INTERPROCEDURAE ELIMINATION OF PARTIAL REDUNDANCIES / CHap, 6

e79]. It emerges from these comparisons that this algorithm is very fast .

applied separately to each procedure. For interprocedural application,

aly added task is the solution of systems in the data flow analysis phase,
his is known to be fast. Although this extended algorithm has not yet
implemented, it can reasonably be assumed to be efficient.

6-6. CONCLUSION

An algorithm for interprocedural optimization has been presented. It is
d to a set of procedures compiled together and which call each other.
ased on the algorithm presented in [More79] for elimination of partial

dancies in a procedure. The interprocedural application is performed

wo-pass mechanism. The information on each procedure for the appli-

of the basic algorithm is computed by a preliminary data flow analysis

This phase, which requires a particular processing order on the set of
lures, gives for each procedure P information which represents the
t of a call.of P on the environment at the calling point. The second
suppresses partial redundancies by treating the procedures individually

irse calling order, reflecting in the treatment of a called procedure the -

ation gathered during the treatment of its callers.

1 some cases, optimization can be improved by iterating part or all of
ocess. The algorithm can be used for recursive procedures, but in this
ome approximations are made in the data flow analysis phase in order
id unpredictable costs in the algorithm. As presented here, the algo-
“uns in time linear in the size of the program. Implementation of the
Igorithm has been shown to be efficient and well within the state of the
actual compilers. The same claims seem to be applicable to its inter-
aral extension. '

Chapter 7

Two Approaches
to Interprocedural
Data Flow Analysisf

Micha Sharir.
Amir Pnueli

7-1. INTRODUCTION

Under the general heading of program a'nalysi‘s we can ﬁ1.1d today two
disciplines which, even though they have s1'rmlar aims, t.ilifer 1gj th.e lr.neansf
and tools they apply to the task of analysis. The first is the sc;p ﬁln; 0
program verification. This is usually presented as' the process o hn ing
invariants of the program, or in other words fu}ly charactenzlpg the be avior
of the program, discovering all the properties of' .aﬂ possible execut19n§
[Mann74, Cous77¢]. As such, it is extremely ambitious and hence a p.r101;
doomed to failure on theoretical grounds for all but the most restricte

s. -
Pl‘OgraTﬂ];leH;:ie;d discipline falling under the name of program .analys;{s is !:he
more pragmatically oriented data flow analysis. Assoc:{ated w1th 0pt1}n1;}1;g_
compilers, this methodology is very much lconcerned with ques’u.ons o de ed
tiveness and efficiency, in particular the trade-off .betWeenleﬁ'ort ugveste:d ?,;1
the increment in the quality of produced code gained. Quite understandably,

. ' i d by the National Science Foun-
The work of the first author was pa,rtlally_ supporte
dationTunder grant MCS76-00116 and the United States Department of Energy under

grant EY-76-C-02-3077.

189

190 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS | CHAP, 7

its objectives are more modest. The reduced ambitiousness is expressed in
not trying to extract a/l properties of the program but concentrating on
several simple, well-defined properties such as the availability of expressions,
the types and attributes of dynamic values, the constancy of variables, etc.

A basic technique used to analyze procedureless programs (or single
procedures) is to transform them into flow graphs [Alle69] and assume that
all paths in the graphs can represent actual executions of the program. This
model does not describe the “true” run-time situation correctly, and in fact
most of the graph paths are not feasible, 1.e., do not represent possible execu-
tions of the program. However, this model is widely adopted for two main

reasons:

1. Tts relatively simple structure enables us to develop a comprehen-
sive analytic theory, to construct simple algorithms which perform
the required program analysis, and to investigate general properties
of these algorithms in detail (cf. [Hech77, Aho77] or Chapter 1 for
recent surveys of the subject).

2. Isolation of feasible paths from nonfeasible ones is known to be
an undecidable problem, closely related to the Turing machine
halting problem.

This classical technique faces significant problems in the presence of
procedures. These problems reflect the dependence of individual interpro-
cedural branches upon each other during program execution, a dependence
which is known at compile time and is essentially independent of any com-
putation performed during execution. Interprocedural branching is thus
much easier to analyze than intraprocedural branches, which usually depend
on the values assumed by various program variables. It is therefore very,
tempting to exploit our special knowledge of this branching pattern in pro-
gram analysis, thereby tracing the program flow in a more accurate manner.

Interprocedural flow cannot be treated as a simple extension of the
intraprocedural flow, but calls for a more complicated model whose mathe-

matical properties require special analysis. In addition, many programming

languages include features such as procedure variables and parameter passing
by reference or by name [Aho77] which complicate the analysis of interpro-
cedural fiow.

It is therefore not surprising that interprocedural analysis has been
neglected in much research on date flow analysis. Most of the recent literature
on this subject virtually ignores any interprocedural aspect of the analysis,

or splits the interprocedural analysis into a preliminary analysis phase which

gathers overestimated information about the properties of each procedure
in a program and which is followed by an intraprocedural analysis of each
procedure, suppressing any interprocedural transfer of control and using

sec. 7-1 [INTRODUCTION 191

instead the previously colle(;ted, overestimated information to deduce the
effects of procedure calls on the program behavior [Alle74]. These approaches
use a relatively simple model of the program at the expense of some informa-
tion loss, arguing that such a loss is intrinsic anyway even in a purely intra-
procedural model.

However, there is a growing feeling among researchers that meore
importance should be given to interprocedural analysis, especially in deeper
analyses with more ambitious goals, where avoidance of flow overestimation
is likely to be significant in improving the results of the analysis. This is
true in particular for analyses related to program verification, in which area
several recent papers, notably [DeBa75, Grei75, Hare76, Gall78, Cous77¢]
have already addressed this issue.

