
Tractable Constraints in Finite Semilatt ices

Jakob Rehef and Torben ~ . Mogensen

DIKU, Department of Computer Science,
Universitetsparken 1, DK-2100 Copenhagen O, Denmark.

Electronic mail: {rehof, torbenm}~diku.dk
Fax: +45 35 32 14 01

Abstract . We introduce the notion of definite inequality constraints in-
volving monotone functions in a finite meet-semJlattice, generalizing the
logical notion of Horn-clauses, and we give a linear time algorithm for
deciding satisfiability. We characterize the expressiveness of the frame-
work of definite constraints and show that the algorithm uniformly solves
exactly the set of all meet-closed relational constraint problems, running
with small linear time constant factors for any fixed problem. We ~dve
an alternative technique which reduces inequalities to satisfiability of
Horn-clauses (HORNSAT) and study its efficiency. Finally, we show that
the algorithm is complete for a maximal class of tractable constraints,
by proving that any strict extension will lead to NP-hard problems in
any meet-semilattice.

I(eywords: Finite semilattices, constraint satisfiability, program analysis, tract-
ability, algorithms.

1 Introduct ion

Many program analysis problems can be solved by generating a set of constraints
over some domain and then solving these. Examples include the binding time
analyses described in [11], [2] and [3], the usage count analysis in [17] and the
region-size analysis described in [1]. See also Section 6 below.

In this paper we show how to solve certain classes of constraints over finite
domains efficiently, and charazterize classes that are not tractable. The solution
methods can be used as a tool for analysis designers, and the characterization can
help the designer recognize when an analysis may have bad worst-case behaviour.

Due to space limitations, details of proofs are left out. Full details can be
found in [19].

2 M o n o t o n e funct ion problems

Let P be a poset and F a finite set of monotone functions f : p~I --4 P with a / >
1 the arity of f . We call the pair r = (P, F) a monotone function problem (MFP
for short.) Given r = (P, F) we let T~ denote the set off-terms, ranged over by
v, c~ and given by r ::-- a [c I f (r1, . . . , ra,), where c ranges over constants in P,

286

and a, fl, 7 range over a denumerably infinite set V of variables and f is a function
symbol corresponding to f E F. Constants and variables are collectively referred
to as atoms, and we let A range over atoms. We assume a fixed enumeration of
V, V = vi ,v2 , . . . , vn , . . . For each number m > 0 we let Ym denote the sequence
of the m first variables in the enumeration of ~. Let p E S m for some set S. We
write [p]i for the i ' th coordinate of p, i E {1 , . . . , m}. Any p E S m is implicitly
considered a mapping p : Vm ~ S by defining p(v~) to be [p]~, for i E {1 , . . . , m}.
For p E S m,l < k < m we let p ~. k = ([P]i,... ,[P]k) E S k.

A constraint set C over r is a finite set of formal inequalities of the form v < v e
with r, v' E T@. The set of distinct variables occurring in a term r is denoted
Vat(r) , and if C is a constraint set, then Vat(C) denotes the set of distinct
variables occurring in C. In this paper, we always assume that Vat (C) = Vrn for
some m. If p E P'~, r a (P, F)- term with Vat(v) G Y,n, then [r]p is given by
~Ol~p -~ p(Ot), [C]p = C, [f (T l , . . . , Tk)~p .~. . f ([r l ~ p , . . . , [Vk]p). The function [v~ is
monotone for every (P, F)-term v.

If C is a constraint set over (P, F), Yar(C) C_ Y,~, p E pm we say that p is a
valuation arC in P; we say that p satisfies C, written P, p ~ C, iff [r]p < [v']p
holds in P for every r _< r ' in C. We say that C is satisfiable if and only if there
exists a valuation p of C in P such that P, p ~ C. The set of solutions to C,
denoted Sol(C), is the set {p E F m [P, p ~ C, Vat(C) = V,~}.

If q5 = (p, F) is an MFP, then we define the decision problem ~-$AT to be the
following: Given a constraint set C over ~, determine whether C is satisfiable.
We measure the size of a term by Iv I, the number of occurrences of symbols (con-
stants, variables and function symbols) in r; the size of a constraint set C, tCI,
is the number of occurrences of symbols in C. We assume that f E F are given
by a f-dimensional operation matrixes M l with M / [x i , . . . , x~1] = f (x l , . . ., x~ s).
Under this representation, evaluating a function f at given arguments x l , . . . , Xaf
is a constant time operation, and hence evaluating an arbitrary functional term
~- is O([r[). If P is a lattice, the component P is assumed to be given as the
set of elements of P together with an additional operation matrix, Mu, defining
the least upper bound of L, i.e., Mu Ix, Yl - x U y. From this we can recover the
order relation of P, using that x < y iff x U y = y. This representation will be
referred to as the matrix representation. As we shall see, this is also an appro-
priate representation when P is a semilattice, since this case will be reduced to
the case where P is a lattice.

