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Abstract
Preventing attacks proactively in modern distributed systems is a major challenge. The addition of

mandatory access control (MAC) enforcement in commodity software was supposed to prevent such
attacks by limiting the number of processes accessible to adversaries and confining those still accessible.
Unfortunately, the task of security professionals is still reactive, fixing vulnerabilities as adversaries
identify them. We claim that in order to configure systems to defend themselves from attacks proactively,
MAC enforcement must be customized to the target deployment. However, OS distributors currently
focus on designing generic MAC policies for all their customers, leaving system administrators with the
difficult task of composing and customizing these policies for their deployment manually. In this paper,
we propose the Proactive Integrity Methodology, a mostly-automated method that computes system-
wide MAC policies to prevent attacks proactively for distributed system deployments. We constructed a
tool that implements this methodology to generate system-wide, Decentralized Information Flow Control
(DIFC) MAC policies that require near-minimal effort to make an information flow safe system for Linux
web application deployments in tens of seconds. System administrators can use such a tool to generate
deployment-specific MAC policies for their distributed systems and verify whether OS distributions
satisfy those policies, enabling proactive configuration to prevent attacks.

1 Introduction
Preventing attacks proactively in modern distributed systems is a major challenge. Modern distributed sys-
tems often consist of multiple interconnected hosts running several application processes on complex plat-
forms of system software. Many application and system processes are accessible to legitimate and adver-
sarial users alike (e.g., via the network), providing entry points for attack. In web application deployments,
web server processes and network-facing daemons are all accessible to adversaries. But, this is just the start
of the challenge, as applications and system processes may also propagate data to several other processes
and even to other hosts. For example, web servers propagate requests to any number of web application
programs, any of which can be used to launch local exploits against the system software if compromised
(e.g., to install a rootkit) or can be used to propagate untrusted data to others if spoofed (e.g., SQL injection).

To control the propagation of attacks within and across hosts in a distributed system, mandatory ac-
cess control (MAC) enforcement [18, 3, 30] has been integrated into a variety of commodity software,
including operating systems [64, 58, 63], virtual machine monitors [13, 50, 29] (VMMs), user-level pro-
grams [60, 38, 65], and integrated with network access control [34, 22, 41]. OS MAC enforcement aims to
prevent attacks by reducing the number of processes that are accessible to adversaries and confining those
accessible processes to restrict the propagation of untrusted data. However, MAC enforcement at the operat-
ing system is not enough to prevent attacks because: (1) programs are often entrusted with data of multiple
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security requirements (e.g., belonging to multiple users); (2) operating systems are too complex to satisfy the
requirements of the reference monitor concept [3]; and (3) MAC enforcement in distributed systems must be
integrated among multiple hosts. The MAC enforcement in several user-level programs, VMMs, firewalls,
and network communication mechanisms has been developed to supplement OS MAC enforcement to fill
these gaps, providing the ability to enforce mandatory access control system-wide.

However, security practitioners do not appear to be reaping the benefits of all these MAC enforcement
mechanisms, as the task of security professionals is still reactive, fixing vulnerabilities as adversaries identify
them. We claim that the problem is that the current approaches for configuring MAC enforcement do not
account for the specific requirements of system deployments. As defining MAC enforcement policies is
a complex undertaking, OS distributors have taken responsibility for configuring these policies for their
system distributions, including user-level and VMM policies. However, OS distributors must define MAC
policies that permit the operations required in a wide variety of customer deployments. Distributed systems
integrate several generic, independently-developed MAC policies together, creating many unpredictable
paths for propagating attacks through systems. Automated methods to configure systems to prevent such
attacks either only consider one component’s MAC policy [36, 59, 23, 53, 11] or build system-wide attack
graphs from heuristic information rather than MAC policies [44, 56, 39], leading to incomplete analyses.

Instead, what we want is an automated approach to generate system-wide MAC policies that protect
system deployments proactively. A system administrator should be able select the software for their de-
ployment (i.e., including preconfigured MAC policies) and configure network policies (i.e., connecting the
components together), enabling an automated method to determine whether the combination proactively
defends all threats and, if so, generate a system-wide MAC policy that enforces those defenses. This may
sound like a daunting task, but the information necessary to solve such a problem is now available, partly
due to the efforts of OS distributors to configure default MAC policies for these various enforcement mech-
anisms. Our key insight is that the distribution MAC policies actually define the expected functionality of a
system, whereas the deployment specifications identify the security requirements and threats. We use the se-
curity requirements and threats to compute where defenses are necessary to protect the distributed system’s
integrity while preserving necessary function.

In this paper, we develop the Proactive Integrity Methodology, a mostly-automated approach for gen-
erating system-wide MAC policies for distributed system deployments. We solve two major challenges
in creating such a methodology. First, we need to produce comprehensive information flow models of
distributed system deployments automatically. As discussed above, distributed systems often consist of
several components, many with MAC enforcement that was developed independently, but these must be
composed into a single model to detect whether any unauthorized information flows (i.e., possible attacks)
are allowed. Recently, analyses have been developed to find such information flow errors in MAC poli-
cies [45, 61, 23, 53, 11] and programs [36], but these methods require manual input to identify security con-
straints and connect multiple policies, making them impractical for use in distributed system deployments.
We show that comprehensive information flow models can be composed automatically for deployments from
available security policies and basic deployment knowledge.

Second, often the functional requirements of systems result in information flow integrity errors, creating
a difficult manual task of resolving such errors. Recently, researchers have developed methods to automat-
ically compute near-optimal resolutions of information flow errors [25, 45], which we apply to generate
system-wide MAC policies using the Decentralized Information Flow Control (DIFC) model [27]. How-
ever, these proposed resolution methods have only been applied to single policies with simplistic resolution
requirements, so a number of challenges result, such as determining a practical definition of “near-minimal”
for distributed systems and combining the solutions to several individual resolution problems.

This research makes the following contributions.

• We develop a method to produce a system-wide information flow integrity model to evaluate whether
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the data flows authorized in a distributed system prevent illegal information flows.
• We develop a graph-cut method to resolve information flow errors for these information flow models.
• We built a tool produce DIFC-Flume MAC policies [27] mostly-automatically, demonstrated on Xen

hypervisor hosts [7] with application VMs using SELinux distributions [42].

Using this tool, we can determine whether a legal MAC policy exists, generate system-wide MAC
policies based on deployment conditions, and identify the integrity decisions that each program is expected
to make to protect the distributed system from attack proactively.

The remainder of the paper is structured as follows. In Section 2, we motivate the problem of generating
system-wide MAC policies for distributed systems and define the problem as one of finding a MAC policy
that satisfies functional and security constraints of a deployment. In Section 3, we outline the Proactive
Integrity Methodology and detail the designs for the technical tasks in the methodology. In Section 4, we
evaluate the effectiveness of an implementation of the methodology and the efficiency of its computing
tasks. Finally, we outline prior work in Section 5 and conclude in Section 6.

2 Problem Definition
2.1 Example System
Figure 1 shows a simplified web application deployment, our sample distributed system. Our web applica-
tions are so-called LAMP systems, consisting of (Apache) web servers, (MySQL) databases, and various
(Perl/PHP/Python) web application programs running on one or more (Linux) operating systems. In Fig-
ure 1, a web server application and DB each run in separate guest VMs. The purpose of this system is for the
web application to respond to requests from authorized clients, where such requests may require querying
or updating the database. The guest VMs are deployed on a host system consisting of a virtual machine
monitor (VMM) and its privileged VM, such as the Xen hypervisor [7] and its domain 0 host, respectively.
Such systems may also depend on the integrity of network servers to prevent network attacks, such as DNS
hijacking. Such a deployment would be analogous to many server systems as well as some utility computing
environments, such as a IaaS clouds (public or private).

While the web server provides access to the web application for external clients, it also provides a means
for adversaries to launch attacks against the web application and the system at large (e.g., [52]). Even if the
web server protects itself from compromise, it forwards data to other web application components (e.g.,
PHP scripts and databases) that may compromise those components (e.g., through input validation and SQL
injections). Compromised web application components may then launch local exploits against a variety of
system processes. Finally, a compromised system hosting a web server or application component can then
launch attacks against the host’s virtualization infrastructure and other hosts. Of course, web applications
are just one of the many networked applications and services to worry about.

Traditionally, it has been the responsibility of system administrators to configure security policies for
their system deployments, but the complexity of systems and of the security policies themselves has made
this task impractical. To ease the system administrators’ job, several OS distributions are now deployed
with their own mandatory access control (MAC) policies [42, 40, 63, 35], including MAC enforcement in
user-level programs [62, 46, 38, 65, 10] and VMMs [50, 13, 48], which administrators now depend upon for
the security of their deployments. However, while some attacks are being prevented, system administrators
and OS distributors are still reacting to attacks, responding to adversary exploits as they are released.