Recently, however, the interest in more accurate interprocedural data
flow analysis has increased considerably, and new approaches to the prob-
lem appear in several recent works by Rosen [Rose79], Barth [Bart77a],
Lomet [Lome75], and others. All these works attempt to generalize, achieve

. more accurate information than, or be more pragmatic than the traditional

methods mentioned earlier. However, none of these methods achieves com-
plete generality. They are all interested in gathering only loecal effects of
procedure calls, are limited to simple bit-vector data flow problems, and do
not view interprocedural analysis as an integral part of the global data flow
analysis, but rather as a preliminary phase, completely independent from
the actual program analysis phase. For example, they all ignore the problem
of computing data at procedure entries interprocedurally, and are therefore
forced to make worst-case assumptions about these values. However, they
all can handle recursion. Rosen’s work [Rose79] also handles reference
parameters and derives “sharpest™ static information, at the cost of a rather
complex algorithm. a '
In this paper we introduce two new techniques for performing inter-
procedural data flow analysis. These techniques are almost generally appli-
f:abie; they derive the sharpest static information, they integrate
interprocedural analysis with intraprocedural analysis, and they handle

. recursion properly. These two approaches use two somewhat different graph

models for the program being analyzed. The first approach, which we term

’ﬁhe Junctional approach, views procedures as collections of structured pro-
- ‘gram blocks and aims to establish input-output relations for each such block.

One then interprets procedure calls as “super operations” whose effect on
the program status can be computed using those relations. This approach
relates rather closely to most of the known techniques dealing with inter-

~ Procedural flow, such as the “worst-case assumptions,” mixed with processing

of procedures in “inverse invocation order” [Alle74], Rosen’s “indirect arcs”
mﬁthqd [Rose79], inline expansion of procedures [Alle77], and most of the
known interprocedural techniques for program verification [Grei75, Gall78,

192 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS [CHAP. 7 sgC. 7-2 | NOTATIONS AND TERMINOLOGY 19
cedures into a procedureless program by converting procedure calls and
returns into ordinary branch instructions, monitored by an explicit stack.
If we do this and simply subject the resulting program to intraprocedural
analysis, then we are in effect ignoring all the delicate properties of the inter-
procedural flow and thus inevitably overestimating flow. This simple observa-
tion shows that the attempt to perform more accurate interprocedural
analysis can be viewed as a first (and relatively easy) step toward accurate
analysis of more sophisticated properties of programs than are caught by
classical global analysis.

This chapter is organized as follows: Section 7-2 contains preliminary
notations and terminology. Section 7-3 presents the functional approach,
first in abstract, definitional terms, and then shows that it can be effectively
implemented for data flow problems which possess a finite semilattice of
possible data values and sketches an algorithm for that purpose. We also
discuss several cases in which unusually efficient implementation is possible.
(These cases include many of those considered in classical data flow analyses.)
Section 7-4 presents the call-strings approach in abstract, definitional terms
showing that it'also yields the solution we desire, though in a manner which
is not necessarily effective in the most general case. In Section 7-3 we show
that this latter approach can be effectively. implemented if the semilattice of
relevant data values is finite and investigate some of the efficiency parameters
of such an implementation. Section 7-6 presents a variant of the call-strings
approach which aims at a relatively simple, but only approximative, imple-
mentation of interprocedural data flow analysis. Section 7-7 is a concluding
section in which some further directions of research are suggested and
discussed.

We would like to express our gratitude to Jacob T. Schwartz for
encouragement and many helpful suggestions and comments concerning this
research, and to Barry K. Rosen for careful reviewing and helpful comments
on this manuscript.

Hare76, Cous77e]. Our version of this first technique has the advantage of
being rather simple to define and implement (potentially admitting rather
efficient implementations for several important special cases), as well as the
other advantages mentioned above.

Our second technique, which we term the call-strings approach, is some-
what orthogonal to the first approach. This second technique blends inter-

" procedural flow analysis with the analysis of intraprocedural flow, and in
effect turns a whole program into a single flow graph. However, as informa-
tion is propagated through this graph, it is “tagged” with an encoded history
of the procedure calls encountered during propagation. In this way we make '
interprocedural flow explicit, which enables us to determine, whenever we .
encounter a procedure return, what part of the information at hand can -
validly be propagated through this return, and what part has a conflicting
call history that bars such propagation.

Surprisingly enough, very few technigues using this kind of logic have
been suggested up to now. We may note in this connection that a crude
approach, but one using similar logic, would be one in which procedure
calls and returns are interpreted as ordinary branch instructions. Even though
the possibility of such an approach has been suggested occasionally in the
literature, it has never been considered seriously as an alternative interpro-
cedural analysis method. A related approach to program verification has
been investigated by de Bakker and Meertens [DeBa75], but, again, this has
been quite an isolated attempt and one with rather discouraging results,
which we believe to be due mainly to the ambitious nature of the analyses
considered. There is some resemblance, though, between this second
approach and the inline expansion method [Alle77] (see Section 7-4 for
details).

We shall show that an appropriate sophistication of this approach is
in fact quite adequate for data flow analysis, and gives results quite com-
parable with those of the functional approach. This latter approach also has
the merit that it can easily be transformed into an approximative approach,
in which some details of interprocedural flow are lost, but in which the
relevant algorithms become much less expensive.

A problem faced by any interprocedural analysis is the poss1ble pres-
ence of recursive procedures. The presence of such procedures causes inter-
procedural flow to become much more complex than jt is in the nonrecursive
case, mainly because the length of a sequence of nested calls can be arbitrarily
large. Concerning our approaches in this case, we will show that they always
converge in the nonrecursive case, but may fail to yield an effective solution
of several data flow problems (such as constant propagation) for recursive
programs. It will also be seen that much more advanced techniques are
needed if we are to cope fully with recursion for such problems.

We note that it is always possible to transform a program with pro-

7-2, NOTATIONS AND TERMINOLOGGY

In this section we will review various basic notations and terminology
used in imtraprocedural analysis, which will be referred to and modified
subsequently. The literature on data flow analysis is by now quite extensive,
and we refer the reader to [Hech77], [Aho77], or Chapter 1, three excellent
recent introductory expositions of that subject.

To analyze a program consisting of several subprocedures, each sub-
procedure p, including the main program, is first divided into basic blocks.
An (extended) basic block is a maximal single-entry multiexit sequence of
code. For convenience, we will assume that each procedure call constitutes

194 TWO APPROACHES TO INTERPROCEDURAL DATA TLOW ANALYSIS | CHAP. 7

a single-instruction block. We also assume that each subprocedure p has a
unique exit block, denoted by e, which is also assumed to be a single-instruc-
tion block, and that p has a unique entry (root) block, denoted by r,,.