There are many problems ~ for which ~-SAT is NP-hard (every problem
~-SAT is obviously in N P , since we can guess and verify a solution non-deter-
ministically in polynomial time.) For instance, for any non-trivial finite lattice
L, the problem ~5 = (L, {F], U}) is NP-complete, by reduction from CNF-SAT
(propositional satisfiability, [9]), since (Pi A . . . A P~.) =r (Qi v . . . v Qm) is
logically satisfiable if and only if (Pi V]... [7 Pk) ~ (Q1 u . . . u Qm) is satisfi-
able in a two-point chain. Also, the structure of the poset P is important for
complexity, see [18]. Hence we need to impose restrictions on problems to make
them tractable. In the following development we shall generally assume that P
is a meet-semilattice. Note, though, that the whole development transfers to

join-semilattices by lattice-theoretic dualization.

287

3 D e f i n i t e p r o b l e m s

Let r = (P, F) be an MFP. A constraint set C over r in which every inequality
is of the form r < A, with an atom on the right hand side, is called definite. A
definite set C = {vi < Ai}~eI can be written C = C ~ r U Cen,t where C~ar =
{vj < flj}je~r are the variable expressions in C, having a variable (flj) on the
right hand side of <, and Ccn,t = {rk < C~}keg are the constant expressions
in C, having a constant (ck) on the right hand side. Note that satisfiability of
definite inequalities over ~ = (2, {Iq}), with 2 the two-point boolean lattice, is
exactly the HORNSAT problem (satisfiability of propositional Horn clauses [10],
[7]) since Horn clauses have the form P1 A . . . A Pn =~ Q.

A term r will be called simple if r is a constant, a variable or has the form
v = f (A 1 , . . . , Am) i.e., there are no nested function applications; a constraint
set C is called simple if all terms in it are simple. The L-normalization --4 L
transforms a definite set into a simple and definite set: let C be definite, C =
C~U { f (. . . g (r) . . .) < A} with War(C) =]3rn and r a tuple of terms, and define
""~ L by

C --+L C' U { f (. . . vm+l . . .) <_ A, g(~') <_ vm+l }

L a m i n a 1. The reduction --~L is strongly normalizing, and if C* is a normal
form of a definite set C, then C* is definite with IC*l < 3]C I.

Monotonicity guarantees that an L-normalized set is equivalent to the original
set:

L e m m a 2 . If C --+L C' then Sol(C) = {p' J~ m [p' E Sol(C')} where War(C) =

Figure 1 of Appendix A gives an algorithm, called D, for solving definite
constraints over an MFP r = (L, F) with L a finite lattice 1 Algorithm D ex-
ploits L-normalization to achieve linear time worst case complexity. Later, we
shall change D slightly into an algorithm D T which works for meet-semilattices.
Correctness of algorithm D follows from the properties: (1) after every update
of the current valuation p at 8, P(fl) increases strictly in the order of L, so in
particular, termination follows, since L has finite height; (2) the iteration step
finds the least solution # to the set of variable expressions in C, so if any solution
to C exists, then # must also satisfy the constant expressions, by monotonicity
of all functions [r].

i Algorithm D is similar to the technique of Kitdall [16] for fast fixed point computation
in data-flow frameworks and also to the linear time algorithm of Dowling and Gallier
[7] for solving the rIoRNSAT-problem. In fact, the iteration step is easily seen to be
equivalent to a search for the least fixed point of a monotone operator F on a lattice,
since the least fixed point of F is identical to the least post-fixed point of F. We
already observed (beginning of Section 3) that definite inequalities strictly subsume
Horn clauses. See Section 4.1 and Section 4.2 for more on the connection to Horn
clauses.

288

T h e o r e m 3. (Correctness) If C has a solution over ~, then it has a minimal
solution, and algorithm D outputs p the minimal solution of C, and if C has no
solution, then the algorithm fails.

