212 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS | CHAP. 7

If we define a meet operation in L* as 2 pointwise meet on I', i.e., if
for &, &, € L*, y € T, we define ({; A &) = €,() A E(3), then L*
becomes a semilattice. The smallest element in L* is 0%, where 0*(p) =0
for each 9 & I'. The largest element in L* is O*, where Q*(p) — Q for each
y € I. Note that unless I is finite, L* need not be bounded. However, if
E, > &, = ... > &, > ... is an infinite decreasing chain in L*, its limit is
well-defined and can be computed as follows: For each y € I, the chain
E4(p) = &,(p) = ... must be finite (since L is bounded). Define (lim &,)(7)
as the final value of that chain. Obviously lim &, = A &, and in the same

n

manner it can be shown that /\ &, exists for any sequence {£},.., in L*.

In order to describe F*, we first need to define a certain operation in I'.

Definition. o:T x E*— T is a partially defined binary operation
such that for eachy & T'and (m, n) € E* such that CM~*{y} N IVP(r,, m) =
@ we have :

7 if (m,n) € E°
71Tl if (m, n) is a call edge in E*
o (i.e., if m is a call block)
y(1:#y —1) (.e., y without its last component)
if (mm,) is a return edge in E* such
that p(:#y) is its corresponding call edge

y o (m,m) =

in all other cases, 7 o (m, n} is undefined. Here #y denotes the length of 7.
The following lemma can be proved in an obvious and straightforward way.

Lemma 7-41. lLet y € I, (m, n) € E*, g € IVP{r,, m) such that
CM(g) = p. Then y, =7 o (m, ri) is defined iff g, = g|/(m, n) is in
IVP(r,, #), in which case CM(g,) = 7,.

The operation o defines the manner in which call strings are updated
as data is propagated along an edge of the flow graph. Loosely put, the
above lemma states that path incrementation is transformed into o by the
“homomorphism”™ CM.

Example 6. In Example 1 of Section 7-3, we have
Aol r)=(c))
(c1) © (ca, 1) = (€162}

(c1e3) o {eq, 13) = (1)
and
(cic5) o (e, 71)

SEC. 74 | THE CALL-STRING APPROACH TO INTERPROCEDURAL ANALYSIS 213

is undefined, indicating that after p had called itself once, the return from p
must be to the block following ¢, in p; it is illegal to return theén to the main
program.

Wext, let (m, n) € E*, and let £, ,, € F be the data propagation map
associated with (s, n). Note that by our assumptions £, , = id,, if (m, 1) =
E?, since in these cases m is a block containing only a jump which in itself
does not affect data attributes. Define £%, ,,: L* — L* as follows: For each
Eael*xyeT,

Jommf&()) if there exists (a necessarily unique)
y, such that y, o (m, H) =y

Q otherwise

Fhn(O0) = {

The intuitive interpretation of this formula is as follows: f¥, (&) represents
information at the start of z which is obtained by propagation of the informa-
tion &, known at the start of m, along the edge (m, n). For each y, € T for
which &(y,) is defined, we propagate &(y;), the y,-selected data available at
the start of m, to the start of # in standard intraprocedural fashion (that is,
USing fimm). However, this propagated data is now associated not with y,
but with p, = (m, n), which “tags” the set of paths obtained by concatenating
{(m, n) to all paths which are “tagged” by y,, which lead to m, and along which
£(y1) has been propagated. If 7, o (m, n} is undefined, then, by Lemma
7-4.1, &(p,) should not be propagated through (m, n) since no path which
leads to m and is tagged by y, can be concatenated with (1, n) in an inter-
procedurally valid manner. In this case, we simply discard fi,. »(&(y,)), as
indicated by the above formula.

Example 7. InExamplel of Section 7-3, let &, = {(4, 1)} € L*. Then
(for notational convenience, call strings are written without enclosing paren-
theses): &, = f¥ (&) = [(c, D}, since A o (e, ry) = ¢, and &, is defined
only at 4. Note that f;.,,, = id, as is the case for all interprocedural jumps.

&1 = [ueal€) = {len, fraen(D} = {e1, O
This edge is intraprocedural, so that call strings need not be modified.
&5 = [Earaa) = {(c1c2, O}
o = Een($s) = {(cicy, 0))
&5 = Flam(€e) = ey, O}

[But note that, e.g., f%, ,.,(&,) = totally undefined map (Q*) in L*, since the
only y, & T for which p, ¢ {e,, #,) is defined is the string ¢,, but &,(e,) is
undefined.]

&s =f?:t:,21)(£5) = {(Cl: 1)}
& = fE.mlla) = {4, D} (compare with f§, ,,(E)D

214 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS | CHAP. 7

To summarize, we have traced one possible interprocedurally valid path from
¢ to ny, starting with the information that « « b is available at ¢, and obtajn-
ing the fact that it is still available at #, (considering just this path, of course).
An attempt fo return to the main program prematurely resulted in com-
pletely discarding the information.

F* is now defined as the smallest subset of maps acting in L* which
contains {f{, ,: (m, v} € E*} and the identity map in L* and wh1ch is closed
under functional composition and meet.

'Lemma 7-4.2.

I. If Fis monotone in L, then F* is monotone in L¥.
If Fis distributive in L, then F* is distributive in L*.
3. If Fis distributive in L, then for each (m,n) € E, f¥, ., is
continuous in L*, that is, f i‘;,,,,)(A fk) = /A fE.n(&), for each
k k

collection {&,}in, = L*.

Proof. 1t is easily seen that it is sufficient to prove (1) or (2) for the
set {f&, 0:(m,) e E*}, and this is straightforward from the defini-
tions. .

