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Abstract .  We introduce the notion of definite inequality constraints in- 
volving monotone functions in a finite meet-semJlattice, generalizing the 
logical notion of Horn-clauses, and we give a linear time algorithm for 
deciding satisfiability. We characterize the expressiveness of the frame- 
work of definite constraints and show that the algorithm uniformly solves 
exactly the set of all meet-closed relational constraint problems, running 
with small linear time constant factors for any fixed problem. We ~dve 
an alternative technique which reduces inequalities to satisfiability of 
Horn-clauses (HORNSAT) and study its efficiency. Finally, we show that 
the algorithm is complete for a maximal class of tractable constraints, 
by proving that any strict extension will lead to NP-hard problems in 
any meet-semilattice. 

I(eywords: Finite semilattices, constraint satisfiability, program analysis, tract- 
ability, algorithms. 

1 Introduct ion  

Many program analysis problems can be solved by generating a set of constraints 
over some domain and then solving these. Examples include the binding time 
analyses described in [11], [2] and [3], the usage count analysis in [17] and the 
region-size analysis described in [1]. See also Section 6 below. 

In this paper we show how to solve certain classes of constraints over finite 
domains efficiently, and charazterize classes that  are not tractable. The solution 
methods can be used as a tool for analysis designers, and the characterization can 
help the designer recognize when an analysis may have bad worst-case behaviour. 

Due to space limitations, details of proofs are left out. Full details can be 
found in [19]. 

2 M o n o t o n e  funct ion  problems 

Let P be a poset and F a finite set of monotone functions f : p~I --4 P with a / >  
1 the arity of f .  We call the pair r = (P, F)  a monotone function problem (MFP 
for short.) Given r = (P, F)  we let T~ denote the set off-terms, ranged over by 
v, c~ and given by r ::-- a [c I f (r1, . . . ,  ra,), where c ranges over constants in P,  
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and a,  fl, 7 range over a denumerably infinite set V of variables and f is a function 
symbol corresponding to f E F.  Constants and variables are collectively referred 
to as atoms, and we let A range over atoms. We assume a fixed enumeration of 
V, V = vi ,v2 , . . .  , vn , . . .  For each number m > 0 we let Ym denote the sequence 
of the m first variables in the enumeration of ~. Let p E S m for some set S. We 
write [p]i for the i ' th coordinate of p, i E {1 , . . . ,  m}. Any p E S m is implicitly 
considered a mapping p : Vm ~ S by defining p(v~) to be [p]~, for i E {1 , . . . ,  m}. 
For p E S m,l < k < m we let p ~. k = ([P]i,... ,[P]k) E S k. 

A constraint set C over r is a finite set of formal inequalities of the form v < v e 
with r, v' E T@. The set of distinct variables occurring in a term r is denoted 
Vat(r ) ,  and if C is a constraint set, then Vat(C)  denotes the set of distinct 
variables occurring in C. In this paper, we always assume that Vat (C)  = Vrn for 
some m. If p E P'~, r a (P, F)- term with Vat(v)  G Y,n, then [r]p is given by 
~Ol~p -~ p(Ot), [C]p = C, [ f ( T l , .  . .  , Tk)~p .~. . f ( [ r l ~ p , . . . ,  [Vk]p). The function [v~ is 
monotone for every (P, F)-term v. 

If C is a constraint set over (P, F), Yar(C) C_ Y,~, p E pm we say that  p is a 
valuation arC in P; we say that  p satisfies C, written P, p ~ C, iff [r]p < [v']p 
holds in P for every r _< r '  in C. We say that  C is satisfiable if and only if there 
exists a valuation p of C in P such that  P, p ~ C. The set of solutions to C, 
denoted Sol(C), is the set {p E F m [ P, p ~ C, Vat(C) = V,~}. 

If q5 = (p, F)  is an MFP, then we define the decision problem ~-$AT to be the 
following: Given a constraint set C over ~, determine whether C is satisfiable. 
We measure the size of a term by Iv I, the number of occurrences of symbols (con- 
stants, variables and function symbols) in r; the size of a constraint set C, tCI, 
is the number of occurrences of symbols in C. We assume that  f E F are given 
by a f-dimensional operation matrixes M l with M / [ x i , . . . ,  x~1] = f ( x l ,  . . ., x~ s). 
Under this representation, evaluating a function f at given arguments x l , . . . ,  Xaf 
is a constant time operation, and hence evaluating an arbitrary functional term 
~- is O([r[). If P is a lattice, the component P is assumed to be given as the 
set of elements of P together with an additional operation matrix, Mu, defining 
the least upper bound of L, i.e., Mu Ix, Yl - x U y. From this we can recover the 
order relation of P,  using that  x < y iff x U y = y. This representation will be 
referred to as the matrix representation. As we shall see, this is also an appro- 
priate representation when P is a semilattice, since this case will be reduced to 
the case where P is a lattice. 