We claim that the reason for this situation is twofold. First, the distribution MAC policies are not
specialized to prevent attacks in a deployment, because distribution MAC policies permit the functionality
required of many deployments. While OS distributors often consider distinct deployments in the design
of distribution MAC policies, these MAC policies must permit the operations necessary for any reasonable
customer deployment to function properly. Readers may remember that when SELinux was introduced,
many found it to be unusable because the policy was too restrictive to run their desired programs effectively
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(or even boot the system). As a result, distribution MAC policies often permit far more permissions than
are required in a specific deployment (see Section 4), leading to attacks that are unexpected when composed
into distributed systems.

Second, in designing distribution MAC policies, OS
Server Host

DB 
VM

Priv VM

VMMNetwork Servers
(DNS, DHCP)

App Client

Web 
VM

MAC MAC

MAC

MAC

Figure 1: End-to-end web application system

distributors often must assume that programs securely
handle any untrusted inputs that they may receive. How-
ever, there is often a mismatch between the program in-
terfaces (e.g., system calls) that may receive untrusted
input in a deployment and the program interfaces that
are designed to defend against untrusted input. For ex-
ample, logrotate is a utility to perform log rotation that
has long existed on Unix systems. While it was well
known that the log files themselves might contain un-

trusted input, the fact that the log filenames are also attacker-controlled was overlooked until recently (CVE-
2011-1155), allowing an attacker to deny service by inserting special characters in such filenames.

Instead, what a system administrator would like is a system-wide MAC policy that prevents attacks
proactively for their deployment. When a system administrator chooses the deployment software (includ-
ing their default MAC policies for those components that perform MAC enforcement) and configures the
software and network policy, she would like a MAC policy that identifies how all threats created by such
a deployment are defended, preferrably in terms of classical information flow integrity [9, 8]. We envision
that this can be accomplished in two steps. First, OS distributors design their MAC policies to account for
program interfaces that must defend the programs from attacks in a variety of deployments. Second, system
administrators generate system-wide MAC policies for their specific deployments that are consistent with
the program defenses to proactively defend their distributed systems from attack. Interestingly, both of these
tasks correspond to the same conceptual problem, automatically generating system-wide MAC policies with
near-minimal number of resolutions for information flow errors, as described below.

2.2 Policy Generation Problem
The general problem is to take the existing MAC policies of the software components in a system deployment
and a goal policy that describes the legal and necessary operations in that deployment to generate a system-
wide MAC policy that minimizes the mediation that components must perform to satisfy the goal policy. To
model this problem, we suggest using the information flow approach used in several program and system
policy analyses [36, 23, 53, 26, 45, 11, 61], where: (1) component MAC policies are converted to data
flow graphs representing the authorized information flows in each deployment and (2) the legal operations
in goal policies are specified in terms of lattice integrity policies [9], consisting of integrity levels and the
authorized information flows among them. Source and sink nodes in the data flow graph are assigned to
integrity levels in the lattice policy, enabling identification of information flow errors: nodes that receive
input data of integrity levels lower than the node’s integrity level.

The aim is to generate a system-wide MAC policy that contains no information flow errors, thus pre-
venting all operations that do not satisfy the lattice policy. This can be achieved by either: (1) removing data
flow edges in the graph until no information flow errors remain or (2) adding mediation that changes the
level of data output by a mediating node to resolve information flow errors. Removing data flow edges may
not be permissible because those edges may imply operations necessary to provide system function. Adding
mediation is not free however, as mediation must be implemented by new processes (e.g., guards) or adding
(or acknowledging) mediation abilities in existing programs (e.g., transformation procedures [12]). Thus,
our aim is to minimize mediation while satisfying information flow integrity.

This policy generation problem is computationally complex because both information flow integrity
(negative) constraints and functional (positive) constraints must be satisfied simultaneously. There are typi-
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cally two approaches taken to solving such problems: (1) solve for the set of constraints using off-the-shelf
SMT solvers [15, 24] or (2) find a satisficing, although potentially sub-optimal, solution using a greedy
method. While it may be possible to encode our problem for an SMT solver, a key challenge is that the
functional constraints of a system deployment are difficult to predict. Instead, we develop a greedy method
that produces near-minimal mediation to satisfy information flow integrity given a particular function spec-
ification. Users can choose the expected functional requirements (e.g., using other analyses, see Section 4)
to explore their impact on mediation. We note that commodity MAC policies represent functional require-
ments, often the upper bound of system function, as they were created to satisfy all legitimate deployments.

Developing a greedy solution has several challenges that we address in this paper. First, the multiple,
independent MAC policies in a system must be composed into a single, coherent model. For example,
the integrity of the example web application depends on the integrity of the MAC policies of the web
server, database, and privileged VMs, as well as the VMM MAC policy and the MAC policies of some
network servers. Second, often information flow requirements are not explicitly specified in commodity
system deployments, requiring researchers to specify constraints manually. However, manual specification
of system-wide information flow integrity is not practical for system administrators. Third, once a solution is
found must be converted into a system-wide MAC policy. However, commodity MAC policies only express
authorized operations, not mediation, so we cannot simply convert the result back to a commodity MAC
policy without losing information.

3 Proactive Integrity Methodology
Figure 2 shows an overview of our Proac-
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Figure 2: Proactive Integrity Methodology Tasks

tive Integrity Methodology. This method-
ology generates system-wide MAC poli-
cies for distributed systems composed from
a set of independent software components
by solving three tasks. The first task auto-
matically builds a system-wide, data flow
graph using the components’ internal and

external MAC policies, as described in Section 3.2. This hierarchical data flow graph represents all the
possible communication paths in the system. The second task annotates the data flow graph generated in
the first task with security constraints necessary to create a system-wide, information flow integrity model,
as described in Section 3.3. In particular, this task generates an integrity lattice policy for the distributed
system and maps the integrity levels in that policy to the data flow graph. The third task applies a graph-cut
method to generate a system-wide MAC policy that complies with the integrity lattice policy of the infor-
mation flow integrity model, identifying where exceptional mediation is necessary to prevent information
flow errors automatically, as described in Section 3.4. Using this solution, this task generates a system-wide
MAC policy in the Decentralized Information Flow Control (DIFC) model of the Flume system [27].

The MAC enforcing software components in the distributed system are the input to this methodology,
where each component is defined by the following fields:
• Name: Unique name of this component in the distributed system
• Parent: Unique name of the parent of this component
• MAC Policies: Consisting of internal and external MAC policies, where: (1) an internal MAC policy

governs operations for subjects and objects internal to the component and (2) an external MAC policy
governs how subjects and objects internal to this component communicate with external components
• Integrity Requirements: Consisting of the component role, target application, and integrity depen-

dencies, where: (1) the component role identifies the component’s role in protecting system-wide
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integrity; (2) the target application identifies MAC policy subjects and objects that must be integrity-
protected; and (3) integrity dependence defines relations between a MAC policy subject or object and
another MAC policy subject or external component that must protect its integrity

Each component in a distributed system can be uniquely identified by its name, so other components
can refer to it. Currently, we use IP addresses for names of operating systems (and VMs) and VMMs are
associated with their physical machines. Each component has a single parent component, except for the
root component, that defines its placement in the hierarchical data flow graph (see Section 3.2). The com-
ponent MAC policies define all the authorized operations that component permits its subjects to perform
on its objects (i.e., internal MAC policy) or upon other components in the distributed system at large (i.e.,
external MAC policy). For an OS distribution, the distribution MAC policy is an internal MAC policy and
the network policy is an external MAC policy1. Finally, a component’s integrity requirements identify its
own integrity-critical data and the relative integrity of that data. The target applications of the component
identify the subjects and objects in the component’s MAC policy that require integrity protection. The com-
ponent’s role and integrity dependence requirements specify relative integrity relationships. We augment
this specification with a built-in knowledge base to infer each system’s integrity lattice policy, as described
in Section 3.3.

3.1 Assumptions
The key assumption in this work is that the programs, operating systems, and VMMs that enforce MAC
policies or provide mediation do so correctly. This is a significant assumption given the size and complexity
of such software, but this work’s focus is on how one provides and verifies the placement of defenses
that would proactively protect the integrity of entire distributed systems. Specifically, we assume that the
programs, operating systems, and VMMs satisfy the reference monitor concept [3], which requires that a
reference validation mechanism (i.e., MAC enforcement) must “must always be invoked” upon a security-
sensitive operation, “must be tamperproof,” and must be “small enough to be subject to analysis and tests,
the completeness of which can be assured,” which implies correctness. The reference monitor concept is
certainly the goal of several commodity reference validation mechanisms, although they do not meet the
letter of these requirements. Also, our method can help improve tamperproofing by protecting the resources
critical to MAC enforcing components.