To prove (3), note that for each y & I" for which there exists
7; € I" such that p, o (m, r) = y we have

f?;:,n)(k/z\l é:k)(?) = fmm (k/a\1 ék(},l))

But since L is bounded, there exists k,(y,) such that the last expression
equals f(,,,,,,)(AN fk(yl)), which 'in turn, by the distributivity of

1<k<ka(y1)
Simm: €QUals

Ao SO = A S ln@0) 2 ([\ @)D

1<heLko(ys)
Thus f3 ply ,,)(N ék) = /\ f (m,,,}(cfk) The converse 1nequa1xty is immedi-

ate from the monotomclty of f¥ 5 M

Remark: WNote that interprocedural, as distinct from intraprocedural,
data flow frameworks depend heavily on the flow graph (I itself may
vary from one flow graph to another). Thus, for example, there is no
simple way to obtain F* directly from F without any reference to the
flow graph. This will not create any problems in the sequel, and we
-argue that even in the intraprocedural case it is a better practice to
regard data flow frameworks as graph-dependent.

We can now define a data flow problem for G*, using the new frame-
work (L*, F*), in which we seek the maximal fixed-point solution of the

B

SEC. 7-4 | THE CALL-STRING APPROACH TO INTERPROCEDURAL ANALYSIS 215

following equations in L*:
x% =={(A, 00 where 1 is the null call string
xF= AN fhalf) neN*—{r}
o

{(m,m &

(7-11)

We can show the existence of a solution to these equations in the
following manner: Let x5@® = {(1,)}, x*® = OQ* for all n € N* — {r}.
Then apply Egs. (7-11) iteratively to obtain new approximations to the x*’s.
Let x*¢ denote the ith approximation computed in this manner.

Since x¥® = x* for all n € N*, it follows inductively, from the
monotonicity of f§, ,, for each (m, n) € E*, that x¥® = x¥**V forall i > 0,
n € N*. Thus, for each n € N*, {x#@},,, is a decreasing chain in L¥, having
a limit, and we define x* = lim x*%. Tt is rather straightforward to show

i

that {x*} .. is indeed a solution to (7-11) and that in fact it is the maximal
fixed-point solution of (7-11).

Having defined this solution, we will want to convert its values to
values in L, because L* has been introduced only as an auxiliary semilattice,
and our aim is really to obtain data in L for each basic block. Since there is
no longer a need to split the data at node » into parts depending on the
interprocedural flow leading to », we can combine these parts together, i.e.,
take their meet. For each n € N*, we can then simply define

%= AXED) (7-12)

A detailed example of applying this technique to our running example
(Example 1 of Section 7-3) will be given in the next section.

In justifying the approach that we have just outlined, our first step is
to prove that x/, coincides with the meet-over-all-interprocedurally-valid-
paths solution y, defined in the preceding section. This can be shown as
follows:

Definition. Let pathg. (r;, #) denote the set of all execution paths
(whether interprocedurally valid or not) leading from r, to # € N*. For
each r= ("15 F2s v 5> H) € pathG‘ (rI’ n) define fp f{sk n) f(!k-l w0 °

.o f¥ .. For each n € N* define y¥ = A [f4(x}): p = paths. (r;, n)}.

Since pathg. (r,,) is at most countable, this (possibly infinite) meet in

L* is well defined.

 Theorem 7-4.3. If(L, F) is a distributive data flow framework, then,
for each n € N*, x}¥ = pf.

Proof. The proof follows (it is quite similar to the proof of an analo-
gous theorem of Kildall for a bounded semilattice [Kild73]):

216

TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS f CHAP. 7

l. Letn e N* and p=(ry,5,,..., 5, n) € path,. (r:, 1). By
(7-11) we have
X5 = Eax)
x:‘ks ﬁ.)“:(!-:5'2.&‘s)('x.’r!:)

X L S w33
Combining all these inequalities, and using the mono-
tonicity of the f*’s, we obtain x* < f*(x*), and therefore
x¢ < yr.
2. Conversely, we will prove by induction on 7 that
xF@ = gk foralliz>0, ne N*

Indeed, let = 0. If n 5= r,, then x*® — Q% > y* On the
other hand, the null execution path p, € pathg. (ry, r;), 50
that yf < f¥(x¥) = x¥ = x#©. Thus the assertion is true
for {=0. Suppose that it is true for some i>> 0. Then
xEPD = x}© = p* and for each n € N* — {r,} we have

= A fEaGEY = N R0
(m,n]EEﬁ'

{m,m)e E*

by the induction hypothesis.
We now need the following:
Lemma 7-4.4. For each (m, n) E® fE 28 >y

Proof. Since f¥, ., is distributive and continuous on L* (Lemma
7-4.2), we have

Somi) = [\ {F5(x5); p € pathg. (ry, m)))
= A Gn(F3)): p € pathg (r;, m)}
=/ {f:(x:-'i) g € pathg. (r, mi=yf n

Now returning to Theorem 7-4.3, it follows by Lemma 7-4.4 that
xFWD = N pF == y¥ (cach n & N* is assumed to have predeces-

{m,n) c E*
sors). Hence assertion (2) is established, and it follows that for each
ne N* xf=limx}® = A x*0 > p* 50 that x* = y*. m
i =1 -
Lemma 7-4.5. let n e N* p—(ry,s,..., &, 1) € pathg. (ry, 1)
and y € I'. Then /¥(x*)(y) is defined iff p IVP(r,, n) and CM(p) =
y. If this is the case, then fF(x)() = £,(0). '

SEC, 7-4 | THE CALL-STRING APPROACH TO INTERPROCEDURAL ANALYSIS 217

Proof. The proof is by induction on I{p), the length of p (i.e., the
number of edges in p). If p is the null path, then » must be equal to r,.
Moreover, CM(p) = 4, p € IVP(r;, r,) and f¥(x}) = x}, is defined
only at A and equals 0 = f,(0). Thus our assertion is true if /(p) = 0.

Suppose that-this assertion is true for all n € N* and p ¢
pathg. (r,, m)such that /(p) < 1. Letn € N*and p = (ry, 53, ..., S, 1)
be a path of length k in pathg. (ri, 7). Let py = (r(, 5z,..., 8). By
definition, for each y € T" we have

PO = fEalf 7N

{ JSisumlF 5] if there exists y, = I" such that

?1 e (Sks ”) = 'P

0 otherwise
Thus f¥(x*)(y) is defined iff there exists y, & I such that Yro (n'z, ?'1)
=17 and f*(x¥)(y,) is defined. By our inductive hypothesis, this is
the case iff p, € IVP(ry, 5,), CM(p,) =¥, and 9, o (5¢, n) =y. By
Lemma 7-4.1, these last conditions are equivalent to p € IVP(ry, #)
and CM(p) = 7. o .