There are many problems ~ for which ~-SAT is NP-hard  (every problem 
~-SAT is obviously in N P ,  since we can guess and verify a solution non-deter- 
ministically in polynomial time.) For instance, for any non-trivial finite lattice 
L, the problem ~5 = (L, {F], U}) is NP-complete, by reduction from CNF-SAT 
(propositional satisfiability, [9]), since (Pi A . . .  A P~.) =r (Qi v . . .  v Qm) is 
logically satisfiable if and only if (Pi V]... [7 Pk) ~ (Q1 u . . .  u Qm) is satisfi- 
able in a two-point chain. Also, the structure of the poset P is important  for 
complexity, see [18]. Hence we need to impose restrictions on problems to make 
them tractable. In the following development we shall generally assume that  P 
is a meet-semilattice. Note, though, that  the whole development transfers to 

join-semilattices by lattice-theoretic dualization. 
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3 D e f i n i t e  p r o b l e m s  

Let r = (P, F)  be an MFP. A constraint set C over r in which every inequality 
is of the form r < A, with an atom on the right hand side, is called definite. A 
definite set C = {vi < Ai}~eI can be written C = C ~ r  U Cen,t where C~ar = 
{vj < flj}je~r are the variable expressions in C, having a variable (flj) on the 
right hand side of <, and Ccn,t = {rk < C~}keg are the constant expressions 
in C, having a constant (ck) on the right hand side. Note that  satisfiability of 
definite inequalities over ~ = (2, {Iq}), with 2 the two-point boolean lattice, is 
exactly the HORNSAT problem (satisfiability of propositional Horn clauses [10], 
[7]) since Horn clauses have the form P1 A . . .  A Pn =~ Q. 

A term r will be called simple if r is a constant, a variable or has the form 
v = f ( A 1 , . . . ,  Am) i.e., there are no nested function applications; a constraint 
set C is called simple if all terms in it are simple. The L-normalization --4 L 
transforms a definite set into a simple and definite set: let C be definite, C = 
C~U { f ( . . . g ( r ) . . . )  < A} with War(C) = ]3rn and r a tuple of terms, and define 
""~ L by 

C --+L C'  U { f ( . . .  vm+l . . . )  <_ A, g(~') <_ vm+l } 

L a m i n a  1. The reduction --~L is strongly normalizing, and if  C* is a normal 
form of a definite set C, then C* is definite with IC*l < 3]C I. 

Monotonicity guarantees that  an L-normalized set is equivalent to the original 
set: 

L e m m a 2 .  If  C --+L C' then Sol(C) = {p' J~ m [ p' E Sol(C')} where War(C) = 

Figure 1 of Appendix A gives an algorithm, called D, for solving definite 
constraints over an MFP r = (L, F)  with L a finite lattice 1 Algorithm D ex- 
ploits L-normalization to achieve linear time worst case complexity. Later, we 
shall change D slightly into an algorithm D T which works for meet-semilattices. 
Correctness of algorithm D follows from the properties: (1) after every update 
of the current valuation p at 8, P(fl) increases strictly in the order of L, so in 
particular, termination follows, since L has finite height; (2) the iteration step 
finds the least solution # to the set of variable expressions in C, so if any solution 
to C exists, then # must also satisfy the constant expressions, by monotonicity 
of all functions [r].  

i Algorithm D is similar to the technique of Kitdall [16] for fast fixed point computation 
in data-flow frameworks and also to the linear time algorithm of Dowling and Gallier 
[7] for solving the rIoRNSAT-problem. In fact, the iteration step is easily seen to be 
equivalent to a search for the least fixed point of a monotone operator F on a lattice, 
since the least fixed point of F is identical to the least post-fixed point of F. We 
already observed (beginning of Section 3) that definite inequalities strictly subsume 
Horn clauses. See Section 4.1 and Section 4.2 for more on the connection to Horn 
clauses. 
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T h e o r e m  3. (Correctness) If C has a solution over ~, then it has a minimal 
solution, and algorithm D outputs p the minimal solution of C, and if C has no 
solution, then the algorithm fails. 

Linear time complexity for algorithm D can be shown by amortizing the 
number of times the test of the conditional in the for-loop, L, p ~ ~r _< 7, can 
be executed in total on input C, in the worst case. We can assume (Lamina 1) 
that C is in L-normal form modulo an expansion by a factor 3. Let h(L) denote 
the height of a finite lattice L, i.e., the maximal length of a chain in L, then we 
have 

T h e o r e m 4 .  (Complexity) For fixed MFP r algorithm D runs in time O(ICt) 
and performs at most 3h(L)- ICt basic computations on input C. 

Algorithm D operates uniformly in ~, so it can be considered a decision pro- 
cedure for the uniform problem: Given q5 and constraint set C over ~5, is C 
satisfiable?. In this case, taking h(L) = ILl in the worst case, ILl a"~  the size 
of the function matrixes with amaz the maximal arity of functions in ~, we 
have input size g = ILl + ILt ~'o~ + ICI. With log-cost for a matrix look-up we 
get a maximum cost of O(am~z �9 tog ILl) for a basic computation, resulting in 
O(ama~ �9 log [L I �9 [L[. N) worst case behavieur for the uniform problem. 

Algorithm D generalizes to the cases where the poset is a finite meet-semi- 
lattice, as follows. Let p r  denote the lattice obtained from P by adding a top 
element T, taking c < T for all c E P.  We change algorithm D by adding the 
test if  3c~. p(a) = T t h e n  FAIL at the beginning of the output step. We extend 
the functions in r such that f ( z l  . . . .  , z~ l) = T if any zi = T. This modification 
of algorithm D will be referred to as algorithm D r . Algorithm D r is obviously 
sound, by soundness of algorithm D, and it is a complete decision procedure for 
semi-lattices, since if P has no top element and the least solution to the variable 
expressions in C maps a variable to the top element of p r  then clearly C can 
have no solutions in P. 