Also, our methodology assumes an interaction between OS distributors and programmers, where OS
distributors use our method to find where mediation is necessary in programs and programmers will supply
effective mediation code. At present, such a dialogue is ad hoc, but we envision that such a method may
provide concrete motivation for programmers to improve mediation. Our method does not specifically
depend on whether it is the programmer or the OS distributor who drives the process of adding mediation to
address deployment threats, however.

Finally, current commodity MAC policies cannot express mediation, so we instead leverage “practical”
integrity models that define MAC policies that express how programs use mediation to resolve information
flow errors [54, 28, 57, 27, 67]. In particular, our method generates MAC policies using the DIFC-Flume
model [27]. Thus, we assume that a commodity system that is capable of enforcing the DIFC-Flume policy
model. Since the Flume system was implemented as an extension to a commodity system (Linux), we
believe that such an assumption is acceptable.

3.2 Constructing Hierarchical Data Flow Graphs
In the first task, we develop a method that uses the MAC policies for all the MAC-enforcing components in
a distributed system to construct a hierarchical data flow graph that represents all the authorized operations
in the distribution system.

1We also use external MAC policies to describe which OS processes may use which VMM hypercalls in a virtualized system.
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data structure are well-known [1].
A hierarchical state machine K is a tuple (K1, ...Kn) of

modules, where each module Ki has the following compo-
nents:

• A finite set Vi of nodes.
• A finite set Bi of boxes.
• A subset Ii of Vi, called entry nodes.
• A subset Oi of Vi, called exit nodes.
• An indexing function Yi : Bi → {i + 1, ..., n} that maps

each box of the i-th module to an index greater than i. That
is, if Yi(b) = j for box b of module Ki, then b can be viewed
as a reference to the definition of module Kj .

• If b is a box of the module Ki with j = Yi(b), then pairs
of the form (b, u) with u ∈ Ij are the calls of Ki and pairs
of the form (b, v) with v ∈ Oj are the returns of Ki.

• An edge relation Ei consisting of pairs (u, v), where the
source u is either a node or a return of Ki and v is either a
node or a call of Ki.

The key concept in HSM is a module, which represents
a single graph of nodes and edges within the HSM. Each
component that enforces its own MAC policy is represented
by a module. Components that do not enforce a MAC pol-
icy are represented as nodes. The other important feature
of the HSM model is its flexible model for expressing data
flows between modules. Boxes describe independent data
flows from a parent node to a child node through calls and
returns. This flexibility is important because data may enter
a module from multiple sources, and each of these distinct
inputs may be represented precisely using the HSM model.
Also, a module may receive multiple flows from the same
source with distinct security requirements, but the model
can be constructed to represent such flows precisely while
eliminating redundant flows.

We find that the HSM model can accurately model the
data flows among components in end-to-end systems, be-
cause software layers are arranged hierarchically and com-
ponents are encapsulated by the peer layers, as shown in
Figure 4. A system is hierarchical in that the responsibility
for security decisions is monotonically-reduced from the root
to the leaves. For example, a VMM has full access to the
physical resources of the platform, VMs have a distinct sub-
sets of these resources (e.g., consider physical memory), and
each VM process may only access a subset of the resources
available to its VM. A system is also encapsulated in that all
interactions between two peer components are implemented
by an ancestor layer (usually the parent). For example, an
operating system or VMM provides the only mechanisms
available for two processes to communicate1.

5.2 Compliance Model
Once a model of the end-to-end system is constructed,

there are often information flow integrity errors. We want
to produce mediation placements to resolve these errors that
present a minimal cost of defending the system. Pike [44]
and our prior work [23, 24] independently found that such
mediation placements could be estimated as graph-cuts au-
tomatically. In this work, we use the compliance analysis
model defined below:

1. A directed data flow graph G = (V, E) consisting of a
set of nodes V connected by edges E.

2. A lattice L= {L,#}. For any two levels li, lj ∈ L,
li # lj means that li ‘can flow to’ lj .

3. There is an import mapping function M : V → PL

where PL is the power set of L. i.e., each node is
mapped either to a set of levels in L or to ∅.

4. The lattice imposes security constraints on the infor-
mation flows enabled by the data flow graph. Each
pair u, v ∈ V s.t. [u ↪→G v ∧ (∃lu ∈ M(u), lv ∈ M(v).
lu '#L lv)], where ↪→G means there is a path from u to
v in G, represents an information flow error.

It has been shown that programs can be automatically
translated into such a model [35], as used by King et al. [24],
and we show that a MAC policy can also be translated into
the model automatically, based on previous work [44, 55,
50, 8, 21]. In a MAC policy, operations can be classified
as read-only, write-only, and read-write, between subject la-
bels and object labels in the policy. From this classifica-
tion, a directed data flow graph can be constructed where

1While two processes may setup shared memory to commu-
nicate without OS intervention, the OS must authorize such
memory mappings.
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• A subset Ii of Vi, called entry nodes.
• A subset Oi of Vi, called exit nodes.
• An indexing function Yi : Bi → {i + 1, ..., n} that maps

each box of the i-th module to an index greater than i. That
is, if Yi(b) = j for box b of module Ki, then b can be viewed
as a reference to the definition of module Kj .

• If b is a box of the module Ki with j = Yi(b), then pairs
of the form (b, u) with u ∈ Ij are the calls of Ki and pairs
of the form (b, v) with v ∈ Oj are the returns of Ki.

• An edge relation Ei consisting of pairs (u, v), where the
source u is either a node or a return of Ki and v is either a
node or a call of Ki.

The key concept in HSM is a module, which represents
a single graph of nodes and edges within the HSM. Each
component that enforces its own MAC policy is represented
by a module. Components that do not enforce a MAC pol-
icy are represented as nodes. The other important feature
of the HSM model is its flexible model for expressing data
flows between modules. Boxes describe independent data
flows from a parent node to a child node through calls and
returns. This flexibility is important because data may enter
a module from multiple sources, and each of these distinct
inputs may be represented precisely using the HSM model.
Also, a module may receive multiple flows from the same
source with distinct security requirements, but the model
can be constructed to represent such flows precisely while
eliminating redundant flows.

We find that the HSM model can accurately model the
data flows among components in end-to-end systems, be-
cause software layers are arranged hierarchically and com-
ponents are encapsulated by the peer layers, as shown in
Figure 4. A system is hierarchical in that the responsibility
for security decisions is monotonically-reduced from the root
to the leaves. For example, a VMM has full access to the
physical resources of the platform, VMs have a distinct sub-
sets of these resources (e.g., consider physical memory), and
each VM process may only access a subset of the resources
available to its VM. A system is also encapsulated in that all
interactions between two peer components are implemented
by an ancestor layer (usually the parent). For example, an
operating system or VMM provides the only mechanisms
available for two processes to communicate1.

5.2 Compliance Model
Once a model of the end-to-end system is constructed,

there are often information flow integrity errors. We want
to produce mediation placements to resolve these errors that
present a minimal cost of defending the system. Pike [44]
and our prior work [23, 24] independently found that such
mediation placements could be estimated as graph-cuts au-
tomatically. In this work, we use the compliance analysis
model defined below:

1. A directed data flow graph G = (V, E) consisting of a
set of nodes V connected by edges E.

2. A lattice L= {L,#}. For any two levels li, lj ∈ L,
li # lj means that li ‘can flow to’ lj .

3. There is an import mapping function M : V → PL

where PL is the power set of L. i.e., each node is
mapped either to a set of levels in L or to ∅.

4. The lattice imposes security constraints on the infor-
mation flows enabled by the data flow graph. Each
pair u, v ∈ V s.t. [u ↪→G v ∧ (∃lu ∈ M(u), lv ∈ M(v).
lu '#L lv)], where ↪→G means there is a path from u to
v in G, represents an information flow error.

It has been shown that programs can be automatically
translated into such a model [35], as used by King et al. [24],
and we show that a MAC policy can also be translated into
the model automatically, based on previous work [44, 55,
50, 8, 21]. In a MAC policy, operations can be classified
as read-only, write-only, and read-write, between subject la-
bels and object labels in the policy. From this classifica-
tion, a directed data flow graph can be constructed where

1While two processes may setup shared memory to commu-
nicate without OS intervention, the OS must authorize such
memory mappings.

Figure 3: Encapsulated hierarchical graph definition for Hierarchical State Machines [2] (HSMs)

3.2.1 Hierarchical Data Flow Graphs
Prior work has defined methods to convert individual programs [36, 16] and system MAC policies to data
flow graphs to find information flow errors [45, 60, 53, 23, 11]. In a MAC policy, authorized operations can
be classified as read-only, write-only, and read-write, between subject labels and object labels in the policy2.
From this classification, a directed data flow graph can be constructed where the nodes are the subject and
object labels and the edges are the flows resulting from the authorized operations.