If this is the case, then again, by our inductive hypothesis,

&) 1) = £,,(0) and so
£ = fiaml /@] = £0) =

Now we can prove the main result of this section:
Theorem 7-4.6. Foreachn € N*, x, = y,.

Proof. Lety I'. By Theorem 7-4.3,
xE@) = {F¥3)(p): p € pathe. (71, 1)}
and by Lemma 7-4.5,
= A {f{0): p € IVP(r,, n) such that CM(p) = ¥}
Thus, by (7-12),
%= *0) =N\ ,Q:p VP, D} =7, W
r

Corollary 7-4.7. If the flow graph G* is nonrecursiv_e, then the itera-
tive solution of Egs. (7-11) that we have described \:jull converge gnd
yield the desired meet-over-all-interprocedurally-valid-paths solution
of these equations.

Proof. Convergence is assured since I' is finite, and hencekL ‘;
bounded, Thus (L*, F*) is a distributive data flow framewor , an
by standard arguments the iterative solution of (7-11) must converge

218 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

[Kild73, Hech77]. Therefore, Theorem 7-4.6 implies that the limiting
solution coincides with the meet-over-all-paths solution. m

The call-strings approach is of questionable feasibility if T is infinite,
i.e., if G* contains recursive procedures. Moreover, as for the functional
approach, it is rather hopeless to convert it into an effective algorithm for
handling the most general cases of certain data flow problems such as con-
stant propagation. However, as we shall sce in the following section, a fairly
practical variant of the call-strings approach can be devised for data flow
frameworks with a finite semilattice L. :

Let us also observe the similarity between the call-string approach and
the inline expansion method (discussed, e.g., in [Alle77]). Indeed, tagging
data by call strings amounts essentially to creating virtual copies of each
procedure, one copy for each possible calling sequence reaching that pro-
cedure. Indeed let y = ¢,¢,...¢, € T Then, if ¢; calls procedure p from
procedure p’, we can substitute the virtual copy of p corresponding to y at
the place of ¢; in the virtual copy of p’ corresponding to 9’ = ¢,¢5 ... ¢;_5.
Doing so, ¢; and the return from p become no-ops, and we get a full inline
expansion of procedures. ' ' :

7-5. DATA FLOW ANALYSES USING
A FINITE SEMILATTICE

Let (L, F) be a distributive data flow framework such that L is finite.
As we have seen, the functional approach described in Section 7-3 converges
for such a framework. We will show in this section that it is also possible to
construct a call-strings algorithm which converges for these frameworks. As
noted in the previous section, convergence is ensured if I" is finite. The idea
behind our modified approach is to replace I" by some finite subset 1", and
allow propagation only through interprocedurally valid paths which are
mapped into elements of I',. Such an approach is not generally feasible
because it can lead to an overestimated (and unsafe) solution, since it does
not trace information along all possible paths. However, using the finiteness
of L, we will show that T"; can be chosen in such a way that no information
gets lost and the algorithm produces the same solution as defined in Section
7-4.

We begin to describe our approach without fully specifying T'y. Later

we will show how Iy should depend on L in order to guarantee the above
solution,

Definitions.

1. Let T, be some finite subset of I with the property thatif y € T,
and p, is an initial subtuple of y, then y, € I, too,

sEC. 7-5 | DATA FLOW ANALYSES USING A FINITE SEMILATTICE 219

2 Foreachn € N* let IVP'(ry, n) denote the set of al_l g e IVP(ry, 1)
. such that for each initial subpath g, of ¢ (including), CM(g.)
o i I" ther than
i i it acts in rather
3. We also modify the o operation so that it ac 0 :
in T, as follows: If y € Ty, (m,m) € E* such that there exists
g € IVP'{r,, m) where CM(q) = 7, then

y if (m, n) € E°
i iltm] if(m,m)isa call edge in E' and
yl|[m] € Iy

potmn) = Yp(1:#y — 1) if (m, m)is a return edge in E* and
p(77) is the call block preceding r

undefined in all other cases

The only difference between this definition of o and the previm-ls one is
that it will not add a call block m o a call string 7y anless the _resultmg strI;ng
is in T'y. When this is not the case, information tagged by 7 w111 be lost w len
propagating through (m, m), unless it is also tagged by some other call string
to which m can be concatenated.

The following lemma is analogous to Lemma 7-4.1:

Lemma 7-5.1. Let 7 E 1_|CI: (m, TI) S E*’ qe IVP’(ris m) SUCh_th.at
CM(q) — 7. Then 7, =7 o (i, n) is defined iff g, == gi|(m,n) is in
LVP'(r,, 1), in which case CM(g,) = 1.

We now define a data flow framework (L*, F*) in much the same way
as in Section 7-4, but replace I" by L. This leads to a bmlnded semilattice
I* — [and to a distributive data flow framework (L*, F*). tard

Hence, Egs. (7-11) come to be effectively solvab.Ie by any st;n ?ﬁis
iterative algorithm which yields their maxillnal fixed-point sqlutlon}.r I(1) .
solution we will want to apply the following final calculation, which 1s a
variant of (7-12): v A .