Assume for the moment that p contains no procedure calls. Then the
Jlow graph G, of p is a rooted directed graph whose nodes are the basic blocks
of p, whose root is r,,, and which contains an edge (m, ») for each direct trans-
fer of control from the basic block m to (the start of) the basic block n,
effected by some branch instruction. The presence of calls in p induces severa]
possible interprocedural extensions of the flow graph, which will be discussed
in the next section.

Let & be any rooted directed graph. G is denoted by a triplet (¥, E, r),
where N is the set of its nodes, E the set of edges, and r its root. A path p
in G is a sequence of nodes in N (1, n, . . . , n,) such that for each 1 < j << k,
(), n,.1) € E. pis said to lead from #n, (its initial node) to n, (its terminal
node). p can be also represented as the corresponding sequence of edges
(g, 1), .o, (M=,). The length of p is defined as the number of edges
along p (k — 1 in the above notation). For each pair of nodes m, n € N we
define path, (m, n) as the set of all paths in G leading from m to n.

We assume that the program to be analyzed is written in a programming
language with the following semantic properties: Procedure parameters are
transferred by value, rather than by reference or by name (so that we can,
and will, ignore the problem of “aliasing” discussed by Rosen [Rose79]),
and there are no procedure variables or external procedures. We also assume
that the program has been translated into intermediate-level code in which
the transfer of values between actual arguments and formal parameters of a
procedure is explicit in the code and is accomplished by argument-transmit-
ting assignments, inserted before and after procedure calls. Because of this
last assumption, formal parameters can be treated in the same way as other
global variables. (For simplicity, we ignore here some aspects of recursive
value stacking, which gives these “assignments” extra flavor. For example,
a formal parameter of a recursive procedure p will have the same value after
the “epilog” of a recursive call in p to p as the value it had before the call.
Such considerations can be incorporated into our techniques, but will not
be discussed in this paper. The reader may find. it helpful to think of our
model as allowing only parameterless procedures, in which case the above
problems do not exist.) All these assumptions are made in order to simplify
our treatment and are rather reasonable. If the first two assumptions are
not satisfied, then things become much more complicated, though not beyond
control. The third assumption is rather arbitrary but most convenient. (In
[Cous77¢], e.g., the converse assumption is made, namely that global vari-
ables are passed between procedures as parameters, an assumption which we
believe to be less favorable technically.)

A global data flow framework is defined to be a pair (L, F), where L

sgC. 7-2 | NOTATIONS AND TERMINOLOGY © 195

~ is a semilattice of data or attribute information and F is a space of functions

acting on L (and describing a possible way in which data may propagate
along program flow paths). Let A denote the semilattice operation of L
(called a meet), which is assumed to be idempotent, associative, and com-
mutative. We assume that L contains a smallest element, denoted by 0,
usually signifying null {(worst-case) information (sce below), and also a largest
element), corresponding to “undefined” information (see Section 7-3 for
more details). F is assumed to be closed under functional composition and
meet, to contain an identity map, and to be monotone, i.c., to be such that for
each fe F, x,ye L, x<y implies f{x) < f(»»). L is also assumed to be
bounded, i.e., not to contain any infinite decreasing sequence of distinct ele-
ments. (L, F) is called a distributive framework if, for each f € F and x, y
e L, f{x A ») =f(x) A f(¥). We also assume that F contains a constant
map fp, which maps each x ¢ L to Q. This map corresponds to impossible
propagation (see below).

Given a global data flow framework (L, F) and a flow graph G, we
associate with each edge (m, n) of G a propagation function fi,, ., € F,
which represents the change of relevant data attributes as control passes
from the start of , through m, to the start of n. (Recall that a basic block
may have more than one exit, so that £, ,, must depend on » as well as m.)

Once the set S = { fi,, »: (1, 1) € E}is given, we can define a (graph-
dependent) space F of propagation functions as the smallest set of functions
acting in L which contains S, f, and the identity map id,, and which is closed
under functional composition and meet. It is clear that this F' is monotone
iff S is monotone, and that ¥ is distributive ifl .S is distributive.

Once F is defined, we can formulate the following general set of data
propagation equations, where, for each n € N, x, denotes the data available
at the start of n:

x, =10
xn = /\ ﬁm.n)(xm) ne N_ {I‘}
{m,A)EE

These equations describe attribute propagation “locally.” That is,
they show the relation between attributes collected at adjacent basic blocks,
starting with null information at the program entry.

The solutions of these equations approximate the following abstractly
defined function known as the meet-over-all-paths solution to a data flow
problem

(7-1)

o= AUMO):p & pathg(r,m} ne N (7-2)

Here we define f, = finm © fimnnn @« -« S for each path p=
(s, 1y, ..., m). If p is null, then £, is defined-to be the identity map on L.
Many algorithms which solve the system of equations (7-1) are known

by now. These algorithms fall into_ two main categories: (1) iterative algo-

196 TWO APPROACHES TQ INTERPROCEDURAL DATA FLOW ANALYSIS | CHAP. 7

rithms, which use only functional applications [Kild73, Hech75, Kam76,
Hech77, Tarj76], and (2) elimination algorithms, which use functional com-
positions and meets [Alle76, Grah76, Tatj75b]. These elimination algorithms
require some additional properties of F to allow elimination of program
loops, a process which may require a computation of an infinite meet in F,
unless such properties are assumed. Most of the algorithms in both categories
yield the maximum fixed-point solution to Egs. (7-1), which does coincide

with the solution (7-2) provided that the data flow framework in question is

distributive [Kild73], but which may fail to do so if the framework is only
monotone [Kam77]. However, even in this latter case we still have x, << y,

for all n € N; i.e., obtain an underestimated solution, which is always a

safe one [Hech77]. In what follows, we will assume some basic knowledge of
these classical data flow algorithms.