4 Relational problems 

Inequality constraints are a special case of the much more general framework of 
relational constraints. A relational constraint problem is a pair Y = (P, $) with 
P a finite poset and S a finite set of finite relations R C p~R, with 1 _< an (the 
arity of R.) Any R C_ pk is called a relation over P. A relational constrain~ set 
C ever F is a finite set of F.terms of the form R ( A I , . . . ,  AaR) where A ranges 
over variables in P and constants drawn from P. The size of a constraint term 
t = R(A1 , . . . ,Aaa)  is It[ = aR; the size [C[ of a constraint set is the sum of 
the sizes of all terms in C. We say that a constraint set C is satisfiable if there 
exists a valuation p of C in P such that (JAlap,. . . ,  [Aa~]p) E R for every term 
R(A1 , . . . ,AaR)  in C. If Vat(C) = 1;m, then Sol(C) is the set of valuations 
p E pm satisfying C. We define the decision problem F-SAT to be: Given a 
constraint set C over F, is C satisfiable? If z E pm and 1 < i < m then [x]i 
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denotes the i ' th coordinate of x. We use the vector notation x = ( x l , . . . ,  Xrn), 
and if R C pm we write R(x) as an abbreviation for R ( z l , . . . ,  xm) also when 
this expression is considered a term. 

4.1 R e p r e s e n t a b i l i t y  

We are interested in the following question: How many relational constraint 
problems can be (efficiently) solved using algorithm D? This translates to the 
question: How many problems can be transformed into definite inequality prob- 
lems and what is the cost of the transformation? 

A relation R _C pm is called representable with respect to a constraint prob- 
lem F = (P, S) if R = Sol(C) for some constraint set C over F.  We say that  
a problem/~ is a problem with inequality if the order relation < on P is repre- 
sentable with respect to /% We say that  a problem/~ has minimal solutions if 
Sol(C) has a minimal element with respect to < for any constraint set C over 
F with Sol(C) # ~. I f /~  = (P, S) with P a meet-semilattice and it holds for 
all R 6 S that  z, y 6 / ~  implies x [q y 6 R, t h e n / '  is said to be a meet-closed 
problem. A relational problem/"  = (P, S) is representable in definite form if P 
is a meet-semilattice and there exists an MFP 4~ such that  for all constraint sets 
C over F there exists a definite set C'  over �9 with Sol(C) = Sol(C'). 

Suppose that  R C pm is a meet-closed relation, P a meet-semilattice. Then 
define the partial function HR : p,n ..+ p,n by Ha(x)  = A tR (x) where 
J'R (x) = {y 6 pm ] y  > x, R(y)} and with HR undefined if t"R (x) = ~. Then 
HR is monotone when defined, i.e., Vxy 6 dom(HR), x < y ~ HA(x) < HR(y),  
and if J'R (x) # r then x E dom(HR). Moreover, for all x 6 dom(HR) one has 
HA(x) > x, since every y 6i"R (x) satisfies y > x, and so we have A ]~n (x) _> x. 

L e m m a h .  x E R if  and only i f x  E dom(HR) and HR(x) < x 

Using Lemma 5 we can characterize the class of relational problems which 
can be solved using algorithm D, i.e., the problems which can be expressed by 
definite inequalities, as follows 

T h e o r e m  6. (Representability) 1. Let I ~ = (P, S) with P a meet-semilattice. 
Then F is representable in definite form if and only if F is meet-closed. In par- 
ticular, if  F is meet-closed, then any constraint set C over F can be represented 
by a definite and simple constraint set C' with ]C'] < m(m + 2)-]C] where m is 
the maximal arity of a relation in S. 

2. Let ~ = (P, ,9) be a relational constraint problem with inequality, P ar- 
bitrary poset. Then the following conditions are equivalent: (i) F< has minimal 
solutions. (ii) F< is meet-closed and P is a meet-semilattice. (ii- D P<_ is repre- 
sentable in definite form. 

Observe that  property 1 of Theorem 6 can be seen as a strict generalization 
of the well-known fact that  a set R C 2 k of boolean vectors is definable by a 
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set of propositional Horn-clauses if and only if R is closed under conjunction 2 
Under this view, the notion of definite inequalities generalizes the notion of 
Horn-propositions from the boolean case of 2 to an arbitrary meet-semilattice. 3 

We have seen that  any meet-closed problem can be represented by definite, 
functional constraints. Conversely, consider distributive constraint sets over an 
MFP, i.e., constraint sets C where all r < r p E C have the right hand side r j built 
from distributive functions only 4 Distributive sets strictly include the definite 
ones, but  every distributive set can be represented by a relational set over a meet- 
closed problem, since the functions in F can be regarded as relations (graphs), 
hence (Theorem 6 (1)) algorithm D can solve any ~-SAT problem restricted 
to distributive constraint sets. In practice it may be convenient to translate a 
distributive set directly into a definite one, using the auxiliary functions Hg, 
defined thus: let g : p m  -4 p with P a meet-semilattice; then Hg : P -4 P'~ is 
the partial function given by gg(~) = A{Y E pm ix  < g(y)} with Hg undefined 
if no y E P'~ satisfies y < g(x). If P is a lattice, then Hg is a total function, and 
it is always monotone. We have 

L e m m a  7. Let f : P~ -4 P, g : P'~ --4 P with g distributive. Then f(x)  < g(y) 
if and only if f (x)  E dom(Hg) and Hg(f(z)) < y. 