Linear time complexity for algorithm D can be shown by amortizing the
number of times the test of the conditional in the for-loop, L, p ~ ~r _< 7, can
be executed in total on input C, in the worst case. We can assume (Lamina 1)
that C is in L-normal form modulo an expansion by a factor 3. Let h(L) denote
the height of a finite lattice L, i.e., the maximal length of a chain in L, then we
have

T h e o r e m 4 . (Complexity) For fixed MFP r algorithm D runs in time O(ICt)
and performs at most 3h(L)- ICt basic computations on input C.

Algorithm D operates uniformly in ~, so it can be considered a decision pro-
cedure for the uniform problem: Given q5 and constraint set C over ~5, is C
satisfiable?. In this case, taking h(L) = ILl in the worst case, ILl a"~ the size
of the function matrixes with amaz the maximal arity of functions in ~, we
have input size g = ILl + ILt ~'o~ + ICI. With log-cost for a matrix look-up we
get a maximum cost of O(am~z �9 tog ILl) for a basic computation, resulting in
O(ama~ �9 log [L I �9 [L[. N) worst case behavieur for the uniform problem.

Algorithm D generalizes to the cases where the poset is a finite meet-semi-
lattice, as follows. Let p r denote the lattice obtained from P by adding a top
element T, taking c < T for all c E P. We change algorithm D by adding the
test if 3c~. p(a) = T t h e n FAIL at the beginning of the output step. We extend
the functions in r such that f (z l , z~ l) = T if any zi = T. This modification
of algorithm D will be referred to as algorithm D r . Algorithm D r is obviously
sound, by soundness of algorithm D, and it is a complete decision procedure for
semi-lattices, since if P has no top element and the least solution to the variable
expressions in C maps a variable to the top element of p r then clearly C can
have no solutions in P.

4 Relational problems

Inequality constraints are a special case of the much more general framework of
relational constraints. A relational constraint problem is a pair Y = (P, $) with
P a finite poset and S a finite set of finite relations R C p~R, with 1 _< an (the
arity of R.) Any R C_ pk is called a relation over P. A relational constrain~ set
C ever F is a finite set of F.terms of the form R (A I , . . . , AaR) where A ranges
over variables in P and constants drawn from P. The size of a constraint term
t = R(A1 , . . . ,Aaa) is It[= aR; the size [C[of a constraint set is the sum of
the sizes of all terms in C. We say that a constraint set C is satisfiable if there
exists a valuation p of C in P such that (JAlap,. . . , [Aa~]p) E R for every term
R(A1 , . . . ,AaR) in C. If Vat(C) = 1;m, then Sol(C) is the set of valuations
p E pm satisfying C. We define the decision problem F-SAT to be: Given a
constraint set C over F, is C satisfiable? If z E pm and 1 < i < m then [x]i

289

denotes the i ' th coordinate of x. We use the vector notation x = (x l , . . . , Xrn),
and if R C pm we write R(x) as an abbreviation for R (z l , . . . , xm) also when
this expression is considered a term.

4.1 R e p r e s e n t a b i l i t y

We are interested in the following question: How many relational constraint
problems can be (efficiently) solved using algorithm D? This translates to the
question: How many problems can be transformed into definite inequality prob-
lems and what is the cost of the transformation?

A relation R _C pm is called representable with respect to a constraint prob-
lem F = (P, S) if R = Sol(C) for some constraint set C over F. We say that
a problem/~ is a problem with inequality if the order relation < on P is repre-
sentable with respect to /% We say that a problem/~ has minimal solutions if
Sol(C) has a minimal element with respect to < for any constraint set C over
F with Sol(C) # ~. I f /~ = (P, S) with P a meet-semilattice and it holds for
all R 6 S that z, y 6 / ~ implies x [q y 6 R, t h e n / ' is said to be a meet-closed
problem. A relational problem/" = (P, S) is representable in definite form if P
is a meet-semilattice and there exists an MFP 4~ such that for all constraint sets
C over F there exists a definite set C' over �9 with Sol(C) = Sol(C').

Suppose that R C pm is a meet-closed relation, P a meet-semilattice. Then
define the partial function HR : p,n ..+ p,n by Ha(x) = A tR (x) where
J'R (x) = {y 6 pm] y > x, R(y)} and with HR undefined if t"R (x) = ~. Then
HR is monotone when defined, i.e., Vxy 6 dom(HR), x < y ~ HA(x) < HR(y),
and if J'R (x) # r then x E dom(HR). Moreover, for all x 6 dom(HR) one has
HA(x) > x, since every y 6i"R (x) satisfies y > x, and so we have A]~n (x) _> x.