7-3. THE FUNCTTONAL APPROACH
TO INTERPROCEDURAIL ANALYSIS

In this section we present our first approach to interprocedural analysis.
This approach treats each procedure as a structure of blocks and establishes
relations between attribute data at its entry and related data at any of its

nodes. Using these relations, attribute data is propagated directly through

each procedure call,

‘We prepare for our description by giving some definitions and making
some observations concerning the interprocedural nature of general pro-
grams. Let us first introduce the notion of an irterprocedural flow graph of a
computer program containing several procedures. We can consider two
alternative representations of such a graph G. In the first representation, we
have G = | J{G,: p is a procedure in the program}, where, for each p, G, =

(N,, E,, rp), and where r, is the entry block of p, N, is the set of all basic _

blocks within p, and E, = E} \U EL is the set of edges of G,. An edge (m, n) <
E7 iff there can be a direct transfer of control from m to r (via a “go-to” or
“if” statement, and (m, n) € EL iff m is 2 cali block and » is the block imme-
diately following that cali. B

Thus this representation, which is the one to be used explicitly in our
first approach, separates the flow graphs of individual procedures from each
other. : '

A second representation, denoted by G%, is defined as follows: G* =
(N*, E*,ry), where N* = | JN,, and E* = E° U E', where E° = |_) E{ and

: P ?

an edge (m, n) € E! iff either m is a call block and # is the entry block of the
called procedure [in which case (m, #) is called a call edge], or if m is an exit
block of some procedure p and » is a block immediately following a call to
p [in which case (mm, 1) is called a return edge]. The call edge (m, r,) and a

58C. 7-3 | THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 197

return edge (e, 71) are said to correspond to each other if p = ¢ and (m, n) €
E!, for some procedure 5. Here r, is the entry block of the main program,
sometimes also denoted as ry,.,. Of course, not all paths through G* are
(even statically) feasible, in the sense of representing potentially valid execu-
tion paths, since the definition of G* ignores the special nature of procedure
calls and returns, For each n € N* we define IVP(r,, n) as the set of all
interprocedurally valid paths in G* ‘which lead from r, to n. A path g €
pathg(r,, #) is in IVP(r,, n) iff the sequence of all edges in ¢ which are in E,
which we will write as g, or gq|g, is proper in the following recursive sense:

A tuple g, which contains no return edges is proper.

2. If g, contains return edges, and 7 is the smallest index in ¢, such that
q.() is a return edge, then g, is proper if i > land ¢,(i — 1) isa
call edge corresponding to the return edge g,(¢), and after deleting
those two components frem g,, the remaining tuple is also proper.

Remark: It is interesting to note that the set of all proper tuples over E1, as
well as {_J IVP(ry,), can be generated by a context-free grammar (but not by
n

a regular gramrhar), in contrast with the set of all possible paths in G*, which

is régular. _

For each procedure p and each n < N,, we also define IVP,(r,, 1) as
the set of all interprocedurally valid paths ¢ in G* from r,, to n such that each
procedure call in g is completed by a subsequent corresponding return edge
in g. More precisely, a path g € pathe(r,, #) is in IVP(r,, n) iff g, = q[z is
complete, in the following recursive sense.

The null tuple is complete.

2. A tuple g, is complete if it is either a concatenation of two complete
tuples, or else it starts with a call edge, terminates with the corre-
sponding return edge, and the rest of its components constitute a
complete tuple.

Example 1.
Main program Procedure p
read g, b; if ¢ = 0 then return;
t:=a#b; else
cali p; a:=a—1;
t:=axbh, call p;
print ¢; tr=uaxbh
stop; endif’;
end - return;
end

200 TWO APPROACHES TO INTERPROCEDURAIL DATA FLOW ANALYSIS f CHAP, 7. SEC. 7-3 / THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 201

sis will show that a « b is available upon exit from the recursive procedure
'p, so that its second computation in the main program is redundant and can
- therefore be eliminated. (Some traditional interprocedural methods will fail
to detect this fact, since the expression a # b is killed in p.) For simplicity we
will only show that part of the analysis which pertains. directly to the single
expression a # b, Assuming this simplification, L = {0, 1, Q}, where 1 indi-
cates that & = b is available and 0 that it is not, and F contai_gs precisely four
- functions [recall that £(Q) = Q always]; the “constant” functions 0 and 1,
id, and f;. With these notations, Eqs. (7-4) read

birrrny = 1d

Pirren =1 o Gp

Birim) = Prsen) © Birron

Dirren =10 S‘b(n,m)

birory = id

Dren = 00 Bireyr

B s = Pirsyen © ¢(rg,cn)

Pirsen = [id o Diraral Ao Prrpun]

Table 7-1 summarizes the iterative solution of these equations:

This set of equations possesses & maximum fixed-point solution defined as
follows: Let F be ordered by writing g, = g, for g,, g, € Fiff g,(x) > g(x)
-forallx e L.
Start by putting

&,y = id, for each procedure p
Plran = Ja foreachn € N, — {r}

and then apply Eqs. (7-4) iteratively in a round-robin fashion to obtain new
approximations to the ¢’s. (This can be done using iterations of either the’
Grauss-Seidel type or the Jacobi type, though the former is a better approach.)
Let ¢f,,, denote the ith approximation computed in this manner. Since
Blmy == Bs,,m for all p, =, it follows inductively that ¢, ,, = ¢i:L, for cach
porandi>=0. :

A problem which arises here is that F need not in general be a bounded :
semilattice, even if L is bounded. If L is finite, then F must be finite and:
therefore bounded, but if L is not finite, F need not in general be bounded.-

Nevertheless, even if the sequence {¢7, 11,2, is infinite for some p, n,’
we still can define its limit, denoted by ¢, ,,, as follows: For each x € L,
the sequence {§f,, ,)(x)} o is decreasing in L, and since L is bounded, it must.
be finite, and we define @, ,(x) as its limit. [To ensure that ¢, ,, € F we
must impose another condition upon ¥, namely: for each decreasing sequence”
{8} of functions in F, the limit defined as above is also in F. However, -

since we will assume that L is finite (so that F is bounded) in any practical Table 7-1

application of this approach, we introduce this condition only temporarily, After one After two After three
for the sakp of the following abstract reasoning. Thus, the above process Function Initial value itaration iterations jterations
defines a solution also in F.] Thus, the above process defines a solution
{@m1p.n to Egs. (7-4), though not necessarily effectively. It is easy to check Pirro id id id id
that the limiting functions defined by the iterative process that we have ruen - ' 1 1 1
described are indeed a solution, and that in fact they are the max1ma1 fixed- rom) fo fa 1 1
point solution of (7-4). (rraen) fo fa 1 1
Having obtained this solution, we can use it to compute a solution to (rara) id id id id
our data flow problem. For each basic block # let x, € L denote the informa- {raez fa 0 0 g
tion available at the start of n. Then we have the following set of equations: (rayma) : a f:; ?d id
(rz,e2} a :

e =0 & L (7-52)

Xr, = /N @y 0(%:): ¢ is a procedure and
cisacall to p in g}

Thus, the first stage of our solution stabilizes after three iterations. Next we
solve Eqs. (7-5), which read as follows:

X%, =0

Xrs = Prnea(Xr) A Prer,en ()
| = 10x,) A 0(x,)

For these equations we see after two iterations that

for each procedure p (7-5b)

Xy = Birpm(Xs,) for each procedure p, and n € N, — {r,} (7.'5(;)

These equations can be (effectively) solved by a standard iterative algorithm,
which yields the maximal fixed-point solution of (7-5).