The transformation -4R given by 

CU (A < g(.. .h( 'r) . . .)}  "+R CU {A < g(...vm+t ..,),Vm+l <_ h('r)} 

is analogous to L-normalization and satisfies properties corresponding to Lemma 1 
and Lemma 2. For MFP r = (L, F) ,  L meet-semilattice, let ~ '  = (L, F ' )  with 
F' = F U Ugeed {H~ [ i = 1 . . . a t }  where Fd is the set of distributive functions 

in F and Hia(x) = [Hg(x)]i. Using -4L and --+R one haz by Lemma 7 

P r o p o s i t i o n  8. Let r = ( P, F) be an MFP, P a mee$.semilattice. Then for any 
distributive constraint set C over ~ there exists a definite and simple constraint 
set C' over ~' with Sol(C) = {pt $ k ] p  E Sol(C)},  where Vat(C) = 14, and 
with ]C' I <_ 31C1 + 2n(m + 2) where n is the number of inequalities in C and m 
is the maximal arity of a function in F. 

2 The definability condition for propositional Horn-clauses is a special case of a much 
more general model theoretic characterization of Horn-definability in first order pred- 
icate logic, by which an arbitrary first order sentence ~ is logically eqtfivalent to a 
Horn-sentence if and only if r preserves reduced products of models; see [4] or [12] 
for in-depth treatments of this result. See also [6] 

3 Note that in definite inequalities we are allowed to use any monotone functions, 
whereas in the special case of Horn-implications we may 'use only one function, the 
meet operation. It is easy to see that one cannot, in general, define an arbitrary meet- 
closed relation using only the meet, operation of the senti-lattice, since, for instance, 
any set C of inequalities in one variable using only the meet function must be convex 
(i.e., x, y E Sol(C) and x < z < y imply z E Sol(C).) So, for instance, taking L 
to be the three element chain 0 < 1 < c~, the subset {co, 0} is meet-closed but not 
convex and hence it cannot be defined using just the meet operation. 

4 A function f is distributive if f (x r3 y) = f(x) rq f(y). 
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4.2 Boolean representation 

We show how sets of definite inequalities over finite lattices can be translated 
into propositional formulae, such that  there is a direct correspondence between 
solutions to the propositional system and solutions to the lattice inequalities. 

Given a lattice L with n + 1 elements, we represent each element of L by an 
element in 2% First we number the elements in L \ {.L} = {/1 , . . . ,  In). We then 
represent each element x in L by a vector of boolean values r : L -+ 2 r' where 

r = (b l , . . . ,  b,,), where bi = 1 iff li < z 

We also define a mapping r : 2 n --~ L: 

r  = V{/, I b, = 1} 

It is clear that  z -- r162 and v < r162 Moreover, both are monotone. 
Hence, r and r form a galois connection between L and 2% We will translate 
definite inequalities over lattice terms into sets of definite inequalities over 2'*. 
We will assume that  we have already transformed the constraints to the form 
f ( A 1 , . . . ,  An1) < A0. We translate constraints over the L-variables V l , . . . ,  v~, 
into sets of constraints over the boolean variables v11, . . . ,  v t n , . . . ,  vkl, �9 . . ,  v~n. 
We extend r to variables by setting r = (v i i , . . . ,  vim) and define r to be 
the i ' th component of r 

Even though we don' t  use an index for / in our representation, we will for 
convenience assign it index 0 and define r = 1 for all z E L. This corresponds 
to extending the representation vector with an extra bit, which is always 1 (since 
1 is < all elements in L). 

We first generate, for each variable vi, the set of constraints vik < vii when- 
ever lj < lk (we actually need only do so for a set of pairs lj < lk whose 
transitive and reflexive closure yields the ordering on L). These constraints will 
ensure that  any solution to the constraint set will be in the image of r Note 
that  this only works because we are in a lattice, as when we have two solutions 
to the constraints for a variable, the meet and join of these are also solutions. 
Even if we use more general Horn-clauses to model the ordering relation, it will 
be meet-closed, so at best we can extend the construction to meet semi-lattices. 

Let the i'th frontier o f f ,  Fi( f )  be the smallest subset of L a! such that  
r  = 1 iff there exist ( z l , . . . ,Za~)  E Fi(f) ,  ( z l , . . . , x a , )  < 
(Yl , . . . ,  Yal)" This is well-defined, because the set of all ( z t , . . . ,  zaj) such that  
r  Xa,)) = 1 is one such, and since the intersection of two such sets 
is also one. While Fi( f )  in the worst case may be of size O(ILa,]), it is often 
smaller. If f is distributive, IFi(f)] <_ 1. 

For each i between 1 and n and for each (z~ , . . . ,  ~:a,) E Fi(f) ,  we generate 
from the constraint f ( A 1 , . . . ,  Ant)  < A0 a new constraint: 

Cj, (At) Y l . . .  I-1 Cj,, (A~j) _< r (A0) 

where Jk is the index of zk in L. 
The translation of f ( A 1 , . . . ,  Aas) < Ao is the set of all these new constraints. 
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T h e o r e m  9. The constraint f(A1 . . . .  , Ant) < Ao is satisfiable iff all the con- 
straints in the translation and all the ordering constraints between the compo- 
nents of the variables are. Moreover, any solution to the translation is in the 
image ore  and maps by r to a solution of f ( A t , . o . ,  Aa~) < Ao. Since r and r 
are order-preserving, least solutions map to least solutions. 

C o m p l e x i t y .  We have translated a set C of constraints over an n + 1-point 
lattice L into a set C ~ of constraints over the boolean 2-point lattice. The size 
of the translated constraint set can be calculated as follows: 

For any variable vi in C, we introduce n variables v i i , . . . ,  vi,~ in Cq For each 
vi, C ~ contains at most n 2 constraints to ensure that  any solution to C r will :map 
v n , . . . ,  vin to an image of an element in L. 