?ETD

Careful scrutiny of the analysis of the previm.ls section revealsd tfat- tl‘_le
only place where the natare of T, and the operation o are referlr_‘e odlsttl}z
Lemma 7-4.1, and it is easily seen that if we 1_'ep1ace T and o by OVa;l)
modified o, throughout the previous analysis, and also replace I 4 (:1,1, ne
by IVP'(r,, n) foralln e N*, then by proofs com.pletely an:alogoll;ls fh os;s
presented in Section 7-4 (but with one notable .dlﬁ'ex:ence, ie., {] 2t : ereL*
now no need to worry about continuity of F* or mﬁfnte meets in L¥*, since
is now known to be bounded) we obtain the following:

220 TWO APPROACHES TO. INTERPROCEDURAL IDATA FLOW ANALYSIS [CHAP. 7

Theorem 7-5.2. Foreachn & N*
X, =Y, = N{f0):p & IVP'(r,, n)}

Up to this point, our suggested modifications have been quite general
and do not impose any particular requirements upon L or upon I',. On the
other hand, Theorem 7-5.2 implies that x” is an overestimated solution, and
as such is useless for purposes of our analysis, as it can yield unsafe informa-
tion (e.g., it may suggest that an expression is available whereas it may

actually be unavailable), unless we can show that x coincides with the meet-

over-all-interprocedurally-valid-paths solution of the attribute propagation
equations which concern us. As will be shown below, this is indeed the case
if L is finite. '

Definition. Let M > 0 be an integer. Define I'y, as the (finite) set of
all call strings whose lengihs. do not exceed M. T',, obviously satisfies the
conditions of part (1) of the previous definition.

Lemma 7-5.3. Let (L, F) be a data flow framework with L a finite
semilattice, and let M == K(|L| + 1)%, where X is:the number of call
blocks in the program being analyzed and | L| is the cardinality of 7.
Let I'y = I'y;. Then, for each n ¢ N* and each execution path ¢
IVP(r,, n) there exists another path ¢’ & IVP'(r,, n) such that =
140). | |

FProof. By induction on the length of q. If the length is 0, then » = r,
and g is the null execution path, which belongs to both IVP(r,, r,) and
IVP'(ry, ry), so that our assertion is obviously true in this case.

Suppose that the lemma is true for all paths whose length is
less than some k2> 1, and let # € N*, g € IVP(r;, n) be a path of
length k. If ¢ € IVP'(ry, n) then there is nothing to prove, so assume
that this is not the case, and let g, be the shortest initial subpath of g
such that CM(g,) ¢ T'y. Then g, can be decomposed according to
Eq. (7-3) as follows:

g0 = qu|l{ce o igall- . Hl{es ro) 1941

Hence j > M. Next, consider the sequence {(c,, &, B)}i-,, where, for
each i<{j, & = fo, o fo, o...0f,(0), and B, is either Q if the call
at ¢; is not completed in ¢ (this call is certainly not completed in g,),
or f;(0) if the call at ¢, is completed in g, and g, is the initial subpath of
g ending at the return which completes the call. Thus, for each call,

the sequence records the calling block, the value propagated along

this path up to the call, and the value propagated up to the correspond-

LS

SEC. 7-5 | DATA FLOW ANALYSES USING A FINITE SEMILATTICE 221

ing return, if it materializes. The number of distinct elements of such a
sequence is at most K(|L| + 1) = M (we do not count € as an element
of L; if we did, then the bound can be reduced to K| L|?). Since j > M,
this sequence must contain at least two identical componeunts (c,, o,, f.)
and (¢, %, f), where a << b < j.

Now, il 8, = B8, = Q, then neither of the calls ¢,, ¢, is completed
in g. If we rewrite g as

g = 11l (Co o) 1 €211 (css 500 |1 45
then it is easily seen that the shorter path § = ¢ !|{e, #5045 is also

in IVP(r,,). Moreover

ua = f;‘L'(O) = mb :fq{ ° qull(o)
so that
f;‘(o) - f;’a' ° j:lﬁ.’ ¢ f;l’(o) = fq;’ o j:h'(o) - fé(O)

By our induction hypothesis there exists §' € IVP'(r,, n) such that
J3(0) = f;(0) = f,(0), which proves the lemma for g.

On the other hand, if §, = B, = Q, then it follows that both
calls ¢, and ¢, are completed in g, with ¢, necessarily completed first.
Thus we can write

a = qi1{(cas) 1 0211ty 72D | €5 1 (s M) 1T Qi I (s) 15

where n, = n, is the block immediately following ¢,. Again it follows
that § = q1({(cs, 75.) 1145 1 (e5...) 1| g5 i8 in IVP(ry, n). Moreover

&y = fu0) = ty = fyy 0 fuclO)
Ba= ot o foy o e Full®) = By = fur o fur © furlO)

from which one easily obtains f{0) = f;(0), and the proof can now
continue exactly as before. R

The main result of this section now follows immediately:

Theorem 7-5.4. Let (L, F) be a distributive data flow framework
with a finite semilattice L, and let T'y = [, with M as defined above.
Then, for each n & N*, x7 =y, That is, the modified algorithm
described at the beginning of the present section yields a valid inter-
procedural solution.

Proof. Since IVP'(r,, n) = IVP(r,, n) we have x, = y,. On the‘other
hand, let ¢ € IVP(r,,). By Lerama 7-5.3 there exists ¢’ & IVP'(r, n)
such that £,(0) = f(0) = A {f,(0): p € IVP'(r,, n)} = x,. Hence y,
=A{f0:ge IVP(r,)} = x,. W

222 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS | CHAP, 7

Remark: Note that in Lemma 7-5.3 and Theorem 7-5.4, K can be
replaced by the maximal number X of distinct calls in any sequence of
nested calls in the program being analyzed. In most cases this gives a
significant improvement of the bound on-M appearing in those two
results,

We have now shown that finite data flow frameworks are solvable by
a modified call-strings approach. However, the size of T, can be expected
to be large enough to make this approach as impractical as the corresponding
functional approach. But in several special cases we can reduce the size of
I’y still further. The following definition is taken from [Rose78b], rewritten
in our notation:

Definition. A data flow framework (L, F) is called decomposable if
there exists a finite set 4 and a collection of data flow frameworks
{(Les F)}ess such that

1. L= H L., ordered in a pointwise manner induced by the indi-
v;dual orders in each L,
2. Fc E F,. That is, for each f & F there exists a collection { f*},,

where f * € Ffor each ¢ € A4, such that for each x = (x,),., € L
we have

J) = (F*(Xa))uca

In the cases covered by this definition we can split our data flow frame-
work into a finite number of “independent” frameworks, each inducing a
separate data flow problem, and obtain the solation to the original problem
simply by grouping all the individual solutions together.

