
» Millions of lines of code.
» Linux kernel has more than 10 million lines of code

Systems and Internet Infrastructure Security (SI1S) Laboratory

9 . PENNSTATE
What's wrong with G? =

« This enormous codebase implicitly comes with all of C’s
strengths and weaknesses...

« As a design decision in the 1970s, type safety was
iIntentionally sacrificed for flexibility/performance.
> At the time, C still needed to win the hearts and

minds of assembly programmers.

« The paper says that 50% of CERT advisories (in 2002),

were caused by avoidable type safety issues:
« E.g., Array out-of-bounds, buffer overruns, etc.

 Incorrect pointer usage is at the heart of the problem

Systems and Internet Infrastructure Security (SI1S) Laboratory

CCured Solution e

» Assumption # 1: The majority of pointers in C
are used Iin safe ways, and thus, large portions of
legacy programs should be verifiably safe at
compile-time.

» With CCured, pointer usage is statically analyzed
at compile-time and verified to be type safe.

* For situations where safety cannot be determined
at compile time, run-time checks are inserted.

Systems and Internet Infrastructure Security (SI1S) Laboratory

CCured Solution g

* Assumption #2: For many, non-critical
applications, performance penalties (due to run-
time checks) are probably acceptable.

* |n performance tests, CCured was between 0 to
150% slower.
» That's certainly a wide spread...
* Is this really acceptable?

Systems and Internet Infrastructure Security (SI1S) Laboratory

[dealized CCured Workflow "g"

Halt: Memory
Safety Violation

CCured C Program Compile &
Translator 1 Execute

Annotated
Instrumented
C Program

Success

Systems and Internet Infrastructure Security (SI1S) Laboratory

Realistic CCured Workflow ""g"

Un-annotated

© Program CCured
1 Translator

Instrumented
C Program

Halt: Memory
Safety Violation

Systems and Internet Infrastructure Security (SI1S) Laboratory

Compile &
Execute

P
AN

Success

PENNSTATE

Pointer Usage =

Most pointer usage is ‘safe.” These just need to be
checked before dereferencing:

int* p = (int*)malloc(sizeof(int)); // // What if malloc() fails?

If(p == NULL)
return -1;

*p=3;

printf("p is %d\n", *p);

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10

SAFE Pointers g

Check if the pointer is

SAFE pointer to type t NULL

If the pointer |= NULL, we
can dereference it.

This check can be
performed statically with
CCured.

Systems and Internet Infrastructure Security (SI1S) Laboratory

PENNSTATE

Pointer Usage —~

It's possible to perform arithmetic operations on a
pointer before dereferencing.

int i;
int* array = (int*)malloc(5 * sizeof(int));

If(array == NULL)
return -1;

for(i=0;1<5;1++)
arrayli] = 1;

printf("array[2] is %od\n", *(array + 2)); // What if we accidently
// step out of bounds?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 12

PENNSTATE

SEQuence Pointers =

 In addition to checking if pointer
I= NULL.:

« A “SEQuence” pointer is checked
to make sure arithmetic
expressions do not move outside

base | ptr | end an expected bound.

\ } « This check can also be performed

- - statically with CCured.

SEQ pointer to type t

« The bounds data (‘base’ and
‘end’) Is stored as metadata
alongside the pointer. This
creates “fat pointers.”

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

PENNSTATE

Pointer Usage =

We can cast pointers to other types of pointers!

int* testValue = (int*)malloc(sizeof(int));
*testValue = 1;

char* Isb = (char*)testValue; // On the rhs, we cast an int* to a char”
// The statically declared type of the |hs
//'is misleading, due to this cast.
if(*Isb ==1)
printf("This is a little-endian system\n");
else

printf("This is a big-endian system\n");

Page 14

Systems and Internet Infrastructure Security (SI1S) Laboratory

DYNamic (aka WILD) Pointers "™s="

* Any pointer that can point to a
heterogeneous type is
considered WILD.

DYN pointer * Any pointer obtained through a
home | ptr WILD pointer (either through
\ tags assignment or deference) must
be inferred as WILD.

len | DYN | DYN int (110

« This check is be performed at
run-time with CCured.

 Note the additional metadata.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

A contrived example

1 int
2 int
int
int
int

w3

acc
for

B RS = A

*¥] *2 a;
1;

acc;

*3 *4 P,
*5 €

0;
=0; 1<100; i++) {

(1
=a + 1i;

p

e = *p;

while ((int) e % 2 == 0) {
e = * (int *5 *7) e;

!

acc += ((int)e >> 1);

Systems and Internet Infrastructure Security (SI1S) Laboratory

[/
[/
[/
//
//

//
//
[/
//

//

array

index
accumulator
elem ptr
unboxer

ptr arith
read elem
check tag
unbox

strip tag

PENNSTATE
| kv

Page 16

A contrived example

1 int
2 int
7 int
4 int
5 int
6 acc
7 for

*¥] *2 a;

1;

acc;

*3 *4 P,

*5 €

= 0;

(i=0; 1<100; i++) {

p=a+i;

e = *p;

while ((int) e % 2 == 0) {
e = * (int *5 *7) e;