For any constraint f ( A 1 , . . . , A a l )  <. Ao, we introduce a number of con- 
straints, each of size a! + 1. The number of constraints is ~ i = ln]_Fi (f) l -< n x 
n ~s . Since the size of the constraint J(AI,o . . ,  Aas) _< A0 is (a! + 1), the size of 
the translation is less than n l+a~ times the size of the original constraint. 

Bringing these together, we get that  ]C'I <_ n l+a~~ • ICI + n 2 • IVI, where 
ama~ is the maximal arity of a function symbol in C and ]VI is the number of 
variables in C. For a fixed lattice and set of function symbols, this is a linear 
expansion. For the uniform problem, the input is given as operation matrices for 
the function symbols plus the constraints. The size of an operation matrix for a 
function with arity a is n ~, so the size of the input is greater than n a~~ + ]CI. 
The size of the output  is n l + a ~  x IC[ + n 2 x IVI. The size of the input is 
hence the sum of two values and the size of the output is (approximately) the 
product of these. Hence, we get a quadratic worst-case expansion for the uniform 
problem. 

The exponential dependence on the arity of the function symbols may seem 
bad, but it can be argued (see [19]) that  any reasonable translation to boolean 
constraints will expand non-polynomially in the arity of the function symbols. 
Comparing with algorithm D (see Theorem 4) we see that  D runs in time linearly 
dependent on amaz for the uniform case, hence boolean representation should, 
in general, only be used in case arities are known to be small. 

Sa t i s f i ab i l i t y  o f  t r a n s l a t i o n ~  Each constraint in the translation is of the form 
al [3...N a,~ < a0, where the a~ are variables or constants ranging over the lattice 
{0, 1}. These constraints are isormorphie to Horn-clauses, and can hence be 
solved in t ime linear in the size of the constraint set using a ~ORNSAT-procedure 
[71. 

5 Intractability of extensions 

We have seen that  algorithm D efficiently decides the uniform satisfiability prob- 
lem (i.e., uniform in both F and C), when instances /~ are restricted to be 
meet-closed. It is relevant to ask whether this can be extended to cover more 
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relations than the meet-closed ones (perhaps by finding an algorithm entirely 
different from D.) The main purpose of this section is to demonstrate that,  un- 
less P = N P ,  no such extension is possible for any meet-semilattice L. This 
shows that  algorithm D is complete for a maximal tractable class of problems, 
namely the meet-closed ones. If L is a meet-semilattice, we say that a problem 
/" = (L, S) is a maximal meet-closed problem if -P is meet-closed and for any 
R C L k which is not meet-closed, the (particular, non-uniform) satisfiability 
problem (L, S U {R})-SAT is NP-complete. We first show that  any distributive 
lattice has a maximal meet-closed problem and deal with the general case after- 
wards. The proof is by composing Birkhoff's Representation Theorem for finite 
lattices 5 with Schaefer's Dichotomy Theorem [20] for the complexity of logical 
satisfiability problems. 

For lattice L, let Idl(L) be the set of order ideals of L and Irr(L) the 
set of join-irreducible elements of L. If L is a finite, distributive lattice with 
I r r (n)  = c l , . . . , c n  any fixed enumeration of I r r (L) ,  then Birkhoff's Repre- 
sentation Theorem entails that,  with r/ : L -4 Id l ( I r r (L))  defined by y(x) = 
{y E Irr (L)  I Y -< z}, the map ~ : L -+ 2 n becomes an order-embedding by set- 
ting [~(x)]i = 1, if ci E rl(x), and [to(x)]i = 0, if ci ~ ~(x), for i = 1 , . . . , n .  
We refer to ~ as the canonical embedding of L. For _R C L k we let 6 T(R) = 

e n ) ,  so x n r  W i t h  r = 

(L, S), L distributive, define the problem ~(Y) = (2, ~(S)) with ~(S) = {~(R) j 
R E S}. We use ~(R) to denote the relation symbol corresponding to the relation 
r If C is a constraint set over ~(F),  one has ~(R) _C 2 k" for all relations 
~(R) E ~(S), where n = IIrr(L)l and k is the arity of R. 

Now, we are interested in problems F such that  ~(F)-SAT becomes polyno- 
mial time reducible to F-SAT. The problem here is that  such reduction is not 
possible in general, because the constraint language of T(F) is more expressive 
than that  of F.  For instance, a unary relation symbol R may get translated into 
a symbol ~(R) of arity n = IIrr(L)t with n > 1, so we can write (taking n = 3) 
constraints with patterns like {!o(R)(x, y, z), T (R) (z ,  y, z)} expressing that  there 
exists b E 23 such that  both that  it and its reversal is in ~(R); in general this 
cannot be expressed in the constraint language of Y. However, if F has a certain 
kind of relations, then this becomes possible. Given distributive lattice L with 
canonical embedding T and IIrr(L) l = n we let IIL denote the set of "projection 
relations" rij  C_ L 2, i , j  E {1,.~., n}, defined as follows 

= e L I = 

5 See [5]. We recall also that, for lattice L, an order idealin L is a down-closed subset 
of L; x E L is join-irreducible if x r .L and x = y tJ z implies x = y or x = z for 
all y ,z  E L; L is distributiveif (:r U y) Vlz = (xVlz)  U ( y ~ z )  for all x , y , z  E L; an 
order-embedding of lattices is an injective map preserving meet and join. 