For example, the standard framework (L, F) for available expressions
analysis is decomposable into subframeworks each of which is a framework
for the availability of a single expression. Formally, let 4 be the set of all
program expressions. For each & € A let L = {0, 1} where 1 indicates that
¢ is available and O that it is not. Then {0, 1}# is isomorphic with L (which
is more conveniently represented as the power set of 4). It is easily checked
that each f = F can be decomposed as XE]A S*, where for each o € 4, f* <

F,, and is either the constant 0 if & can be killed by the propagation siep
described by f, is the constant 1 if « is unconditionally generated by that
propagation step, and is the identity map in all other cases. The frameworks
used for use-definition chaining and live variables have analogous decom-
positions.

A straightforward modification of Lemma 7-5.3, applied to each
(L, F,) separately yields the fo]lowmg 1mproved result for decomposable
frameworks:

SEC. 7-5 | DATA FLOW ANALYSES USING A FINITE SEMILATTICE 223

Theorem 7-5.5. Let (L, F) be a decomposable distributive data flow
framework with a finite semilattice. Define M = K - max (L. 4+ 1)

and let I’y = I'y;. Then, for each n € N*,)/ = »,.

In the special case of available expressions analysis this is certainly an
improvement of Theorem 7-5.4, since it reduces the bound on the length of
permissible call strings from K« O(44) to 9K. For this analysis we can do
even better since available expression analy31s has the property appearing in
the following definition,

Definition. A decomposable data flow framework (L, F) is called
I-related if, for each o € A, F, consists only of constant functions and
identity functions.

This property is characteristic of situations in which there exists at
most one point along each path which can affect the data being propagated.
Indeed, consider a framework having this property; let & € 4 and let p =
(815 82, ..., 5,) be an execution path. Let j<Ck be the largest index such
that f¢,,., ., s a constant function. Then clearly /3 = f§,,,.;» and is there-
fore also a constant. Hence in this case the effect of propagation in L, through
p is independent of the initial data and is determined by the edge (s,-,, 5)
alone. If no such j exists, then f, = id|;_, in which case no point along p
affects the final data.

Note also that since each F, is assumed to be closed under functional
meet, it follows that if (Z, F) is 1-related then the only constant functions
that F, can contain are 0 (the smallest element in F,) and 1 (the largest ele-
ment). Hence we can assume, with no loss of generality, that L, is the trivial
lattice {0, 1} for each & = A. All the classical data flow analyses mentioned
above have l-related frameworks. It is therefore easily seen that, under these
assumptions, 1-related frameworks are those having a semilatfice of effective
height 1 [Rose78b, Section 7.

For frameworks having the 1-related property it is casy to repiace an
execution path g by a shorter subpath ¢ such that f3{0) = f2(0) for some
% € A.Indeed, to obtain such a § we have only to ensure that § is also inter-
procedurally valid and that the last edge (s, 5') in ¢ for which f,, ,, is constant
belongs to §. This observaﬂon allows us to restrict the length of permissible
call strings still further. The following can then be shown:

Theorem 7-5.6, Let (L, F) be a l-related distributive data flow
framework. Put 'y = ;. Then, for each n € N*, x, = y,.

The analysis developed in this section and the previous one can be
modified to deal with nondistributive data flow problems. In the nondistribu-
tive case, Theorems 7-4.6 and 7-5.2 guarantee only inequalities of the form

224 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS | CHAP. 7

X, <y, (resp. x, < y)) for all n &€ N*. The arguments in this section show
that under appropriate conditions y, = y, for each n € N*, so that assuming
these conditions Theorems 7-5.4, 7-5.5, 7-5.6 all yield the inequalities x! <
¥, for each n € N*. Thus, in the nondistributive case, our approach leads
to an underestimated solution, as is the case for intraprocedural iterative
algorithms for nondistributive frameworks [Kam77].

Example 8. We return to Example 1 studied in Section 7-3. Since
available expressions analysis uses a l-related framework, and since the
flow graph appearing in that example satisfies K = K’ = 2, we can take I ==
I's, and apply Kildall’s iterative algorithm [Kild73] to solve Egs. (7-11).
Table 7-3 summarizes the steps which are then performed (for notational
convenience call strings are written without enclosing parentheses):

Table 7-3

Propagate Woarkpile of nodes
—_—_— from which further
From To Updated x* value propagation is required

(initially) xE={(A 0 {r}

ry c Xﬁ ={(4, 1} fei}

€1 2 Xr*:={(5111)} fra}

ra ¢z x5 ={{ew 0)} fe2}
o e: xa={(e;, N} fcs. €2}

¢ sy x5 = (e, 1), {e16. 0)} {es, 12}

ey M x¥ = O*(unchanged) {r2}

ey ny Xm ={(4. 133 ’ {ra. m}

ra cy x2 ={(e, 0), {c;cq, 0V} {n1, €23

2 P Xj; = {(e1. 1), {c10, 0} {ni. €4, €2}

iy €1 X::l = {('?u 1)} e, eg, 811

2, ry X ={leg, 1), (c164. Q). {£16464, 01} © feq e1. 1)

e, ny X ={{e1. 0)} {e1, r2. 03}

ey ny — {e1, 12, 113}

ey - — {ra 2}

The next steps of the algorithm update xZ, x*, x%, x* in similar fashion,
adding new entries with increasingly longer call strings, up to a string
€1€3C5C2C2C,, DUt none of x¥, xX, x¥, or x* is ever modified. Final x* values
for the blocks appearing in our example are:

i = x} = {(cy, 1),{cyc, 0), (€125, 0), . . ., (e1e3¢562€2€,, 0)}

x5 = {(e1, 0, (6405, 0), . . -, (ciese265¢5¢5, 0))

X ={(c1, 0), (cic, 0), . . ., (cic505¢5¢,, 0V (+# x¥, by the way)

SEC. 7-6 | AN APPROXIMATIVE CALL-STRING APPROACH 225

An x'' solation can now easily be computed; of course, this is identical to
the solutions obtained by previous methods.

Note that in this example there was no need to maintain call strings of

length up to 6 (length 2 would have sufficed). However, to derive correct

information in the example depicted as Fig. 7-2, we need call strings in which
one call appears three times.