Distributed systems often consist of multiple components that enforce independent MAC policies, so
there is a need to build a unified data flow graph from multiple MAC policies that represents all authorized
data flows and enable optimizations to reduce unnecessary graph complexity. We find that distributed sys-
tems consist of a set of encapsulated software components that mediate all the operations of their subjects,
and that these components are arranged hierarchically, where processes run on operating systems, which
may run on VMMs, which may be a host in the network. Figure 3 shows the definition for the encapsulated
hierarchical model we use, which is the graph model used in hierarchical state machines [2] (HSMs). Algo-
rithms have been designed that solve a variety of computing problems using this model, such as reachability,
equivalence, and inclusion [1].

The key concept in an HSM graph is a module, which represents a single subgraph of nodes and edges
within an HSM graph. Each component’s internal MAC policy is represented by a module. Subjects and
objects that do not enforce a MAC policy are represented as nodes in a module. The other important
feature of the HSM model is its flexible model for expressing data flows between modules. Boxes describe
independent data flows from a parent node to a child node through calls and returns. Using boxes, an external
MAC policy can be converted to calls and returns to boxes in the graph precisely.

3.2.2 Constructing HSM Graphs
The overall approach is to create an HSM module for each internal MAC policy, which covers all of the
information flows authorized by those policies. Then, we connect the HSM modules using the external
MAC policies, which govern interaction between components. We demonstrate the generation of inter-
module connections using the network policy shown in Table 1, but other policies, such as the informal
policy governing access to security-sensitive VMM hypercalls, also enable connections.

Create the Root HSM Module. The root module consists of data flows among the subjects and objects
in the internal MAC policy of the root component. For a distributed system, the root policy is a network
policy, and for a single host the root policy is a VMM or OS MAC policy. For a network policy, the root
module includes a node for each IP address and a directed edge (u, v) if node u is authorized to send to node
v. For a MAC policy, a node is a subject or object label in the policy, and a directed edge (u, v) is added for
each subject u that can write to object v or each object u that can be read by subject v. In both cases, the
root module represents the authorized data flows among components.

Create a Child HSM Module. If one of the nodes in the root HSM module enforces its own MAC
policy3 (VM or host), then a child HSM module will replace this node. The internal nodes and edges of

2In this paper, we use label for the MAC policies (e.g., SELinux and DIFC-Flume) and level for the lattice nodes, as in the
information flow definition of Section 3.3.1.

3A subnet policy is also possible below a root network policy.
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VM Policy:
allow httpd t http server packet t:packet send;
allow httpd t http server packet t:packet recv;
Network Policy: (iptables)
iptables -t mangle -A INPUT -p tcp --dport 80
-d 130.203.32.56 -j SECMARK
--selctx system u:object r:http server packet t:s0

iptables -t mangle -A OUTPUT -p tcp --sport 80
-s 130.203.32.56 -j SECMARK
--selctx system u:object r:http server packet t:s0

Table 1: SELinux and iptables Secmark policy excerpts. The SELinux policy specifies the subjects that have access to network
communication channels and to what channels, while the network policy specifies the authorized communication channels.
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Figure 4: Representing information flows between nodes in the HSM model by: (a) merging all security requirements; (b) keeping
the security contexts separate via separate flows; and (c) depending on nodes to demultiplex security contexts.

a child HSM module will be created in the same manner as for the root module, but additional nodes and
edges are necessary to connect this child to its parent.

To determine the connections, we use the external MAC policies, such as the labeled network policy of
the VM or host. For a particular network policy rule, an entry (exit) node is created in the child module and
the child’s internal nodes representing its subjects with access to that network communication are connected
to that entry (exit) node. In the parent module, a box is created that is connected to the entry (exit) node.
Nodes in the parent module that want to communicate with the child must perform a call (box and entry
node) and return (box and exit node).

Table 1 shows excerpts of Secmark network [34] and SELinux MAC [42] policies associated to a web
server VM. The Secmark network policy would cause entry and exit nodes to be created for communications
to and from 130.203.32.56, respectively. The SELinux policy authorizes the internal node for the httpd t
subject to read from that entry node and write to that exit node. A call and return are created in the parent
module for the box associated with this module to send and receive communications for host 130.203.32.56.
If the client also has a module, then the returns and calls would be linked together in the parent module.
There are some options for doing this, which we discuss below.

Connecting through Parent Modules. A question is how to connect an entry (exit) node in one module
to a call (return) for another module through a parent. The naive way is to use the edge between hosts
authorized by the parent’s network policy, as shown in Figure 4(a). However, as we can see, this would mix
all of the output data in the single edge, so all the host’s transmitted data would reach all the destination
processes, rather than providing the data with the expected integrity to each. The HSM model enables these
flows to be separated by having a distinct flow from host’s call or return to the destination’s call or return in
Figure 4(b).

The latter approach preserves the security context for the distinct communications, but the downside is
that it may create many edges. When we consider a VM system, such as Xen, which has all networking
redirected to a privileged VM, many edges with the same destinations will be created to keep the security
information distinct. Our aim is to multiplex data of multiple integrity levels4 where nodes are simply trans-
porting information with distinct security contexts and demultiplex the data at nodes entrusted to do such

4The data flow graph is used to propagate data and their integrity levels, which is made clear in Section 3.3.
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Kernel-Dom0
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Target Applications
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Web VM: Kernel-Web
Dom0: Kernel-Dom0
External

Figure 5: Integrity Requirements and Resulting Integrity Lattice for Web Application Example

enforcement (e.g., OS kernel). Figure 4(c) shows that a single path can be created between the two modules
for transmitting data with multiple integrity levels, but the flows from the receiver’s entry node are anno-
tated with the demultiplexed levels before being forwarded to internal module nodes. Such a mechanism
corresponds to network demultiplexing in the kernel and/or privileged VM.

3.3 Constructing Information Flow Integrity Models

In the second task, we develop a method that uses the data flow graph generated in the first task and the com-
ponents’ integrity requirements to construct an information flow integrity model of the distributed system
sufficient to detect information flow errors.

3.3.1 Information Flow Model
In this work, we use the information flow model5 defined below:

1. A directed data flow graph G = (V,E) consisting of a set of nodes V connected by edges E, as
defined by the HSM data flow graph in Figure 3.

2. A lattice L= {L,�}. For any two levels li, lj ∈ L, li � lj means that li ‘can flow to’ lj .
3. There is a level mapping function M : V → PL where PL is the power set of L (i.e., each node is

mapped either to a set of levels in L or to ∅).
4. The lattice imposes security constraints on the information flows enabled by the data flow graph. Each

pair u, v ∈ V s.t. [u ↪→G v ∧ (∃lu ∈M(u), lv ∈M(v). lu 6�L lv)], where ↪→G means there is a path
from u to v in G, represents an information flow error.

It has been shown that programs can be automatically translated into such a model [37], and we show
that a MAC policy can also be translated into the model automatically.

The main challenges are to determine the integrity lattice and the level mapping function for a distributed
system. In single policy analyses, such information must be specified manually. While it may be possible to
identify integrity requirements within a single MAC policy, we envision that OS distributors, and especially
system administrators, will need assistance in determining the integrity lattice policy and level mapping
function implied by the composition of independent MAC policies in a distributed system.

3.3.2 Inferring Lattices and Level Mappings
Pre-defined rules use components’ integrity requirements (see Section 3) to create integrity levels, define the
level mapping function to map integrity levels to nodes in the data flow graph, and identify the information
flows that should be authorized by the system’s integrity lattice policy. Using the method described below,
the integrity lattice for the web application example system is shown in Figure 5.

Integrity Levels. The components’ user-supplied target applications identify subjects and objects in a
MAC policy that require integrity protection and the name of the level. A new integrity level is created for
each target application (and component). For example, integrity levels are created for the Apache web server

5We use this information flow model to reason about integrity only.
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(level Web in Figure 5), MySQL database in the web application example (DB), and Xen services in Dom0
(Xen). Our methodology also includes pre-defined mapping rules that automatically identify integrity levels
that are present in all deployments, such as kernel levels (e.g., Kernel-Web, Kernel-DB, and Kernel-Dom0)
and assign subjects and objects to those levels. Since Xen services can write kernel objects, they are also
assigned the Kernel-Dom0 integrity level. The resultant level mapping function assigns the new integrity
levels to the nodes corresponding to the subjects and objects.