L e m m a h . x E R if and only i f x E dom(HR) and HR(x) < x

Using Lemma 5 we can characterize the class of relational problems which
can be solved using algorithm D, i.e., the problems which can be expressed by
definite inequalities, as follows

T h e o r e m 6. (Representability) 1. Let I ~ = (P, S) with P a meet-semilattice.
Then F is representable in definite form if and only if F is meet-closed. In par-
ticular, if F is meet-closed, then any constraint set C over F can be represented
by a definite and simple constraint set C' with]C'] < m(m + 2)-]C] where m is
the maximal arity of a relation in S.

2. Let ~ = (P, ,9) be a relational constraint problem with inequality, P ar-
bitrary poset. Then the following conditions are equivalent: (i) F< has minimal
solutions. (ii) F< is meet-closed and P is a meet-semilattice. (ii- D P<_ is repre-
sentable in definite form.

Observe that property 1 of Theorem 6 can be seen as a strict generalization
of the well-known fact that a set R C 2 k of boolean vectors is definable by a

290

set of propositional Horn-clauses if and only if R is closed under conjunction 2
Under this view, the notion of definite inequalities generalizes the notion of
Horn-propositions from the boolean case of 2 to an arbitrary meet-semilattice. 3

We have seen that any meet-closed problem can be represented by definite,
functional constraints. Conversely, consider distributive constraint sets over an
MFP, i.e., constraint sets C where all r < r p E C have the right hand side r j built
from distributive functions only 4 Distributive sets strictly include the definite
ones, but every distributive set can be represented by a relational set over a meet-
closed problem, since the functions in F can be regarded as relations (graphs),
hence (Theorem 6 (1)) algorithm D can solve any ~-SAT problem restricted
to distributive constraint sets. In practice it may be convenient to translate a
distributive set directly into a definite one, using the auxiliary functions Hg,
defined thus: let g : p m -4 p with P a meet-semilattice; then Hg : P -4 P'~ is
the partial function given by gg(~) = A{Y E pm ix < g(y)} with Hg undefined
if no y E P'~ satisfies y < g(x). If P is a lattice, then Hg is a total function, and
it is always monotone. We have

L e m m a 7. Let f : P~ -4 P, g : P'~ --4 P with g distributive. Then f(x) < g(y)
if and only if f (x) E dom(Hg) and Hg(f(z)) < y.

The transformation -4R given by

CU (A < g(.. .h('r) . . .)} "+R CU {A < g(...vm+t ..,),Vm+l <_ h('r)}

is analogous to L-normalization and satisfies properties corresponding to Lemma 1
and Lemma 2. For MFP r = (L, F) , L meet-semilattice, let ~ ' = (L, F ') with
F' = F U Ugeed {H~ [i = 1 . . . a t } where Fd is the set of distributive functions

in F and Hia(x) = [Hg(x)]i. Using -4L and --+R one haz by Lemma 7

P r o p o s i t i o n 8. Let r = (P, F) be an MFP, P a mee$.semilattice. Then for any
distributive constraint set C over ~ there exists a definite and simple constraint
set C' over ~' with Sol(C) = {pt $ k] p E Sol(C)}, where Vat(C) = 14, and
with]C' I <_ 31C1 + 2n(m + 2) where n is the number of inequalities in C and m
is the maximal arity of a function in F.

2 The definability condition for propositional Horn-clauses is a special case of a much
more general model theoretic characterization of Horn-definability in first order pred-
icate logic, by which an arbitrary first order sentence ~ is logically eqtfivalent to a
Horn-sentence if and only if r preserves reduced products of models; see [4] or [12]
for in-depth treatments of this result. See also [6]

3 Note that in definite inequalities we are allowed to use any monotone functions,
whereas in the special case of Horn-implications we may 'use only one function, the
meet operation. It is easy to see that one cannot, in general, define an arbitrary meet-
closed relation using only the meet, operation of the senti-lattice, since, for instance,
any set C of inequalities in one variable using only the meet function must be convex
(i.e., x, y E Sol(C) and x < z < y imply z E Sol(C).) So, for instance, taking L
to be the three element chain 0 < 1 < c~, the subset {co, 0} is meet-closed but not
convex and hence it cannot be defined using just the meet operation.

4 A function f is distributive if f (x r3 y) = f(x) rq f(y).

29t

4.2 Boolean representation

We show how sets of definite inequalities over finite lattices can be translated
into propositional formulae, such that there is a direct correspondence between
solutions to the propositional system and solutions to the lattice inequalities.