6 We use the notation (Yl, . . . ,yk) ,  for yl E L '~, to denote the "flattened" 
kn-vector z obtained by concatenating the tuples y l , . . .  ,yk into a single tu- 
ple, in that order; in detail, z = (zl . . . .  ,zkn) with zl = [yl]l . . . .  ,z,~ = 
[Yl] . . . . . .  z(k-1)~+, = [yk]l,.. . ,zk~ = [Yk]n. For x = (x l , . . . ,xk)  e L k we write 
~(x) for (9(xl) , . . .  ,~(x~)). 
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It is easy to check that r i j  are all meet-closed relations, since T is an order- 
embedding. If  L is non-trivial, there must be a, b 6 L with a < b, so that  
~(a) < ~(b), and hence [~(a)]j = 0 and [~(b)]j = 1 for some j;  we can therefore 
express that  [~(z)]i = 0 and [~,(x)]i = 1 by ~rij(x, a) and zrij(x, b), respectively. 
Constraints of the form ~qj (z, y) will be written as [~(x)]i = [~o(y)]/or [T(z)]i = b 
(b 6 {0, 1}). One does not, of course, need explicit reference to T in order to 
define the projection relations, so long as one can talk about the join-irreducible 
elements in an appropriate way: 

Example 1. Let ~ = (L, F) ,  I r r(L)  = e l , . . . ,  cn and suppose we have a function 
fc, 6 F for each ci 6 I r r (L)  where fc, (x) = T if ci _< x and fr (x) = 2_ otherwise. 
Then all fc, are distributive functions, and since the condition [~(x)]i - [~(y)]j 
is equivalent to the condition ci <_ x ~ cj < y, the first mentioned condition 
can be expressed by distributive inequalities over r  because ci < x ::~ cj < y is 
equivalent to the distributive constraint f~, (x) _< f~j (y). 

If s = (L, ,.q) and C is a constraint set over ~(F) ,  we describe a translation 
of C, called ~ - t ( C ) ,  to a constraint set over 1TM = ( L , $ U I I L ) ,  as follows. Let 
t l ,  . . . ,  tm be an enumeration of the constraint terms in C. Each ts can be written 
as a term of the form G = ~(R)((A1, . . . ,  Ak)), where each Ai is a vector of n 
atomic terms, n = ]Irr(L)], k the arity of R. We let G ~ (P, i) = [Ap]i (1 < p 

�9 k, 1 < i < n.) For each term t, we let a t , . . .  , a t be k unique, fresh variables to be 
used in the translation of term t~. The relational term to = ~ ( R ) ( ( A 1 , . . . ,  A~)) 
then gets translated into the constraint set C0 = C0,1 U C8,2 u C0,3, where 

= 

Co,  = = b l JAil, = b with b e {0, t } }  
C~,3 { [~(a;)]i = [T(aq )]j It, ~ (p, i) is variable x A 3tu E C. t~ ~ (q, j )  = z } 

For C = t l , . . . , t i n  we define ~-1(C)  = U~m=l c0. The constraints in ~ - I ( C )  
using ~rij can simulate all patterns in ~(C)~ so we can show 

L e m m a  10. Let F = (L, $)  with L non-trivial distributive lattice, and let C be 
a constraint set over ~v(F). Then C is satisfiable over ~(F)  if  and only i f T - l ( C )  
is satisfiable over F'  = (L, $ U ILL). 

Since each set C0,3 in p - l ( C )  contributes at most ICI 2 new constraints, because 
each new constraint is determined by a distinct pair of occurrences of variables 
in C, it is straight-forward to show 

L e m m a l l .  For every constraint set C over T(F)  one has ]T-I(C)I  <: IV[ 2 �9 
(2lCl + 3). 

We now recall the contents of Schaefer's Dichotomy Theorem [20]. It yields the 
following very powerful classification (see also [14]): 

T h e o r e m  12 Schae fe r  [20]. Let F = (2, $) be any boolean problem. Then the 
satisfiability problem F-SAT is polynomial time decidable, i f  one of the follow- 
ing four conditions are satisfied: either (1) every relation in S is closed under 
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disjunction, or (2) every relation in S is closed under conjunction, or (3) ev- 
ery relation in S is bijunctive, i.e., it satisfies the closure condition gx, y, z E 
2k.x,  y, z E R ~ ( x A y ) V ( y A z ) Y ( z A x )  E R, or (4) every relation in S is affine, 
i.e., it satisfies the closure condition Vx, y, z E 2 ~. x, y, z E R ~ x @ y @ z E R, 
where @ is the exclusive disjunction. 

Otherwise, i f  none of the above conditions are satisfied, the problem /"-SAT 
is NP.comple te  under log-space reductions. 

I fL is a meet-semilattice which is not a lattice, we let L T denote the extension 
of L to a lattice under addition of a top element, as earlier. If L is already a lat- 
tice, we let L T -- L, by definition. We say that L is a distributive meet-semilattice 
if L is a meet-semilattice such that L T is a distributive lattice. If L is a distribu- 
tive meet-semilattice we know by previous remarks that L r has a canonical em- 
bedding into 2 '~, and this map ~ will be referred to as the canonical embedding 
of L also. For any meet-semilattice L we let ML -- {(x, y, z) e L 3 I z = x I'q y}, 
the meet-relation of L. The following results are proved in detail in [19]. 

L e m m a  13. Let L be a non-trivial distributive meet-semilattice, and let 9~ be its 
canonical embedding. Then the relation ~( ML ) satisfies: ~( ML ) is closed under 
conjunction, ~(ML) is not closed under disjunction, ~(ML) is not bijunetive, 
and ~o(ML ) is not affine. 