Integrity Dependence. Once the integrity levels are identified, it is necessary to determine relative
integrity of the data of each level. We use a combination of pre-defined integrity dependence rules and user-
supplied component role and integrity dependence statements to determine the dependence among integrity
levels shown in Figure 5. First, pre-defined dependence rules leverage well-known integrity relationships.
For example, the hierarchical ordering of the components in the hierarchical data flow graph already im-
pose an integrity dependence. For example, VMMs must have higher integrity than VMs. User-defined
component roles define trusted services, such as privileged VMs, which are higher integrity than guest VMs
(e.g., Kernel-DB and Kernel-Web depend on Kernel-Dom0). Similarly, every application depends on its
OS’s trusted computing base. Therefore, Kernel-DB, Kernel-Web and Kernel-Dom0 have the highest in-
tegrity in their respective applications. Finally, users may specify additional deployment-specific integrity
dependence statements in the component definition. In our example, the Apache web server depends on the
MySQL database (to isolate web application data), so an integrity dependence is created between the levels
assigned to them. If levels are not assigned to both nodes, then an information flow edge is created from the
protector to the dependent node.

Integrity Lattice. The integrity lattice consists of the integrity levels and the authorized information
flows among them (see Section 3.3.1 for a formal definition). The authorized information flows identify
cases where the data of one integrity level may flow to data of another level, defined by the integrity depen-
dence relations. Otherwise, integrity levels are assumed to be incomparable, which preserves a conservative
interpretation of the security (i.e., only information flows that are explicitly approved are allowed). An Ex-
ternal level is always included as System-Low, representing data that enters the distributed system that is
unlabeled.

3.4 Resolving Information Flow Errors
In the third task, we develop a graph-cut method to generate system-wide MAC policies that comply with
the integrity lattice policy of the information flow model using near-minimal number of mediators.

3.4.1 System-Wide MAC Policies
All system-wide MAC policies generated by our methodology must comply with the integrity lattice of the
information flow model. Recall that a MAC policy is represented by the data flow graph of the information
flow model, so such compliance is obtained only if the data flow graph only permits information flows that
are authorized in the lattice policy or has mediation that prevents information flow errors. In our method-
ology, we do not change the possible data flows, but instead generate near-minimal mediation necessary to
eliminate all information flow errors automatically.

We define a system-wide mediation for the lattice L for data flow graph G as follows: for a path u ↪→G v
where lu 6�L lv is an information flow error, if a node n on that path is a mediator, we perform level
manipulation such that data on any outgoing edge from the node n has some level l′ such that l′ � lv (i.e.,
the integrity level of the data leaving the node n is at least lv). This resolves the information-flow error.

The resultant system-wide MAC policy consisting of data flows and mediators is converted to the De-
centralized Information Flow Control (DIFC) defined for the Flume system [27]. We show in Appendix A
that the Flume model is equivalent to the information flow model in Section 3.3.1. In short, levels in our
model correspond to labels in the DIFC-Flume model, where DIFC-Flume labels represent a set of satisfied
integrity requirements (i.e., the set of levels dominated by or equal a particular level in our model). Me-
diation in our model corresponds to dual capabilities in the DIFC-Flume model, where a dual capability
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1 MEDIATIONRESOLUTION(G,L,M,MaxRaise) {
2 LS ← TopologicalSort(L)
3 for (l ∈ LS)
4 do Sources← {li ∈ L | li 6� l}
5 G′ ← GraphCopy(G)
6 AddSuperSource(G′, Sources,′ SuperSource′,M)
7 AddSink(G′, l,M)
8 SR← SliceReachable(G′,′ SuperSource′, l)
9 AdjustWeights(SR, l,MaxRaise)

10 Mediators←Mediators ∪
11 (l,MinimumCut(SR,′ SuperSource′, l))
12 }

Figure 6: Mediation Resolution Algorithm

permits a subject to add (endorse) or remove (downgrade) an integrity level. We note that automatically
generating system-wide MAC policies in DIFC-Flume for commodity distributed systems is a significant
result by itself, as to date Flume policies have been developed manually.

3.4.2 Computing Mediation Placements
Researchers had the insight that placing a mediator that resolves an illegal information flow between two
levels li and lj is tantamount to generating a vertex cut6 of the information flow graph with the nodes
mapped to li as the sources and the nodes mapped to lj as the sinks [25, 45, 26]. This property is called
Cut-Mediation Equivalence. We extend this solution to general lattices, as required for this information flow
model. We also customize the solution to account for components that have limited mediation abilities (i.e.,
may be able to mediate some, but not all errors).

Given a graph G=(V,E) and a latticeL={L,�}, there is a cut problem when there is an information flow
error between two nodes with the level mapping function M . A cut problem set consists of the information
flow errors, as defined in Section 3.3.1. Researchers have shown that the multicut problem, the problem of
find the minimal cut set for a cut problem set, is NP-Hard [14]. They proposed a simple greedy solution to
the problem that returns the union of the solutions for each individual cut problem.

To improve on the simple greedy approach, we use the insight that classical integrity encourages pro-
cesses to upgrade input integrity to their level [12]. We note that each node has a limit regarding how high
it may upgrade that we call its maxraiselevel. A node’s maxraiselevel is limited to its own level, if mapped,
or that of its closest ancestor that is mapped in the hierarchical graph. The graph-cut procedure produces
a raiselevel l′ for mediators which is at most maxraiselevel. We use these raiselevels to define a property
called Mediation Dominance [5]. This property states that solving a cut problem in graph G for level l1 may
solve any overlapping problem in the same graph G for a level l2 if l1 � l2. The intuition behind this is that
since l1 is higher integrity than l2, the semantics of mediation implies that any mediators that can mediate
for l1 can automatically mediate for l2. Therefore, by solving the cut problems for l1 before l2, we get two
advantages: (1) we may solve a smaller problem for l2 (compared to solving the problem for l2 independent
of l1) since mediation dominance enables us to remove the mediators computed for l1 and any flows they
fostered before solving the problem for l2 and (2) if there is an overlap in the graph between the different
cut problems of comparable lattice levels, then the size of ordered cut solution can be smaller than the naive
solution, a union of the individual solutions.

We propose an algorithm, MEDIATION RESOLUTION, that solves cut problems of graph G for the lattice
L, whose pseudocode is shown in Figure 6. The algorithm receives a data flow graph G, a lattice L, the
mapping M of nodes to levels, and the maxraiselevels for the mapped nodes MaxRaise. Line 2 first sorts

6In graph theory, given a graph G=(V,E), a vertex cut of this graph with respect to a source and a sink is a set of vertices whose
removal will divide the graph into two parts, one containing the source and the other containing the sink, such that the sink can no
longer be reached from the source.
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Figure 7: Representation of interfaces. Program s1 has two interfaces, int1 and int2, to access objects of labels t a, t b,
and t c. Level l1 propagates to s1 via its interface int1 only.

the levels in the lattice to create its topological sort LS. Line 4 determines the set of labels that conform the
cut problem, (i.e., the labels that cannot flow to the sink that is being analyzed), line 5 creates a copy of the
graph for the current cut-problem, and line 6 creates a SuperSource connected to the nodes mapped to levels
identified in line 4. Line 7 adds a new node to represent the sinklabel l and adds an edge (n, l) for every
node n that is mapped to label l. Line 8 creates a slice of the graph with only the nodes that can reach the
sink. Line 9 adjusts weights to account for the fact that not all nodes can be mediators for a sink. Finally,
line 10 and 11 compute the minimum cut for that particular cut problem and adds the new set of mediators
to the global set of mediators.

The running time of the algorithm is dominated by the time of computing the MinimumCut for each sink,
(for every label in the lattice L = {L,�}). The running time of the MinimumCut algorithm is O(n3), thus,
the running time of the MEDIATIONRESOLUTION algorithm is O(|L|.n3). The algorithm and a detailed
explanation are provided in a tech report [5].

3.4.3 Mediation Costs
OS MAC policies are defined in terms of programs, but practical integrity requires defenses be placed
at particular program interfaces (i.e., system calls) where mediation is necessary. For example, the Flume
system permits the program to choose which system calls may receive data of lower integrity than the process
by using its capabilities. Thus, in order to evaluate the cost of mediation, it is necessary to determine the
cost of defending program interfaces that may receive untrusted inputs.

There are two options for representing the cost of mediation for program interfaces. First, each node
may be associated with a mediation cost, indicating the number of interfaces to mediate for that node7. This
approach assumes that all low integrity inputs will always reach all the program interfaces, regardless of
which MAC labels are accessed by which interfaces.

Second, a node can be created for each interface in the program, and an edge is added from a MAC
label node to an interface node only when it is known that subjects or objects with that MAC label are read
by that interface. Determining which interfaces receive which data is not specified at present, but can be
estimated through runtime analysis [4]. We explore how this approach may be leveraged in the evaluation,
see Section 4. Figure 7 illustrates how the data flow graph would be modified.

4 Evaluation
In this section, we present the results of running a prototype implementation of the Proactive Integrity
Methodology on the web application system presented in Section 2.1. To demonstrate the tool, we examine
two questions (see Section 4.2): (1) how can OS distributors use the tool to find the mediation required for
their systems and (2) how can system administrators use the tool to ensure that all necessary mediation is
required and to attribute integrity enforcement requirements among components.