Figure 7-2

The shortest path in Fig. 7-2 showing that a* b is not available at m’ is
G == (ry, €1, Pgs 'y €y Py €4y Fay Bgy €3y F15:C15 Tas €35 Py, €1 nflz, ey, My, €1, M),
in which ¢, appears three times before any of the calls in 4 1s complgted.

Tt is an interesting and challenging problem to find, for a given flow
graph, by some preliminary analysis, an optimal set I, of ca.ll st'rin_gs neec.led
to perform some particular interprocedural data flow analysis without losing

information.

7-6. AN APPROXIMATIVE CALL-STRING
APPROACH

In this section we present a modification of the call-string approach
developed in Section 7-4, which yields a convergent a.lgorithm' for any data
flow analysis, even though this algorithm may in general fail to proc%uce
precisely the desired (meet-over—a]l—intcrprocedurally-validtpaths) solution.
However, the output of the algorithm to be presented will alnway.s be an
underestimated (and hence safe} solution. This compromise, which is ugeful
even when I is finite, can make the call-string approach much more efficient.

-

226 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / cHAP, 7

Moreover, if L is infinite, or if Fis not bounded or does not admit compact
representation, then this modified approach is one of the very few ways to
perform interprocedural analysis that we know of,

Three things should be kept in mind when evaluating any approxima-
tive approach to an interprocedural data flow problem: (1) Even in intrapro-
cedural analysis, a meet-over-all-paths solution is itself an underestimation
to the “true” run-time situation, since many of the static execution paths
which enter into such an analysis may not be executable; (2) many data flow
analyses whose semilattices L are not finite are also not distributive [Kam77,
Shar78a, so that even the intraprocedural iterative solution of the data flow
equations may underestimate the meet-over-all-paths solution; and (3) in
nondistributive cases, the meet-over-all-paths solution may not be calculable
(cf. [Hech77] for details).

By analyzing the abstract approach presented in Section 7-4, we can
easily see that the convergence {and efficiency) of the call-strings approach
depends primarily on I". Convergence can be ensured in general only if T
is finite; and the smaller I s, the less complex the algorithm becomes, This
observation motivates the approach that we propose in this section, whose
general outline is as follows. ’ .

Choose some finite (preferably rather small) set I which is closed under
a binary operation # and has a left identity with respect to this operation.
(We suggest that in practice # be associative and noncommutative, but the
general description given below will not assume this.) As in Section 7-4, let
I" denote the set of all call strings. Choose an “encoding” map o which maps
each call block to some element of T, Using #, we can extend ¢ to T by put-
ting o(p) = a(c) * a(c,) % . . . = o(c;) (computed left to right) for each y =
(c1s €2, ..., ¢;) € I'. We also define a(4) to be w, the left-identity of I'.

Let (L, F) be any (not necessarily distributive) data flow framework.
We will define a modified data flow framework (L*, F*) in essentially the
same way as we did in Section 7-4, but with some differences reflecting the
nature of the approximative approach, as detailed below,

L* is defined as ¥, All the observations made in Section 7-4 concerning
L* still apply, only now I.* is bounded since T has been assumed to be finite.

As before, in order to define F*, we first define an updating operation

between encoded call strings and edges in E*, This updating operation is now

more complex than that defined earlier, and need not be one-to-one and
single-valued any more. It is therefore best described by assigning to each
edge (m, n) & E* a relation R, ,, in ' Essentially, R, is the identity
relation for each (m, n) € E° and for each call edge (m, n) and its correspond-
ing return edge (', n') we have R,y = Ri1,,. Then a path (g, 7y .o . 1)
will be considered to be acceptable if and only if Riypy © Ripyny © .- 0
Ry o # @. To make these relations bear some meaningful relationship
to the updating map o defined in Section 7-4, we first define for each (m,)

SEC. 7-6 [AN APPROXIMATIVE CALL-STRING APPROACH 227

E* g relation I, , in T, so that for each y,, ¥, € T, yII(,,,,,,)y% iff y, = P10
(m, 1), and then require the relation ¢ « Ry, , ° o~! to contain the r'elat;on
Timm- This condition will guarantee that every mterproc_edura?.lly v_ahd path
is also acceptable by our encoding scheme, but not necessarily vice versa.

To make the above ideas more precise, we suggest the following con-
struction to obtain such suitable relations:

Definition, For each procedure p in the program being analyzed,
define ECS(p) = {o(CM(g)): ¢ € IVP(r,, r,)}. This is the set of all e'ncoded
call strings which result from interprocedurally valid paths reaching the

entry of p.

These sets can be calculated by a rather simple preliminary analys.is
based upon the following set of equations (where main denotes the main
program, which is assumed to be nonrecursive):

ECS(main) = {w}

ECS(p) = {& * o{c): ¢ is a call to p from some procedure p.’
and @ € ECS(p"}} for p == main

After initializing each ECS{p) to @, for all p == muain, these equaﬂpns can
be solved iteratively in a fairly standard way. (The iterative solut_lon vpll
converge because T is finite.) It is a. simple matter to prove that the iterative
solution yields the sets ECS(p) defined above. . ‘

Using the sets ECS, we now define the following objects: for eac.h
n & N*, a set of interprocedurally acceptable paths leading from EEe main
entry to n, denoted by IAP(r,, #); a modified set-valued map CM ﬁl;orlgl
J TAP(r;, n) to 2¥; and a modified relation-valued map R; E* — 20,

nSNY

For each (m, n) € E*, R, , is8 a relation in T, so that for each a, fel we
have

(7-14)

if (m, n) € E} for some

procedure p

o € BECS(p) and f = % * o{m) if (m, n) is a call edge from
procedure p

B & ECS(p) and & = B * o(c) it (m, n) is a return edge

corresponding to a call edge

from a call block ¢ in

procedure p

o= f# e EC8(p)

mR(m,n.‘lﬁ 1ﬂ‘<

) P .
Using these relations, we define the map CM, so that for each » € N* and
each path g € pathg. (ry, 1) of the form (ry, 55, 54, - . - , 84—, #) We have

A
CM(Q) = R(n,sg) o -R{sg.s:} P...0 R{uq,n){w}

228 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / cmap, 7

Finally, for each n € N* we define
ey
IAP(ry,) :_{q € pathg. (ry, #): CM(g) = o}

The intuitive meaning of these concepts can be explained as follows:
Since we have decided to record the actual call string by a homomorphism

CM of paths into a finite set I, it is inevitable that we will also admit paths.

which are not in IVP(ry, n). Thus YAP(r,, #) = IVP(r,, 1) and will also con-
tain paths which the encoding CM cannot distinguish from valid IVP paths.
In particular, some returns to other than their originating calls will have to
be admitted.