¥

acc += ((int)e >> 1);

[/
[/
[/
//
//

//
//
[/
//

//

array
index
accumulator
elem ptr
unboxer

ptr arith
read elem
check tag
unbox

strip tag

PENNSTATE
| kv

a=SEQ
Pointer arithmetic on Line 8

p = SAFE
Simple dereference on line 9

e =WILD
Line 5 says it declared as type

(int*) but it is cast in Line 11 as
(int**)

Systems and Internet Infrastructure Security (SI1S) Laboratory

Page 17

Realistic CCured Workflow ""g"

Halt: Memory
Safety Violation

CCured C Program Compile &
Translator 1 Execute

C Program Instrumented /

Success

How does CCured infer the
pointer type at this stage?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

Inference Algorithm g

 Inference involves solving a constraint problem

» Any pointer obtained through a WILD pointer

(either through assignment or deference) must be
inferred as WILD.

» WILD pointers propagate quickly through programs in
this way.

« Otherwise, it is either SEQ or SAFE.
» |f the pointer under consideration is involved in
any pointer arithmetic, it is SEQ
» Otherwise, it is SAFE.

Systems and Internet Infrastructure Security (SI1S) Laboratory

PENNSTATE

Performance Characteristics =

SAFE SEQ WILD
Worse

This inference algorithm attempts to maximize the
number of SAFE and SEQ pointers.

ucture Security (SIIS) Laboratory

PENNSTATE

Performance Results S

Name Lines | Orig. CCured Purify
of code time | sf/sq/d ratio ratio
SPECINT95
COMPress 1590 | 9.586s | 87/12/0 1.25 28 .
go 29315 | 1.191s | 96/4/0 2.01 51 Before perform INg
ijpeg 31371 | 0.963s | 36/1/62 2.15 30

I 7761 | 0.176s | 93/6/0 1.86 50 these tests, the
Olden "
bh 2053 | 2.992s | 80/18/0 04 authors applied

1.53
bisort 707 | 1.696s | 90/10/0 1.03 42 CCured to the actual
em3d 557 | 0.371s | 85/15/0 2.44 7]
health 725 | 2.769s | 93/7/0 0.94 25 fest sulte
mst 617 | 0.720s | 87/10/0 2.05 5
perimeter 395 | 4.711s | 96/4/0 1.07 544 (S P E C I NT95) .
power 763 | 1.647s | 95/6/0 1.31 53
treeadd 385 | 0.613s | 85/15/0 1.47 500
tsp 561 | 3.093s | 97/4/0 1.15 66

They found and fixed
Figure 8 CCured versus original performance. The mea- Several preV|OUSIy

surements are presented as ratios, where 2.00 means the

program takes twice as long to run when instrumented with u ndeteCted bugS
CCured. The “sf/sq/d” column show the percentage of

(static) pointer declarations which were inferred SAFE, SEQ

and DYNAMIC, respectively.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

PENNSTATE

Performance Results S

/N

Name Lines | Orig. C&lred Purity

of code time |/ st/sq/d\ ratio ratio | v 1N
S Their initial
COMPress 1590 | 9.586s [| 87/12/0 \ 1.25 28 1
assumption that
ijpeg 31371 | 0.9639 | 36/1/62 |2.15 30

li 7761 | 0.1764 | 93/6/0 |1.86 ﬁﬂ mOSt pOI nters are

Olden

bh 2053 2.992# 80/18/0 [1.5¢ 94 used in a ‘safe’

bisort 707 | 1.6964 | 90/10/0 |1.03 42

em3d 557 | 0.3714 | 85/15/0 [2.44 7 way seem to be

health 725 | 2.7694 | 93/7/0]0.94 25 .

mst 617 | 0.7204 | 87/10/0 [2.05 5 validated here.
perimeter 395 | 4.711s\| 96/4/0 [1.07 544

power 763 | 1.647s\| 95/6/0 [1.31 53

treeadd 385 | 0.613s \ 85/15/0/ 1.47 500

tsp 561 | 3.093s \ 97/4/0/ 1.15 66

Figure 8: CCured versus original ormance. The mea-

surements are presented as ratios, where 2.00 means the
program takes twice as long to run when instrumented with
CCured. The “sf/sq/d” column show the percentage of
(static) pointer declarations which were inferred SAFE, SEQ
and DYNAMIC, respectively.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

PENNSTATE

CCured breaks legitimate code S

« Due to metadata being stored in “fat pointers,”
programmer assumptions about memory may be

invalidated.
> E.g., sizeof() will no longer works as expected on pointers

« CCured uses its own garbage collection
» free()’s are ignored

* Will not work with libraries unless they are
recompiled with CCured
> |t we are dealing with legacy code/libraries,
can we assume we have the source code?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23

PENNSTATE

CCured breaks legitimate code S

int* a = (int*)malloc(sizeof(int));
*a = b;

// Store the address of ‘a’ into a regular variable
unsigned long addressOfA = (unsigned long)a;

/| Cast the variable back to an address and then dereference
int b = *((int*)addressOfA);

printf("b is %d\n", b);

Systems and Internet Infrastructure Security (SI1S) Laboratory