7Since we are compute edge cuts, this is performed by creating a pseudonode for each node with and edge between them of the
appropriate weight.
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System Problem Size Solution
Rules Subjs Objs Intfs Ports Nodes Edges Cut Subjs Cut Intfs

Run One 1,248,590 325 1,775 7,093 37 9,230 77,091 50 2048
Run Two 1,248,590 325 1,771 6,802 37 8,935 35,105 35 498
Run Three 1,541,993 394 2,186 8,322 42 10,944 44,638 43 511

Table 2: Analysis problems and results for: (1) the web application with all authorized operations (Run One); (2) the web application
with operations logged based on runtime analysis (Run Two); and (3) the web application plus a DNS server system with operations
logged based on runtime analysis (Run Three).

4.1 Prototype System and Experiment
The prototype has an Eclipse front-end that provides access to: (1) parsers to build system-wide HSM
data flow graphs for XSM/Flask [13], SELinux [42], Labeled IPsec [22], and iptables with the Secmark
extension [34]; (2) mapping rules to infer integrity level mappings and integrity lattices for constructing in-
formation flow integrity models; (3) the Lemon graph library [43] to compute graph cuts for our information
flow model; and (4) a module for generating DIFC-Flume policies from graph cuts. The code breakdown is
as follows: (1) 4303 source lines of code (SLOC) for the Bison parsers; (2) 405 SLOC in Prolog for map-
ping/dependence rules; (3) 1189 SLOC for using the Lemon graph library to solve multiple cut problems;
and (4) 1654 SLOC in C for generating DIFC-Flume policies.

We evaluate a version of the example system described in Section 2.1. The focus is on the web server
host, which runs Xen VM system 4.1, consisting of Dom0 privileged VM, web server VM including an
Apache web server and web application, and MySQL database VM. Also, there is a separate user VM that
is not part of the web application (i.e., they are mutually distrustful). Each VM runs the Ubuntu 2.6.31-
23-generic kernel. The Xen hypervisor enforces XSM/Flask policies [13], and each of the VMs enforce
SELinux policies [42]. While all of the OS policies are SELinux, they are independent in the sense that each
policy supports a distinct set of applications and these policies do not refer to the interactions among VMs.
Also, each VM runs an iptables firewall with the Secmark extension [34] to govern network communications.
We assume that secure communication (e.g., IPsec or SSL) is used to protect any channel that carries data
between hosts on a labeled channel. Unlabeled channels are given the “External” level (i.e., system-low).
Finally, the other hosts are clients of the web application and an external network server for processing DNS
requests. All clients are assumed to be untrusted.

4.2 Experimental Results
Generating Mediations. In the first experiment, we compute the mediation required in the web application
system. For this experiment, we consider two cases: (1) Run One, where we assume that all authorized
operations in the MAC policies will be performed by the web application system, and (2) Run Two, where
only operations collected from a runtime analysis of the system are used in the analysis. Run One provides
an upper bound for the amount of mediation required in a distributed system since it includes all possible
operations at all interfaces. Run Two provides an estimate for the lower bound for the amount of mediation
required since only the operations logged in a typical deployment are included. We use the Linux test suites
supplied with Apache web servers and MySQL databases to generate the runtime data. We logged the MAC
policy labels used at each program interface to determine the permissions used at runtime 8.

Table 2 shows the analysis results. First, the number of subjects and objects in the two versions of the
system are nearly identical (i.e., some object labels were not used in the runtime case), but the number of
objects accessed by individual subjects (i.e., graph edges) is much smaller for Run Two. As a result, the
required cut necessary to mediate Run Two is also smaller. In Run One, the cut shows that mediation is
required in 50 unique subjects9 spanning 2,018 interfaces, clearly a daunting task. In Run Two, mediation is

8Specifically, a program interface is the instruction in the program executable file that invokes a libc function that corresponds
to one or more system calls (e.g., open and fopen).

9The tool uses unique subjects, as we assume the mediation requirements of the programs in different deployments are suffi-
ciently similar to reuse the effort.
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Number of Dual Capabilities Total
2 3 4 5 6 7 8 9 10 11

Run Two 2 4 0 5 2 1 0 0 20 0 262
Run Three 10 2 1 0 8 1 0 0 14 7 302

Table 4: DIFC-Flume Dual Capabilities. Subjects are grouped per number of capabilities.

necessary to mediate Run Two is also smaller. In Run One, the cut shows that mediation is required in 50
unique subjects spanning 2,018 interfaces, clearly a daunting task. In Run Two, mediation is required for
35 unique subjects and 488 interfaces. We found that the major cause of the difference between the amount
of mediation required in the two runs is due to the heavy use of attributed-based permissions in SELinux.
Attributes are an easy way to express aggregate access by associating a permission to a set of labels, but few
of the aggregate permissions appear to be used by the test cases. Based on this experiment, we envision that
measures need to be explored to refine the use of attributes for deployments.

[][]
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Execution Times, all in seconds. DFG: Construc-
tion of the hierarchical data flow graph, IFM: Constructions of the information flow integrity model, Cuts:
running the MEDIATIONRESOLUTION program, DIFC: Computing DIFC-Flume labels and capabilities.

In the second experiment, we show that the tool computes the impact of assigning integrity dependence.
In the first experiment above, we did not include the DNS server in the web application system, so it was
automatically assumed to provide untrusted (External) input. However, distributed systems depend on the
DNS resolutions, so we add the DNS server to the distributed system10 in Run Three of Table 2. The
mediation requirements are similar because the mediation is moved from the guest VM to the DNS server
in some cases. This cost could be amoritized across many distributed systems, however.

While adding the DNS server had little impact on the mediation cost, it reduced the number of DIFC
capabilities for the web server and database subjects as shown in Table ??. As seen, several subjects with
3-5 capabilities in Run Two have been reduced to 2-4 capabilities, eliminating the need to protect themselves
from DNS resolutions. The subjects with 10 and 11 capabilities are in domain 0 and the DNS server now, so
they are entrusted with a variety of security decisions. Thus, while it is still necessary to provide mediation
for the same number of interfaces, the security decisions that must be made in the guest VMs are reduced,
focusing the defensive effort in the privileged VM and services.

10An alternative would be to simply label the data received from the DNS server using labeled networking, but that would ignore
whether the DNS server actually protects its own integrity. Once this is established, then the results can be reused, analogous to a
summary function.
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DNS resolutions, so we add the DNS server to the distributed system10 in Run Three of Table 2. The
mediation requirements are similar because the mediation is moved from the guest VM to the DNS server
in some cases. This cost could be amoritized across many distributed systems, however.

While adding the DNS server had little impact on the mediation cost, it reduced the number of DIFC
capabilities for the web server and database subjects as shown in Table ??. As seen, several subjects with
3-5 capabilities in Run Two have been reduced to 2-4 capabilities, eliminating the need to protect themselves
from DNS resolutions. The subjects with 10 and 11 capabilities are in domain 0 and the DNS server now, so
they are entrusted with a variety of security decisions. Thus, while it is still necessary to provide mediation
for the same number of interfaces, the security decisions that must be made in the guest VMs are reduced,
focusing the defensive effort in the privileged VM and services.

10An alternative would be to simply label the data received from the DNS server using labeled networking, but that would ignore
whether the DNS server actually protects its own integrity. Once this is established, then the results can be reused, analogous to a
summary function.

16

(a)

System DFG IFM Cuts DIFC
Run One 18.7 1.0 32.6 8.2
Run Two - 0.8 13.7 4.9

Run Three 22.7 0.9 24.6 8.7

Table 5: Execution Times, all in seconds. DFG: Construction of the hierarchical data flow graph, IFM: Con-
structions of the information flow integrity model, Cuts: running the MEDIATIONRESOLUTION program,
DIFC: Computing DIFC-Flume labels and capabilities.

System Administrator Use. Next, we describe how system administrators would use the results gen-
erated by OS distributors. OS Distributors, in addition to giving us the policy, would also specify nodes in
the data flow graph representing program interfaces that have mediation capability. As an experiment, we
provide a white-list of interface nodes and the integrity level to which they can raise inputs. A challenge
with this assignment is that the OS distributor may not know the integrity levels used in the system admin-
istrator’s deployment. Thus, we suggest applying two alternatives, the level of the node and the level of the
inputs. That is, an interface can either raise inputs to: (1) the maxraiselevel of the node, implying that the
interface may use the data to control the operation of the program at large, or (2) the least upper bound of
inputs implying that the program can protect data of incomparable integrity levels from multiple clients. The
tool can then choose among the white-listed mediation interface nodes for the deployment automatically by
performing the cut-algorithm, determining if a complete cut is possible with these nodes only.