Having defined IAP, CM and R, we next define F* in essentially the
same manner as in Section 7-4. Specifically, for each (m, n) ¢ E* we define
Fm: L¥ — L* as follows: Foreach & ¢ I*, g e T

f(m.n)(é)(a) = /\ {ﬁm,n)(é(al)): CZIR(,,,,,,)OS}

where, by definition, an empty meet yields Q.

F* is now constructed from the functions f%, ,, exactly as before. The
heuristic significance of this definition is the same as in Section 7-4, only now
the “tag” updating which occurs when propagation takes place along an
interprocedural edge involves less extensive and less precise information.
The modified updating operation that has just been defined can be both one-
to-many and many-to-one, possibilities which are both reflected in the above
formula. It is easy to verify that both monotonicity and distributivity are
preserved as we pass from (7, F) to (L%, F*),

Next we associate with (L*, F*) the data flow problem of determining
the maximal fixed-point solution of the equations

xf = {(w, 0}
x;k_ /\ f(mn)() HEN**{I",.}

(m,n)e

(7-15)

As previously, a solution of these equations can be obtained by standard
iterative techniques. Once this solution has been obtained, we make the
following final calculation:

£, = A\ x¥@) (7-16)

LAY

The techniques of Section 7-4 can now be applied to analyze”the pro-
cedure just described. Theorem 7-4.3 retains its validity, if restated as follows:

Theorem 7-6.2.

1. If (L, F} is distributive, then, for each n € N*, x¥ — y* =
A5G p € pathe (ry, B}
2. If (L, F} is monotone, then, for each n & N*, x¥ << y¥.

sEC. 7-6 | AN APPROXIMATIVE CALL-STRING APPROACH 229

Instead of Lemma 7-4.5, the following variant applies:

Lemma 7-6.3. Let n e N" p < pathg.{r,,n) and o = I Then
FExF)w) is defined iff & £ CM(p) in which case ¥ (x¥)) = fL0).

Proof. By induction on the length of p. The assertion is obvious if
p is the null execution path. Suppose that it is true for all paths with
length <<k and let p = (ry, s,, . . . , 55) & Pathg (1, 1) be a path of
length k. Let p, = (ry, 84, . . ., 5,). Then for each & € I' we have

T3 @) = [5D
= A Ul FRENE)] € Ris)
Thus f#(x}) (%) is defined iff there exists a; € I" such that o, R, %
and £#(x,)(,) is defined. By inductive hypothesis, this is true iff there
Ea .
exists &, € CM(p,) and &, R, %, aljii, by the definition of R, , and
A) - - Fl . .
CM, this last assertion is true iff & & CM(p). Hence, applying the induc-
tive hypothesis again, f%(x*)(e;) = f,,(0), for all &; appearing in the
above meet, so that this meet equals i, [/, (O] = 0} M
Remark: As previously noted, and can be seen, e.g., from the proof
of the last lemma, use of an encoding scheme creates cha_nces for
propagation through paths which are not interprocedurally valid. How-
ever, our lemma shows that even if an execution pathy is encoded by
more than one element of ', all these “tags” are associated with the
same information, namely /,(0). Thus information is propagated cor-
rectly along each path, only more paths are now acceptable for that
propagation. These observa.nons will be made more precise in what
follows.

Lemma 7-6.4. For each n & N*, IVP(r,,) = IAP(ry, n).

Proof. Letg e IVP(r,, n) for some n = N*, We will show, by induc-

tion on the length of g, that ¢(CM(g)) CM(q) so that, by Lemma
7-6.1,9 c IAP(r{, n).

Our assertion is obvious if ¢ is the null execution path. Suppose .
it is true for all paths whose length is less than some k > 0, and let
nc N* g IVP(r,, n) whose length/if k., Write ¢ = ¢,||(m,). By
inductive hypothesis, ¢(CM(q,)) € CM(g,). Now, three cases are
possible:

1. (m,n) e E°. In this case C/R/d\(q) — Mi(g,) and CM(q) =
CM(q,) so that e(CM(g)} & CM(qg).

. . '
12. {m,n) is a call edge. Then, by definition, CM(g) contains
o(CM(g,) * o(m) = a(CM(q))-

230 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS [CHAP, 7

3. (m, n)is a return edge. Let (¢, r,) denote the corresponding
call edge. Since g € IVP{r,, n), g can be decomposed'as
gl r)lg" || (m, 1), where ¢’ € IVP(r;,¢") and ¢” <
IVP(r,, m). It is evident from the definitions of the quantities
involved that that CM(g) = CM(g") and that CM(g,) =
CM(g)[[{c"). Hence 6(CMig,)) = o(CM(g)) * o(c”). Tt thus
follows that a(CM(q)) is a member of the set {f e
ECS(p)| 8 e o(c’) = a(CM(g,))} which, by definition, is a
subset of CM(g). W '

We can now state an analog of Theorem 7-4.6; .

Theorem 7-6.5.

l. If(L, F)is a distributive data flow framework, fﬂen, for each
ne N*

%, = N{f0):p € IAP(r, m)} < y,
2. M (L, F)is only monotone, then, for each n ¢ N*
2, < A{0): p € TAP(ry, 0} < y,
Proof.