We illustrate the above procedure for solution of Egs. (7-4) and (7-5)
by applying it to Example 1 introduced earlier, in which we suppose that

available expressions analysis is to be performed. Our interprocedural analy- X, =X, =10

202 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS [CHAP, 7

from which, using (7-5¢), we obtain the complete solution
xJ'I - xra = xe! = x?!! = xeﬂ = 0
X, = X, =Xx, =1

i.e., @ * b is available at the start of n,, which is what we wanted to show.

Next we shall analyze the properties of the solution of Eqs. (7-4) and
(7-5) as defined above. As in intraprocedural analysis our main objective is
to show that this solution coincides with the meet-over-all-paths solution
defined (in the interprocedural case) as follows:)

¥,=/A\1fyiq € IVP(rpu)} € F foreachn € N* (7-6)

: " (this is the meet-over- i
Yo=¥,(0) foreachn e N all-paths solution) 7N

Lemma 7-3.2. Letn € N, for some procedure p. Then
¢(fp,!l) = /\ {f-‘?: q S IVPO(r_pa n)}
Proof. We first prove, by induction on 7, that for all i 2> 0

o = N 1fe1q € IVP(r,, B}
Indeed, for i =0, if n=r, then @%,,, =id, = f,, where ¢,
IVP,(r,, r,) is the empty path from r, to r, so that ¢f, ., >
AN qa € IVP(rp, r)} If 157, then @8, = fo = f for all fe F.
Thus the assertion is true for i = 0.

Suppose that it is true for some i. For cither kind of iterative
computation of the functions ¢**! using Eqs. (7-4) we have

g(l-i-p}'l? 2 /\ (h(m.n) ° ¢£(rp,m))
(m,n) EEp :

= A i © N Sy1 g € IVP(r,, m})

T (mmEEs

for each procedure p and n € N, — {r,}. (Note here that if n = 7,

then @) = r,m = Plun = ([, € IVPy(r,, w)}. Our chain of
equalities and inequalities then continues.)

= N awm o Aferq € IVPy{r,, m)) A

{(m,n) € Ep®

N Benan 0 A\ fiiq € IVPo(r,, m))
m ,c’:llls ;’

= /\ (/\ {fqll(m,n) g€ IVPO(FP, m)}) A

(m,) © End

(m,ﬁg\eﬁpl (/\ {fg’: q’ S IVPO(rp's ep’)} e /\ {fq: q = IVPO(rps m)})

m calls p’

= /\ (/\ {f;ﬂ(m,nl g IVPO(rps m)}) A

{m,n) EE®

(/\ {f;ll(rrz.rﬂ)ﬂq’\ltrzp',n) q e IVPﬂ(rps m): Q' € IVPO(rp'7 eﬂ)})

{m,n} € Epl
m calls p~

gfC. 7-3 | THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 203

Tt is easily checked that for each function fg, appearing in.the last right-
hand side, ¢, € IVPy(r,, n). Hence, this last right-hand side must be

> {f,:q € IVP(r, M}

The same inequality is then seen to apply to the limit function Dyt
as well. . ‘

To prove the inequality in the other direction, we will s_how t}.nat
for each g & IVPy(r,, M), [y = birpm- THIS will be proven by induction
on the length of g. If this length is 0, then # must be equal to r, and
fo = Grrn = id;. Suppose that the assertion is true for a?l p, nand
.':11 g e ’f\;Po(rp, #) whose length is <C k, and let there be given p, m, ¢
such that the length of ¢ is & + 1. Let (m, n) be the last edge in g, 80
that we can write g = ¢, || (m, n). . o

If (m,n) € ES, then g, € IVP(r,, m) and its length is = k.
Therefore f;, = ¢,m and by (7-4) we have

Lo = Fomm @ fo 2 Bimm © Bionmy = birnm

If (m,n) € E', thenm = ey for some procedure p’. It is easily
seen from the definition of IVP,, that g can be decomposed as
QL“ (mll rp')HQZ H(e,p's n)’ such that (ml’ ﬂ) ff E},,. 4 € IVPO(rp! ml)s
g, € IVP(r,, &), Since fim.en = flewm = 1dL_ {since m, and e, ar;
single instruction blocks, containing only an interprocedural branc
instruction), we have ‘

' fo=Tu ot
But both g, and g, have length < k, so that by Eq. (7-4) and the induc-
tion hypothesis, we obtain
Jo 2= Piren © Dl = Bimim © Birpmy = Pirmm) .
This proves our assertion, from which the lemma follows immedi-
ately. W

Let us now define, for each basic block #,
Ao = I\ Biean © Borsper @ - -+ © Prrmen ™ - N (7-8)
p, = main program, p; is the procedure containing 7,
and for each i < j, ¢; is a call to p;.y from p;}
2, = X.(0) (7-9)
Theorem 7-3.3. y, = x,foreachn € N*.

Proof. letg € IVP(r;mai,,, n). By Lemma 7-3.1, g admits a de.comp;si-
tion ¢ = gyli(ces o)l @zl . -1{e;-1o 72 |t g; 25 in Eaq. (7-3); 1€, td:]rrz
exist procedures p, = main program, P, ...,P; = the. proce
containing n, and calls ¢4, . .+, €1 such that for each { << j, ¢; is a call
to p;,, from p;, and q; € IVP(r, ¢), and also g, € IVP(rz, 1).