Performance. Our experiments were run on a machine with a 2.3 GHz Intel Xeon with 8GB of RAM.
Table ?? shows the execution time for the experiments by the cost of computing methodology tasks. The
times reflect an average over 10 runs. Note that the hierarchical data flow graph only needs to be built once
per analysis session, even if different runtime profiles for system are used. The execution times vary with
the number of edges and the size of the cut, as expected. The time of computing the cuts is dominated
by the number of levels in the lattice, since each corresponds to a problem that must be analyzed, and
the computation of the minimum cut for each problem, as shown in Figure 7. The DIFC-Flume label
computation is dominated by the transitive closure, described in Section 3.4.1.

We note that optimizations are possible that partition the system into pieces that may be processed inde-
pendently, analogously to summary functions. For example, since the user VM is supposed to isolated from
the rest of the system by the privileged VM, its inputs are independent of the rest of the system. However,
the privileged VM still must be able to protect itself and others from user VM outputs. Thus, the user VM
mediation would be computed first, then the rest of the system. The insight is that the use of mediation to
protect another component may also be useful to create such partitions. We have not implemented these
improvements yet, so they are part of our future work.

5 Related Work

Researchers have long known that information flow is a principle upon which end-to-end integrity protec-
tion is possible. However, classical integrity models [?, ?] rely on formal assurance for all high integrity
processes, particularly those that receive untrusted inputs. Many “trusted” processes may receive untrusted
input, but formal assurance methods have not been developed that scale to the size of modern programs.
As a result, least privilege [?] has been adopted as the security goal for integrity protection in commodity
systems [?, ?, ?, ?, ?]. However, different deployments imply different privileges, so commodity systems
try to accomodate this through mechanisms to easily compute permissions requested by processes [?, ?, ?]
and by providing runtime configurations options to add function. Nonetheless, it is important that default
configurations work in most cases, so researchers have found that the default MAC policies still permit
several operations that would violate classical integrity [?]. Researchers have recently proposed practical
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Table 3: (a) DIFC-Flume Dual Capabilities for Runs Two and Three. Subjects are grouped per number of capabilities. (b) Execution
Times, all in seconds. DFG: Construction of the hierarchical data flow graph, IFM: Constructions of the information flow integrity
model, Cuts: running the MEDIATIONRESOLUTION program, DIFC: Computing DIFC-Flume labels and capabilities.

System DFG IFM Cuts DIFC
Run One 18.7 1.0 32.6 8.2
Run Two - 0.8 13.7 4.9

Run Three 4.0 0.9 24.6 8.7

Table 4: Execution Times, all in seconds. DFG: Construction of the hierarchical data flow graph, IFM: Constructions of the
information flow integrity model, Cuts: running the MEDIATIONRESOLUTION program, DIFC: Computing DIFC-Flume labels
and capabilities.

Attributes are an easy way to express aggregate access by associating a permission to a set of labels, but few
of the aggregate permissions appear to be used by the test cases. Based on this experiment, we envision that
measures need to be explored to refine the use of attributes for deployments.

In the second experiment, we show that the tool computes the impact of assigning integrity dependence.
In the first experiment above, we did not include the DNS server in the web application system, so it was
automatically assumed to provide untrusted (External) input. However, distributed systems depend on the
DNS resolutions, so we add the DNS server to the distributed system9 in Run Three of Table 2. The
mediation requirements are similar because the mediation is moved from the guest VM to the DNS server
in some cases. This cost could be amoritized across many distributed systems, however.

While adding the DNS server had little impact on the mediation cost, it reduced the number of DIFC
capabilities for the web server and database subjects as shown in Table 3a. As seen, several subjects with 3-5
capabilities in Run Two have been reduced to 2-4 capabilities, eliminating the need to protect themselves
from DNS resolutions. The subjects with 10 and 11 capabilities are in domain 0 and the DNS server now, so
they are entrusted with a variety of security decisions. Thus, while it is still necessary to provide mediation
for the same number of interfaces, the security decisions that must be made in the guest VMs are reduced,
focusing the defensive effort in the privileged VM and services.

System Administrator Use. Next, we describe how system administrators would use the results gener-
ated by OS distributors. OS Distributors, in addition to giving us the policy, would also specify nodes in the
data flow graph representing program interfaces that have mediation capability. As an experiment, we pro-
vide a white-list of interface nodes and the integrity level to which they can raise inputs. The tool can then
choose among the white-listed mediation interface nodes for the deployment automatically by performing
the cut-algorithm, determining if a complete cut is possible with these nodes only. The choices of which
interfaces provide which mediation is outside the scope of this work.

Performance. Our experiments were run on a machine with a 2.3 GHz Intel Xeon with 8GB of RAM.
Table 4 shows the execution time for the experiments by the cost of computing methodology tasks. The
times reflect an average over 10 runs. Note that the hierarchical data flow graph only needs to be built once
per analysis session, even if different runtime profiles for system are used. As a result, there is no additional

9An alternative would be to simply label the data received from the DNS server using labeled networking, but that would ignore
whether the DNS server actually protects its own integrity. Once this is established, then the results can be reused, analogous to a
summary function.
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Table 3: (a) DIFC-Flume Dual Capabilities for Runs Two and Three. Subjects are grouped per number of capabilities. (b) Execution
Times, all in seconds. DFG: Construction of the hierarchical data flow graph, IFM: Constructions of the information flow integrity
model, Cuts: running the MEDIATIONRESOLUTION program, DIFC: Computing DIFC-Flume labels and capabilities.

required for 35 unique subjects and 488 interfaces. We found that the major cause of the difference between
the amount of mediation required in the two runs is due to the heavy use of attributed-based permissions
in SELinux. Attributes are an easy way to express aggregate access by associating a permission to a set of
labels, but few of the aggregate permissions appear to be used by the test cases. Based on this experiment,
we envision that measures need to be explored to refine the use of attributes for deployments.

In the second experiment, we show that the tool computes the impact of assigning integrity dependence.
In the first experiment above, we did not include the DNS server in the web application system, so it was
automatically assumed to provide untrusted (External) input. However, distributed systems depend on DNS
resolutions, so we add the DNS server to the distributed system10 in Run Three of Table 2. The mediation
requirements are similar because the mediation is moved from the guest VM to the DNS server in some
cases. This cost could be amortized across many distributed systems, however.

While adding the DNS server had little impact on the mediation cost, it reduced the number of DIFC
capabilities for the web server and database subjects as shown in Table 3a. As seen, several subjects with 3-5
capabilities in Run Two have been reduced to 2-4 capabilities, eliminating the need to protect themselves
from DNS resolutions. The subjects with 10 and 11 capabilities are in Dom0 and the DNS server now, so
they are entrusted with a variety of security decisions. Thus, while it is still necessary to provide mediation
for the same number of interfaces, the security decisions that must be made in the guest VMs are reduced,
focusing the defensive effort in the privileged VM and services.

System Administrator Use. Next, we describe how system administrators would use the results gener-
ated by OS distributors. OS distributors, in addition to giving us the policy, would also specify nodes in the
data flow graph representing program interfaces that have mediation capability. As an experiment, we pro-
vide a white-list of interface nodes and the integrity level to which they can raise inputs. The tool can then
choose among the white-listed mediation interface nodes for the deployment automatically by performing
the cut-algorithm, determining if a complete cut is possible with these nodes only. The choices of which
interfaces provide which mediation is outside the scope of this work.

Performance. Our experiments were run on a machine with a 2.3 GHz Intel Xeon with 8GB of RAM.
Table 3b shows the execution time for the experiments by the cost of computing methodology tasks. The
times reflect an average over 10 runs. Note that the hierarchical data flow graph only needs to be built once
per analysis session, even if different runtime profiles for system are used. As a result, there is no additional
time required data flow graph processing for Run Two (since it is the same) and only the DNS server is
added in Run Three. The time of computing the cuts is dominated by the number of levels in the lattice
(each level represents a different problem) and the computation of the minimum cut for each problem. The
DIFC-Flume label computation is dominated by the transitive closure, described in Section 3.4.1.

We note that optimizations are possible that partition the system into pieces that may be processed
independently, analogously to summary functions [55]. For example, since the user VM is supposed to
isolated from the rest of the system by the privileged VM, the integrity levels of its inputs are independent
of the rest of the system. Thus, the user VM mediation can be computed first, then applied to the rest of the

10An alternative would be to simply label the data received from the DNS server using labeled networking, but that would ignore
whether the DNS server actually protects its own integrity. Once this is established, then the results can be reused, analogous to a
summary function.
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system. The insight is that the use of integrity dependence to protect another component is useful to create
such partitions. We have not implemented these improvements yet, so they are part of our future work.