1. Let ¢ € I'. By Theorem 7-6.2 and Lemmas 7-6.1 and 7-6.3,
we have
X)) = A F5xE)@: p € pathg. (rl,n)}
= A {f,0): p € IAP(G,), & « CM(p)]
Thus, by Eq. (7-16)

%, = A\ %@ = A U40): p € TAPG,)}

xelr
By Lemma 7-6.4, this is
AL p € IVP(ry, 1)} = y,
proving (1).

2. Canbeproved in a manner completely analogous to the proof
of (1), using part (2) of Theorem 7-6.2. M

Thus {%,},ex+ is an underestimation of the meet-over-all-paths solution
{Palnesr The degree of underestimation depends on the deviation of IAP(r, 1)
from IVP(r,, n), and this deviation is in turn determined by the choice of T,
#, and ¢, The most extreme underestimation results if we let IAP(r,, n) =
pathg. (r[, n) for all n & N*, i.e., define I" = {wl, wx w = w, and let ¢ map
ail calls to w. If we do this, then the resulting problem is essentially equivalent

SEC. 7-7 | CONCLUSION 231

to a purely intraprocedural analysis, in which procedure calls and returns
are interpreted as mere branch instructions.

Another more interesting encoding scheme is as follows. Choose some
integer k£ > 1, and let T be the ring of residue classes modulo k. Let m > 1
be another integer. For each o, ¢, I‘ define ¢, = 0ot, = m + &, + o, (mod k).
Let ¢ be any map which maps call blocks to values between 0 and m — 1
(preferably in a one-to-one way). In this scheme, call strings are mapped into
a base m representation modulo k of some encoding of their call blocks.
Note that if £ = oo, i.e., if we operate with integers rather than in modular
arithmetic, then I" and T are isomorphic, with b corresponding to concatena-
tion. If k = m’, for some j 2> 1, and o is one-to-one and does not map any
call block to 0, then the encoding scheme just proposed can roughly be
described as follows: Keep only the last j calls within each call string. As
long as the length of a call string is less than j, update it as in Section 7-4,
However, if ¢ is a call string of length j, then, when appending to it a call
edge, discard the first component of g and add the new call block to its end.
When appending a return edge, check if it matches the last call in g, and, if
it does, delete this call from ¢ and add to its start all possible call blocks
which call the procedure containing the first call in g. This approximation
may be termed a call-string suffix approximation.

At present we do not have available a comprehensive theory of the
proper choice of an encoding scheme. Appropriate choice of such a scheme
may depend on the program being analyzed, and reflects the trade-off between .
tolerable complexity of the interprocedural analysis and some desired level
of accuracy.

7-7. CONCLUSION

In this chapter we have studied in some detail two basic approaches to
interprocedural analysis of rather general data flow problems. We have seen
that by requiring the associated semilattice L to be finite, both approaches
yield convergent algorithms which produce the “sharpest” interprocedural
information, in a natural sense.

The main concern has been to introduce a comprehensive theory of
interprocedural data flow analysis for general frameworks. Subsequent re-
search in this area should address itself to more pragmatic issues that arise
when trying to implement our approaches. Some of these issues are:

(a) Pragmatic implementation of the functional approdch for bit-vector
problems. These data flow frameworks are amenable to ¢limination tech-
niques, which are more efficient than iterative techniques. However, our
basic way of solving Eqs. (7-4) is iterative in nature and hence is not optimat
for these problems. One would mainly like to come up with an algorithm

]

232 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS [CHaP. 7

which incorporates standard intraprocedural elimination techniques, such as
interval analysis, in a modular manner, which will enable us to implement
the functional approach as an extension of already existing intraprocedural
algorithms rather than as a completely different algorithm.

In addition, one might wish to study the efficiency of such an imple-
mentation, bearing in mind that recursion is a somewhat rare phenomenon in
actual programs, and that co-recursion is much rarer. This issue is closely
related to Allen’s approach of processing procedures in “inverse invocation
order” (see also [Rose79] for a similar observation). However, careful refine-
ment of this method is required to handle recursion: Additional gain might
be achieved by processing “offline” parts of the flow graph which are call-
free, so that one does not have to repeat all the intraprocedural processing

whenever an interprocedural effect is propagated. One possible approach to .

this problem, which, however, is probably not the best possible one for
implementation, is indicated in [Rose79, Section 8].

(b} Pragmatic implementation of more complex interprocedural data
flow problems. 1f the relevant framework is not amenable to elimination,
then the functional approach may be inadequate for such a problem. More-
over, some commonly occurring complex data flow problems, such as con-
stant propagation [Hech77], type analysis [Tene74b, Jone76], value flow
[Schw?75b] or range analysis [Harr77a], are usually solved by algorithms which
make use of the use-definition map [Alle69] in a way which propagates infor-
mation only to points where it is actually needed. As indicated in [Shar77],
interprocedural extension of such algorithms calls for some proper inter-
procedural extension of the use-definition map itself. It seems that such an
extension can be based on the call-strings approach (or the approximative
call-strings approach), but exact details have yet to be worked out.

(c) Extending our approaches to handle reference parameters. Here
the problem of “aliasing” (i.e., temporary equivalence of two program
variables during a procedure call) arises, which complicates matters con-
siderably if “sharpest” information is still to be obtained. Major work in
" this area has been done by Rosen [Rose79].

(d) Extending the ideas of the call-strings approach methods which tuke
into account more semantic restrictions on the execution flow. Thus only flow
paths which satisfy such restrictions would be traced during analysis. The
call-return pattern of interprocedural flow is but one such possible restriction
(though a very important one). For example, one might also keep track of
the values of boolean flags which control intraprocedural branches. Current
research in such directions by Holley and Rosen at IBM seems quite promis-
ing. (We are indebted to Barry K. Rosen for some stimulating discussion
concerning the above-mentioned rescarch.)

sec. 7-7 [CONCLUSION : i 233

The present chapter has been motivated by the research on the design
and implementation of an optimizing compiler for the SETL programming
language at Courant Institute, New York University. SETL is a very-high-
level language [Schw75d] which fits into our interprocedural model; i.e.,
parameters are called by value and no procedure variables are allowed. Active
research is now under way to implement the approaches suggested in this
chapter in the optimizer of our system, as discussed in (a) and (b) above.