204

TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS ,’ CHAP. 7

Thus, by Lemma 7-3.2, we have

f; = f'-IJ o-fﬂ}—l O of:?x 2 ¢(rp!;n) ° ¢(l‘»,41,w-1) ©...0 ¢(l’pp01) 2 Xn
Hence, w, = ¥,

Conversely, let py,..., P54, ..
Lemma 7-3.2 we have

., ¢;—; be as in Eq. (7-8). By

¢rrnj,n> © 95(»-»,-.,:3.1) Geen @ ¢(rp,.m)

= /\{f;ﬁ Dfam G D.fm: q; € IVPO("';M Cf)
for each i << j and ¢, & IVP(r,, n)}

= {.f;ﬂ[{-’-‘l.-fng)"hn.\HCJ—I.J’H;) 1os° SAme as above}

By Lemma 7-3.1, each concatenated path in the last set expression
belongs to IVP(r,;,, 7). Thus, the last expression is

2 /\ {f:g: q € IVP(rmain7 n)} = vln
Therefore y, = w, so that y, and w, are equal for eachn € N*. W

We can now prove our main result:
Theorem 7-3.4. For each basic block » € N*, x, = 3, = z,-

Proof. 1t is immediate from Theorem 7-3.3 that y, = z, for each
n e N* We claim that x,, = z,, for all procedures p in the program.
By Eqs. (7-5¢}, (7-8), and (7-9) this will imply that x, = z, for all n.

To prove our claim, we define a new flow graph G, = (N, E_, r1),
where N, is the set of all entry blocks and call blocks in the program.

E, = EX\J E} is the set of edges of G,. An edge (m,n) € EL iff
m is the entry node of some procedure p and-# is a call within p. More-
over, (m, n) € ELiff mis a call to some procedure p and » is the entry
of p. As before, r, is the entry block of the main program. We now
define a data flow problem for G, by associating a data-propagating
mMap g € Fwith each (m, #) & E,, in such a way that

¢(m,n) lf (m, n) = E:,J
id, if (m, n) ¢ E!

It is clear that Eqs. (7-5a) and (7-3b) are equivalent to the iferative
equations for the new data flow problem. On the other hand, Egs.
(7-8) and (7-9) define the meet-over-all paths solution for. the same
problem, if we substitute only entry blocks or call blocks for . Since
Fis assumed to be distributive, it follows by Kildall’s Theorem [Kild73],
that x,, = z,, for each procedure p, and this completes the proof of
our theorem. MW

g(m.r;) = {

SEC. 7-3 | 'THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 205

It is now time to discuss the pragmatic problems that will affect attempts
to use the functional approach to interprocedural analysis that we have
sketched. The main problem is, obviously, how to compute the @’s effectively
if L is not finite (or if ¥ is not bounded). -As examples below will show, in the
most general case the functional approach does not and cannot yield an
effective algorithm for solving Egs. (7-4) and (7-5). Moreover, even if the
iterative computation of the ¢’s converges, we must still face the problem of
space needed to represent these functions. Since the functional method that
we have outlined manipulates the ¢’s directly, instead of just applying them
to elements of L, it can increase the space required for data flow analysis if
L is finite, and may even fail to give finite representation to the @’sif Lis
infinite. We note here that our functional approach belongs to the class of
climination algorithms for solving data flow problems (a class of methods
which includes the interval-oriented algorithms of Cocke and Allen [Alle76],
and Tarjan’s fast elimination algorithms [Tarj75b]), since it uses functional
compositions and meets in addition to functional applications. All such
elimination algorithms face similar problems, and in practical terms are
therefore limited to cases in which the elements of F possess some compact
and simple representation, in which meets and compositions of elements
of F can be easily calculated, and in which F is a bounded semilattice {or
else relevant infinite meets in F are easy to calculate). This family of cases
includes the classical “bit-vector” data flow problems (e.g., analysis for
available expressions, use-definition chaining, cf. [Hech77)).

It is interesting to ask whether it is possible to modify the functional
approach so that it avoids explicit functional compositions and meets, and
thus becomes an iterative approach. This is possible if L is finite, and an
implementation having this property will be sketched below.

The following example will illustrate some of the pragmatic problems
noted above, and also some potential advantages of the functional approach
over any iterative variant of it. Suppose that we want to perform constant
propagation (see, e.g., [Hech77] for a description of the standard framework
used in this analysis). Consider the following code:

Example 2.
Main program Procedure p
A:=0; if cond then
call P; Ad:=4+1;
print 4; - - «call p;
end A:=4—1
endif;
retarn;
end

206 TWO AFPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS [/ CHAP, 7

If we do not. allow symbolic representation of the ¢’s, then, in any
iterative approach, we shall have to compute ¢, .,({(4, 0)}), for which we
need to compute (for the second level of recursion) @, .,({(4, D}, etc.,
computing ¢,,...({{(4, B)}) for all integers k 2> 0. Thus, an iterative approach
would diverge in this example.

However, if symbolic or some other compact representation of the ¢’s’

is possible, then it can be advantageous to manipulate these functions directly,
without applying them to elements of L till their final values have been
obtained. This can give us an overall description of their behavior, allowing

them 1o be calculated in relatively few iterations. For example, in the example 4

shown above, it is easily checked that qS(,F 18 found to be id, after two
iterations.

However, convergence of the purely functional approach is not ensured
in general. To see this, consider the following slight modification of the
preceding example.

Example 3.
Main program Procedure p
A:=0; if cond then)
. call p; A= A4+ 2+ sign{d — 100);
print A; call p;
end , =4 —1;
endif
return;
end

It is fairly easy to check that the purely functional approach (which
uses symbolic representation of the ¢’s} will diverge if negative integers are
included in the program domain. Intuitively, this is due to the fact that it
takes more than 100 -} k iterations through Egs. (7-4) to detect that
Dr, ({4, —K)})) = & forall k= 0.

Remark: The data flow framework required for constant propagation is in
general not distributive. However, it can be shown that the standard frame-
work for constant propagation becomes distributive if the program contains
only one single variable and each propagation between adjacent basic blocks
either sets the value of that variable to some constant, or calculates the output
value of the variable from its input value in a one-tg-one manner, as in the
above examples.