Let L be distributive and S = / / z  U {ML}; then the problem _~ = (L, S) is 
meet-closed. We can show that, for any relation R over L which is not meet- 
closed, the problem/"+-SAT with F + = (L, S U {R}) is NP-hard, by reduction 
from W(/")-SAT, which, in turn, can be shown to be NP-hard by Lemma 10, 
Lemma 11, Lemma 13 together with Schaefer's Dichotomy Theorem. We there- 
fore have 

T h e o r e m  14. (Intractability of extensions, distributive case) For any non-trivial, 
distributive meet-semilattice L the problem F = (L, IIL U {ML}) is maximal 
meet-closed. 

By Birkhoff's Theorem we know that L embeds into 2 n if and only if L is 
distributive, hence the method used to prove Theorem 14 will not work for ar- 
bitrary finite lattices. However, if L is an arbitrary meet-semilattice we have the 
following weaker result by direct reduction from CNF-SAT: 

T h e o r e m  l5 .  (Intractability of extensions, general case) Let L be any non- 
trivial meet-semilattice and let R C L k be any relation over L which is not 
meet-closed. Then there exists a meet-closed problem/" = (L, S) such that the 
problem .P-SAT is NP-complete with ? = (L, S U {R}). 

Theorem 15 entails that the uniform satisfiability problem restricted to meet- 
closed relations becomes NP-hard no matter how it is extended, since the the- 
orem says that there will always be a particular (non-uniform) problem over 
such an extension which is NP-hard; here the hard problem depends on the 



296 

given extension. In contrast, Theorem 14 asserts the existence of a particular 
(non-uniform) problem which becomes hard no matter how it is extended. The 
results given here extend, in the case of finite domains, the results of [13], which 
considers totally ordered domains. See also [15]. 

6 A p p l i c a t i o n s  t o  p r o g r a m  a n a l y s i s  

An application of the constraint solving technology shown in this paper is pro- 
gram analysis by annotated type systems~ In these systems, programs are given 
types annotated with elements from a finite lattice. The type rules impose con- 
straints between the annotations of the types of a term and its sub-terms. A typ- 
ing of a program will generate a set of constraints, which must then be solved. 
Often, the constraints will have a form suitable for solution by the methods 
presented here. 

One such example is the usage count analysis from [17] which has annotations 
in the lattice {0, 1, c~} with 0 < 1 < oo. The constraints use the following binary 
operators: 

kl + k2 kl �9 k~ kl C, k2 

' ot  0of! 0 0 ~176176 ~ 1 1 oooo I 0  1 oo 1 0 1 0 0  
oo oo oo ,oo o 0 o 0  i c ~  

+ and . are addition and multiplication over counts, hi t> k2 is 0 if kl = 0, 
otherwise kz t> k2 = k2. 

The constraints are of one of the forms kl = k2, 1 < k, k~ < k2, kl + k2 <_ ka, 
~ - k l  < k2, kl .k2 < ka or kl I>k2 < ka. Hence (noting that kl = k~ is equivalent 
to kl <_ k2, k2 < kl), they are of the kind that can be solved by the methods 
shown, either by the direct method or by translation into boolean constraints. 
The translation uses the mapping shown below for lattice elements. 
Hence, we replace each constraint variable kt by two variables li and ri over the 
binary domain, with the constraint li <_ r i. 

The constraints are translated using the translation shown in section 4.2. The 
table below shows the result after reduction has been made for the constraints 
that involve constants. 

trans- constraint 
count lation kz = k2 

0 00 l_<k 
i Ol kl < k~ 

c~ II k z + k ~  ~ k s  
~ .  k~ "2Z_- k2 
kl �9 k2 << k z  

translation 
ll m ~2~ r l  : r2 
r = l  
li _< 12, r l  _< r~ 
l~ < lz, rl < rs, l~ < lz, r2 < r~, rl A r2 <_ Iz 
rl  _< 12 
rl A r~. 5 rs, 11 A r2 _< l~, 12 h rl _< Is 
rl h l~ :< 13, rl h r2 _< rz 

@ 
We end this section by giving some further examples of how our results can 

be used to reason about problems of interest in program analysis. 
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Example 2. The problem �9 = (2, {A}) is maximal meet-closed. To see this, repre- 
sent �9 as relational problem/~ = (2, {M2, <}). It then follows from Theorem 14 
that F is maximal, because all relations in the set II2 can already be defined in 
terms of/1//2, by Horn-definability (cf. comment after Theorem 6) together with 
the fact that all relations in II2 are meet-closed. 

Example 3. Let 3 denote the three-point chain 0 < 1 < oo. The distributive lat- 
tice 3 occurs in many practical contexts, such as, e.g., program analyses involving 
usage counting [17], [21],[1]. 

Let pred denote the predecessor function on 3, with pred(O) = 0, pred(1) = 
O, pred(oo) = 1. Then pred is a distributive function. Consider the problem ~ = 
(3, {N, prea~), it is clearly meet-closed (viewed relationally), and, moreover, it 
is maximal. To see this, first note that the join-irreducible elements are {1, co}. 
Now define the function fl  by setting fl  (x) = 1 gl x and define the function 
foo by setting foo(x) = pred(x). Then f l (x)  - 1 if 1 < x and f l(x)  = 0 
otherwise; moreover, f~o (x) = 1 if oo < x and f ~  (x) = 0 otherwise. Recalling 
Example 1 we see that the functions fl  and foo are sufficient to represent the 
projection relations i n / / 3 ,  since we can express the condition ci < x =~ cj < y, 
for ci, cj e Irr(3), by the distributive constraint re, (x) < fei (Y)- It then follows 
from Theorem 14 that 4~ is a maximal problem. 