5 Related Work
Researchers have long known that end-to-end integrity protection can be modeled as an information flow
problem. However, classical integrity models [9, 12] rely on formal assurance for all high integrity processes
that receive untrusted inputs, but formal assurance methods have not been developed that scale to the size of
modern programs. As a result, least privilege [51] has been adopted as the security goal for integrity protec-
tion in commodity systems [42, 40, 35, 63, 64]. However, different deployments imply different privileges,
so commodity systems try to accommodate this through mechanisms to compute permissions requested by
processes [47, 40, 6] and by providing runtime configuration options to specify permissions for options.
Nonetheless, it is important that default configurations work in most cases, so researchers have found that
the default MAC policies still permit several operations that would violate classical integrity [11]. Re-
searchers have recently proposed practical approaches to integrity that approximate classical integrity mod-
els [54, 28, 57, 27, 37]. These practical integrity models are all strictly weaker than classical models, in that
they do not require formal assurance for code with the authority to protect integrity while receiving untrusted
inputs. However, they express restrictions on how such authority may be used by high-integrity programs.
For example, the Decentralized Information Flow Control [27, 67] (DIFC) model provides processes with
capabilities to make decisions about handling untrusted inputs.

With the emergence of MAC enforcement in commodity operating systems, researchers proposed vari-
ous policy design tools to help system administrators and OS distributors configure policies [23, 60, 19, 53,
66, 11]. Broadly speaking, these tools enable a policy designer to evaluate compliance using reachability to
identify whether an adversary can perform an unauthorized operation, even indirectly. Reachability analyses
have also been performed for network policies in the form of attack graphs [44, 56, 39], but these represent
attacker behavior rather than using the system policies. However, defining which operations are unautho-
rized and resolving any problems are manual tasks. SELinux policy generation from such resolutions is
possible, but the reasons for the resolutions and the resulting mediation are lost [60]. Pike [45] and King et
al. [25, 26] independently found that resolutions could be estimated as graph cuts automatically. However,
these approaches approximate minimal solutions for two-level lattices only and assume that all locations
are capable of any mediation, so they do account for the practical problems in distributed systems. Another
key question is what security property should be optimized by the choice of such cuts. Researchers have
recently focused on defending an attack surface [21, 31], which is the set of program interfaces accessible
to adversaries. The idea would be that if we can minimize the number of interfaces accessible to attackers,
we could minimize our defensive effort.

The problem of verifying that a MAC policy satisfies a set of security requirements is a policy compli-
ance problem. In a policy compliance problem, a policy is said to comply with a goal if all the operations
authorized by the policy satisfy the constraints of the goal [33, 17, 32, 20, 49]. The problem is that MAC poli-
cies often fail to comply with integrity requirements, as discussed above, so we must repair non-compliant
cases. However, any MAC policy changes must also preserve necessary function, and balancing functional
and security requirements is computationally complex in general.

6 Conclusion
We proposed the Proactive Integrity methodology to help OS Distributors and systems administrators con-
figure systems according to integrity requirements in their target deployments. We do so by designing a
model that composes multiple independently developed MAC policies into a concise hierarchical represen-
tation, and use that model to evaluate the safety of the system and automatically compute an near-optimal
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cost solution that minimizes the effort necessary to have a safe system. We constructed a tool that imple-
ments this methodology to generate system-wide, Decentralized Information Flow Control (DIFC) MAC
policies for Linux web application deployments in tens of seconds.
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A IFM and DIFC-Flume Equivalence
In this document we show show the equivalence of the Information Flow Model(IFM) we propose and the DIFC-Flume
model.

Based on the translation above, we can prove that the notions of safety in both models are equivalent.

Definition 1. [IFM safe]. A system S is safe under the IFM model if and only if for any flow u → v, OLifm(u) �
OLifm(v) or v is a mediator.

Definition 2. [Flume secure]. A system S is secure under the Flume model (Flume secure) if and only if: (1) any
label change for a process p from L to L′ adheres to the rule that {L′ − L}+ ∪ {L − L′}− ⊆ Op, where Op is the
set of positive and negative capabilities assigned to p and (2) a message can be sent from p to q only if Iq ⊆ Ip or
Iq −Dq ⊆ Ip ∪Dp where Dq and Dp are the dual capabilities of q and p respectively.

Theorem 1. [Flume-IFM equivalence]. A system S is safe (for integrity) under the IFM model (IFM safe), if and only
if, S is secure (for integrity) under the Flume model (Flume secure).

Proof. We start by defining mapping functions from the IFM lattice to DIFC-Flume lattice and vice versa.
Mapping Functions: We first define mapping functions, I2F and F2I, to map IFM levels into DIFC-Flume labels
and vice versa. Note that we use the term IFM level, as the term IFM label has a different meaning in our model
(a label is a set of levels). Figure 8 illustrates the mapping functions. Given an IFM lattice Lifm = (Lifm,�ifm)

let I2F : Lifm → Lflume be I2F(l) = {x ∈ Lifm| l �ifm x}. We build the corresponding DIFC-Flume lattice
Lflume=(Lflume,�flume) as follows:
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Figure 8: IFM to DIFC-Flume and DIFC-Flume to IFM Mapping Functions.

• for every l ∈ Lifm, we add I2F(l) to Lflume

• for every (l1, l2). l1, l2 ∈ Lifm ∧ l1 �ifm l2,
we add (I2F(l1), I2F(l2)) to �flume

Note that the relation can flow to � corresponds to the relation superset ⊇ on sets as defined by the DIFC-Flume
model.

Given a Flume lattice Lflume = (Lflume,�flume)
let F2I : Lflume → Lifm be F2I({l1, ..., ln}) = concat(l1, ..., ln).
We build the correspondent IFM lattice Lifm = (Lifm,�ifm) as follows:

• for every l ∈ Lflume, we add F2I(l) to Lifm

• for every (l1, l2). l1, l2 ∈ Lflume ∧ l1 �flume l2 (or equivalently l1 ⊇ l2), we add (F2I(l1), F2I(l2)) to �ifm

We have defined the translation from IFM nodes to DIFC-Flume subjects and objects. The reverse translation from
DIFC-Flume subjects and objects to IFM nodes works the same way. Definitions 1 and 2 specify safety requirements
for each model.

We can now define the safety-equivalence property between the IFM lattice and DIFC-Flume.
Theorem 1 A system S is safe (for integrity) under the IFM model (IFM safe), if and only if, S is secure (for integrity)
under the DIFC-Flume model (Flume secure).

Proof of Theorem 1: We first prove: (A) if a system is IFM safe then it is Flume secure, and then (B) if a systems is
Flume secure then it is IFM safe.
A. IFM safe to Flume secure. Let flow p→ q be IFM safe. This gives us two cases.
[Case 1]: q is a non-mediator node. Therefore, OLifm(p) � OLifm(q). From the translation rules to DIFC-Flume
this would imply that I2F(OLifm(p)) ⊇ I2F(OLifm(q)) This would be a safe flow in DIFC-Flume as well.
[Case 2]: Node q is an mediator node and OLifm(q) � OLifm(p). When we translate this to DIFC-Flume, we
ensure that the dual capabilities of q, Dq , contains tags for tags I2F(OLifm(q)) and for integrity levels dominated by
I2F(OLifm(q)) (this includes tags for I2F(OLifm(p)), since OLifm(q) � OLifm(p) ∈ Lifm) in the DIFC-Flume
lattice. This ensures that this flow is secure under DIFC-Flume.
B. Flume secure to IFM safe. A system S is Flume secure if and only if all allowed process label changes are safe
and all allowed messages are safe.

[Case 1]: All allowed process label changes are safe. This means that any process q can change its label only
within the range of its capabilities Dq . We map processes with capabilities in Flume to mediators in the IFM model
with raiselevel (RLifm) equal to the union of all tags in the dual capability set Dq . Mediators are safe nodes in the
IFM model as they automatically downgrade higher integrity levels to its raiselevel and endorse lower integrity levels
to its raiselevel.

[Case 2]: All allowed messages are safe. This means that for all messages from p to q: Iq −Dq ⊆ Ip ∪Dp.
[2.1]: Assume Dp = Dq = {} thus Iq ⊆ Ip. That means F2I(Iq) � F2I(Ip). This is a safe information flow in IFM.
[2.2]: Assume Dp 6= {} ∧Dq = {} thus p will always run with integrity Ip or higher. Since Dq = {}, then Iq ⊆ Ip
in the extreme case. Therefore, F2I(Iq) � F2I(Ip). This is a safe information flow in IFM.
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[2.3 and 2.4]: Assume (Dp = {} ∧Dq 6= {}), or (Dp 6= {} ∧Dq 6= {}). In both cases we map q to a mediator in the
IFM model. Mediators are safe nodes in the IFM model as they automatically downgrade higher integrity levels to its
raiselevel and endorse lower integrity levels to its raiselevel.
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