These examples indicate that if L is not finite, divergénce can actually
occur. If L is infinite but F is bounded, then a symbolic functional approach
would converge, whereas an iterative approach could still diverge if infinite

%

SEC. 7-3 f THE FUNCTIONAL APPROACH TC INTERPROCEDURAL ANALYSIS 207

space were needed to represent the ¢’s. Moreover, we have at present no
simple criterion which guarantees that F is bounded in cases in which L is
infinite. For these reasons, we will henceforth assume that I is a finite
semilattice. We can then summarize our results up to this point as follows:

Corollary 7-3.5. If (L, F) is a distributive data flow framework and
the semilattice L is finite, then the iterative solution of Eqgs. (7-4)
converges and, together with Eqs, (7-5), yields the meet-over-ail-inter-
procedurally-valid-paths solation (7-7).

Next we shall sketch an algorithm which implements the functional
approach for general frameworks with a finite semilattice L. We do not
assume that any compact representation for elements of F is available, nor
that their compositions and meets are easy to calculate, but instead give a
purely iterative representation to the functional approach, which avoids all
functional compositions and méets and also computes the §°s only for values
which reach some relevant procedure entry during propagation.

Our algorithm is workpile-driven. The functions ¢ are represented by
a two-dimensional partially defined map PHI: N* X L-— L, so that for
eachn € N*, x € L, PHI(n, x) represents @, .,(x), where p is the procedure
containing n. The substeps of the algorithm are as follows:

1. Initialize WORK := {(r,, O)}, PHI(#,, 0) := 0. [WORK is a subset
of N* x L, containing pairs (#, x) for which PHI{n, x) has been
changed and its new value has not yet been propagated to successor
blocks of ».]

2. While WORK == @, remove an element (n, x) from WORK, and
let y = PHI(n, x).

(a) Ifnisa call block in a procedure g, calling a procedure p, then

@iy If z=PHI(e,, y) is defined, let m be the unique block
such that (n, m) € E;, and propagate (x, z) to m. [By this
we mean: -assign PHI(m, x) := PHI(m, x) A z, where
undefined PHI(m, x} is interpreted as Q; if the value of
PHI{#2, x) has changed, add (1, x) to WORK.]

(ii) Otherwise, propagate (y, ¥} to r,. This will trigger pro-
pagation through p, which will later trigger propagation
to the block following # in g (see below).

(b) If nis the exit block of some procedure p, i.e., n = ¢, find all

pairs (m, #) such that m is a block following some call ¢ to p,

~and PHI(c, ¥) = x, and for each such pair propagate (1,)
to m.

208 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS /| CHAPE. 7

(¢) If n is afy other block in some procedure p, then, for each
m € ES — {n}, propagate (x, fi, (V) to m, _

3. Repeat step(2) till WORK = &. When this happens, PHI represents
the desired ¢ functions, computed only for “relevant” data values,
from which the x sclution can be readily computed as follows:

x,= APHI{n,a) foreachn ¢ N*
aglL
Step (3) thus implies that in the implementation we have sketched separate
analysis to compute the x solution is unnecessary.

We omit analysis of the above algorithm, which in many ways would
resemble an analysis of the abstract approach. However, so as not to avoid
- the issue of the corrcctness of our algorithm, we outline a proof of its total
correctness, details of which can be readily filled in by the reader. The proof
consists of several steps: '

1. The algorithm terminates if L is finite, since cach element (n, x)
of N* x L (which is a finite set) is added to WORK only a finite
number of times, because the values assumed by PHI(n, x) upon
successive insertions constitute a strictly decreasing sequence in
L, which must of course be finite.
2. We claim that for each n € N*,
x, <2 N\ PHI(n,) (7-10)

agl
To prove this claim, we show, using induction on the sequence of
steps executed by the algorithm, that at the end of the ith step,
x, << /\ PHI(#n, a), for each n € N*, ¢ = L, where PHI’ denotes

a€l

the value of PHI at the end of the ith step. In executing the ith
step, we propagate some pair (¢, b) € L X L to some n € N*,
By examining all possible cases, it is easy to show, using the induc-
tion hypothesis, that x, <Z b, from which (7-10) follows immedi-
ately. _ _

3. In order to prove the converse inequality, it is sufficient, by Theo-
rem 7-3.4, to show that for each » € N* and g = IVP(r, n),
S0 = /E\L PHI(n, a). To do this, we first need the following asser-

tion:

Assertion. Let p be a procedure, n = N, and a € L for which
PHI(z, a) has been computed by our algorithm, Then, for each path
q € IVP(r,,), fi(a) == PHI(n, &). '

Proof. We proceed by induction on the length of ¢g. This is frivial
if the length = 0. Suppose that it is true for all p, #,a, and g with
length less than some k >> 0, and let ¢ € IVPy{r,,) be of length }'g

SEC. 7-3 /| THE FUNCTIONAL APPROACH TO INTERPROCEDURAL ANALYSIS 209

Write ¢ = § || (s, n) and observe that either (m, #) € E°, in which case

f;.(d) :ﬁm,n)(fé_(a)) __>_f(m,n)(PHI(ms a)) = PHI("‘: a)
(the last inequality follows from the structure of our algorithm),
or {m,n) is a return edge, in which case ¢ can be written as
G:|lc, r)i| .|| (m, m); where ¢, = IVPy(r,,), 4, € IVP,(ry, nt), and
we have
fd@) = fol f2(a) = f3.(PHK(c, a)) = PHI(m, PHI(c, 2)) = PHI(#, @)

4. Now let g be any path in IVP(r,, r). Decompose g as in (7-3}, ¢ =
gy e ra)il - ey 75,011 4525~ Then, using the monotonicity of
F, we have

f(0) = PHI(c,, 0) = 4,
j;‘z(j:h(o)) z.ﬁh(al) 2 PHI(CZ’ al) =y

[This is because our algorithm will propagate {a,, 4,) to r,,, so that
PHI(c,, a,) will eventually have been computed.] Continuing in this
manner, we obtain f{0) = PHI(r, g,), which proves (3). This completes
the proof of the total correctness of our algorithm. M

"Example 4. Consider Example 1 given above. The steps taken by our
iterative algorithm are summarized in Table 7-2 [where, for notational con-
venience, we represent PHI as a set of triplets, so that it contains (a, b, c) iff
PHI(a, b) = c]:

Table 7-2
Initially {ry, 0, 0) {(ry, 0)}
Propagate From To Entries added to PHI WORK .
{0, 1) ry c {c;,0, 1) {(e4, 003
(1.1 ¢y £ {ra,1,1) {(ra 10}
(1, 0} rs cq (cz, 1. 0)) {{es 1]
(1. 1) r2 e C (e 1) ((e2, 1), (62, 1}
(0, 0) cy, Iy (r5. 0. 0) {{es 1), {r2, O)}
0. 1) e; ny (.0, 1) {(r2, 0), (7, O)}
(0, 0) ra 3 o (e, 0. 0) {{1. 0). (€2, 0)}
(0, 0) ra (=23 . (52' 0,0) [(nlr 0), (f-‘z- 0}, (92r O)}
{0, 1) ny €4 (4. 0,1} {(ca 0) (22, 0}, (21, 0)}
{0, 0) c n, . {n,.0,0) [(e2, 0), (&1, 0), (ny, 0)3
{1.0) 1) 1y {nz 1.0) {(e1. 0}, (72, 0), (3, 1)}
(0. 0) € ny — f(e1, 0), (n2. 0), {72, 1)}
— e — — 2 0 (m 1)
(0, 1) . ey - {{rz, 1)}
1,1 ns ey — 1%

210 TWO APPROACHES TO INTERPROCEDURAL DATA FLOW ANALYSIS / CHAP. 7

Finally we compute the x solution of Egs. {7-4) and (7-5) in step (3) of our
iterative algerithm as follows:
x,, = PHI(r,,3 =0
x,, = PHI(¢,,0) = 1
m = PHI(nls 0) = 1
x,, = PHI(e,,0) = 1
= PHI{r,,) A PHI(r,, 1) =0
x,, = PHI{c,, 0} A PHI(c,, 1) =0
x,, = PHI(n,, 0) A PHI(n,, 1) =0
x,g = PHI(Ez, 0) /\ PHI(Ez,]) = 0]
Remark: In our treatment of the functional approach, we have deliberately
avoided the issue of its efficient and pragmatic implementation for special
simple frameworks in which elirnination is feasible. For example, the iterative
solution of Egs. (7-4) may not be the best approach and could be replaced,
e.g., by interval-based analysis [Alle76]. Also one might bénefit from pro-
cessing procedures in some useful order, as in [Alle74]. In this chapter we have
preferred to emphasize the general approach and its analysis and general

applicability. Details of an efficient, pragmatic, and interval-based implemen-
tation will be discussed in a subsequent paper.

74. ‘THE CALL-STRING APPROACH
TO INTERPROCEDURAL ANALYSIS

We now describe a second approach to interprocedural analysis. This
approach views procedure calls and returns in much the same way.as any
other transfer of control, but takes care to avoid propagation along inter-
procedurally invalid paths. This is achieved by tagging propagated data with
an encoded history of procedure calls along which that data has propagated.
This contrasts with the idea of tagging it by the lattice value attained on
entrance to the most recent procedure, as in the functional approach. In our
second approach, this “propagation history” is updated whenever a call or a
return is encountered during propagation. This makes interprocedural flow
explicit and increases the accuracy of propagated information. Moreover, by
passing to approximate, but simpler, encodings of the call history, we are
able to derive approximate, underestimated information for any data flow
analysis, which should nevertheless remain more accurate than that derived

by ignoring all interprocedural constraints on the propagation. The fact .

that this second approach allows us to perform approximate data flow
analysis even in cases in which convergence of a full analysis is not ensured
or when the space requirements of a full analysis is prohibitive gives this
second approach real advantages.

SEC. 7-4 | THE CALL-STRING APPROACH TO INTERPROCEDURAL ANALYSIS 211

We will first describe our second approach in a somewhat abstract
manner. We will then suggest several modifications which yield relatively
efficient convergent algorithms for many important cases.

As before, we suppose that we are given an interprocedural flow graph
@, but this time we make an explicit use of the second representation G* =
(N*, E*, r,) of G. That is, we blend all procedures in G into one flow graph,
but distinguish between intraprocedural and interprocedural edges.

Definition. A call string p is a tuple of call blocks ¢, ¢5,...,¢; In
N* for which there exists an execution path g € IVP(r,, 1), terminating at
some n € N* such that the decomposition (7-3) of ¢ has the form
qilllew, rodll g2l - N ey ran)l 451 Where g, € TVPy(r,,) for each i< j
and q,,, € IVP,(r,,., 7). To show the relation between g and y we introduce a
map CM such that CM(q) = y. By the uniqueness of the decomposition (7-3)
(cf. Lemma 7-3.1) this map is single-valued. can be thought of as the
contents of a stack containing the locations of all call instructions which
have not yet been completed.

Example 5. In Example 1 of Section 7-3 the fbllowlng call strings are
possible: '

A—the null call string, (¢), {c,c;), (c102¢2), €ic.

However, for each n in the main program and each ¢ € IVP(r,, n), CM(g) =
A: no other call strings can “tag” such paths. All the other call strings “tag”
paths leading to nodes in the procedure p, and indicate all possible calling
sequences (i.e., contents of a stack of all uncompleted calls at some point of
the program’s execution) that can materialize as execution advances to p.

Let I denote the space of all call strings p corresponding (in the above
sense) to interprocedurally valid paths in G*. Note that if G* is nonrecursive,
then I is finite; otherwise I" will be infinite, and as we shall soon see, this can
cause difficulties for our approach.

Let (L, F) be the data flow framework under consideration. We define
a new framework (L*, F*), which reflects the interprocedural constraints in
G* in an implicit manner, as follows: L* = LT, i.e., L* is the space of all
maps from I into L. Since we assume that L contains a largest “undefined”
element €, we can identify L* with the space of all partially defined maps
from I into I — {Q}. If I" is finite, then the representation of L* as a space
of partially defined maps is certainly more efficient, but for abstract purposes
the first representation is more convenient. (In examples below, however,
we will use partial map representation for elements of L*) If £ € L* and
9 € T, then heuristically &(y) denotes that part of the propagated data which
has been propagated along execution paths in CM~1{y}.