Example~. Consider the uniform function problem restricted to distributive in- 
equalities. By Theorem 6 this problem contains all meet-closed problems. There- 
fore, it follows from Theorem 15 that any uniform extension of the problem be- 
comes NP-hard.  In other words, if monotone function symbols can occur on 
the left side of inequalities and any single non-distributive function symbol can 
occur arbitrarily on the right side, then the uniform problem is NP-hard.  

Example 5. In many applications in program analysis the semilattice L will be 
thought of as a domain of abstract program properties with lower elements rep- 
resenting more information than higher elements 7 If an analysis can be imple- 
mented as a constraint problem with minimal solutions it will have the desirable 
property that it is guaranteed to yield a uniquely determined piece of informa- 
tion which is optimal relative to the abstraction of the analysis. Theorem 6 says 
that all and only inequality constraint problems with this natural property can 
be represented as definite inequalities and hence can be solved in linear time 
using algorithm D. 

7 Conclus ion  

We have studied efficient solution methods for the following classes of constraint 
problems over finite meet-semilattices: 

7 Alternatively, elements with more information may sit higher in the semilattice. Our 
results still apply, since the whole development in this paper can of course be dualized 
in the lattice-theoretic sense to encompass join-semilattices and join-closed problems 
over such. 
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- Definite inequalities involving monotone functions. 
- Distributive inequalities. 
- Boolean inequalities (Horn clauses). 
- Meet-closed relational constraints. 

We have shown that these classes are equivalent modulo linear time transforma- 
tions for any fixed problem, and we have estimated the constant factors involved. 
For any fixed lattice and any fixed set of function/relation symbols the meth- 
ods are linear time in the size of the constraint set, but, in the case of boolean 
representation, the time depends non-linearly on the maximal arity of relation 
symbols used. Furthermore, we have shown that these classes can be solved uni- 
formly in polynomial time and that they are are maximal in the sense that any 
extension leads to NP-hard uniform problems. 

A c k n o w l e d g e m e n t s  We wish to thank Fritz Henglein, Nell Jones, Helmuth 
Seidl, Muds Torte and our referees for helpful discussions and comments. 

A Algorithm D 

Algorithm D is shown in Figure i. We outline the data-structures and op- 
erations assumed for a linear time implementation (more details are in [19].) A 
list Ilist of records representing the inequalities in C. Each record also holds 
a boolean variable, called inserted. An array Clist[/3] indexed by variables 
in Vat(C).  Each entry Clist[fl] holds an array of pointers to inequalities in 
Ilist, one entry for each inequality in C in which/3 occurs. Thus, to each item 
Clist[~][k] there corresponds a unique occurrence of/3 in C, Hence, the number 
of distinct items CIist[fl][k] is bounded by [C]. The structure NS is a doubly 
linked list of of pointers to inequalities in [list which are also in Co~r, and the 
item in flist has a back-pointer set to the representing item in NS. There is a 
pointer to the head element of NS. The idea is that NS holds holds pointers 
to those inequalities in C, ar which are not satisfied under the current interpre- 
tation p (see below.) A finite map p mapping each distinct variable of C to an 
element in L. The map p holds the current "guess" at a satisfying valuation for 
C~ar- The map • is the map which sends every variable of C to the 
bottom element of L. The map p is implemented as an array of lattice elements 
indexed by the variables. We write p(/3) for p[fl]. Evaluating p(fl) is a constant 
time operation, and so is the operation of updating p at/?. 

Operation PoP removes the head element of NS and returns it after setting 
the corresponding inserted field to false. INSERT(i) inserts an inequality pointer i 
at the front of NS, updating the inserted field. If the inserted field is true, then 
INSERT does nothing. DRoP(i), removes i, a pointer to an element in NS, from 
NS, using the inserted filed in analogy with INSERT. All these operations can 
be implemented as constant time operations, using the data-structures above. 
Operation L-NORMALIZE transforms a definite set into an equivalent L-normal 
set and runs in time O(ICI) (using Lemma 2 and Lemma 1.) 
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1. Input 
A finite set C = {7"~ < A~},ez of definite inequalities over �9 = (L, F),  F = 
{ f  : L "l --+ L} with each f monotone, L finite lattice, Vat(C) = ]],~ for some 
m. 

2. Initially 
C : =  L-NORMALIZE(C) 

p : ~  -l-I),n--+L 
C~,~ := {7" < A E C ] A is a variable) 
Initialize the lists Clist[a], for every distinct variable a in C. 
Initialize [list to hold the inequalities in C. 
N S  := {r_< ;9 EC~a~ [L, pV=7"<;9} 

3. Iteration 
whi le  NS ~ O do 

r </9 := eoP(NS); 

p(Z) := [~-]p u p(Z); 

for  a < 7 E Clist~3] do 
if p, L~=a<'r 
t hen  INSERT(O" <~ 7) 
else Drtov(cr < 7) 

end; (* for *) 

4. 
end;(* while *) 

Output 
I f  L, p ~ 7" < c for all r < c E C~...t t hen  output p else FAIL. 

Figure 1: Algorithm D for satisfiability of definite constraints over 

In the a lgo r i thm we have followed the convent ion of  wri t ing the pa t t e rn  of  
an inequal i ty  po in ted  to by an inequal i ty  poin ter  ins tead of  the poin ter  itself. 
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