Given a lattice L with n + 1 elements, we represent each element of L by an
element in 2% First we number the elements in L \ {.L} = {/1 , . . . , In). We then
represent each element x in L by a vector of boolean values r : L -+ 2 r' where

r = (b l , . . . , b,,), where bi = 1 iff li < z

We also define a mapping r : 2 n --~ L:

r = V{/, I b, = 1}

It is clear that z -- r162 and v < r162 Moreover, both are monotone.
Hence, r and r form a galois connection between L and 2% We will translate
definite inequalities over lattice terms into sets of definite inequalities over 2'*.
We will assume that we have already transformed the constraints to the form
f (A 1 , . . . , An1) < A0. We translate constraints over the L-variables V l , . . . , v~,
into sets of constraints over the boolean variables v11, . . . , v t n , . . . , vkl, �9 . . , v~n.
We extend r to variables by setting r = (v i i , . . . , vim) and define r to be
the i ' th component of r

Even though we don' t use an index for / in our representation, we will for
convenience assign it index 0 and define r = 1 for all z E L. This corresponds
to extending the representation vector with an extra bit, which is always 1 (since
1 is < all elements in L).

We first generate, for each variable vi, the set of constraints vik < vii when-
ever lj < lk (we actually need only do so for a set of pairs lj < lk whose
transitive and reflexive closure yields the ordering on L). These constraints will
ensure that any solution to the constraint set will be in the image of r Note
that this only works because we are in a lattice, as when we have two solutions
to the constraints for a variable, the meet and join of these are also solutions.
Even if we use more general Horn-clauses to model the ordering relation, it will
be meet-closed, so at best we can extend the construction to meet semi-lattices.

Let the i'th frontier o f f , Fi(f) be the smallest subset of L a! such that
r = 1 iff there exist (z l , . . . ,Za~) E Fi(f) , (z l , . . . , x a ,) <
(Yl , . . . , Yal)" This is well-defined, because the set of all (z t , . . . , zaj) such that
r Xa,)) = 1 is one such, and since the intersection of two such sets
is also one. While Fi(f) in the worst case may be of size O(ILa,]), it is often
smaller. If f is distributive, IFi(f)] <_ 1.

For each i between 1 and n and for each (z~ , . . . , ~:a,) E Fi(f) , we generate
from the constraint f (A 1 , . . . , Ant) < A0 a new constraint:

Cj, (At) Y l . . . I-1 Cj,, (A~j) _< r (A0)

where Jk is the index of zk in L.
The translation of f (A 1 , . . . , Aas) < Ao is the set of all these new constraints.

292

T h e o r e m 9. The constraint f(A1 , Ant) < Ao is satisfiable iff all the con-
straints in the translation and all the ordering constraints between the compo-
nents of the variables are. Moreover, any solution to the translation is in the
image ore and maps by r to a solution of f (A t , . o . , Aa~) < Ao. Since r and r
are order-preserving, least solutions map to least solutions.

C o m p l e x i t y . We have translated a set C of constraints over an n + 1-point
lattice L into a set C ~ of constraints over the boolean 2-point lattice. The size
of the translated constraint set can be calculated as follows:

For any variable vi in C, we introduce n variables v i i , . . . , vi,~ in Cq For each
vi, C ~ contains at most n 2 constraints to ensure that any solution to C r will :map
v n , . . . , vin to an image of an element in L.

For any constraint f (A 1 , . . . , A a l) <. Ao, we introduce a number of con-
straints, each of size a! + 1. The number of constraints is ~ i = ln]_Fi (f) l -< n x
n ~s . Since the size of the constraint J(AI,o . . , Aas) _< A0 is (a! + 1), the size of
the translation is less than n l+a~ times the size of the original constraint.

Bringing these together, we get that]C'I <_ n l+a~~ • ICI + n 2 • IVI, where
ama~ is the maximal arity of a function symbol in C and]VI is the number of
variables in C. For a fixed lattice and set of function symbols, this is a linear
expansion. For the uniform problem, the input is given as operation matrices for
the function symbols plus the constraints. The size of an operation matrix for a
function with arity a is n ~, so the size of the input is greater than n a~~ +]CI.
The size of the output is n l + a ~ x IC[+ n 2 x IVI. The size of the input is
hence the sum of two values and the size of the output is (approximately) the
product of these. Hence, we get a quadratic worst-case expansion for the uniform
problem.

The exponential dependence on the arity of the function symbols may seem
bad, but it can be argued (see [19]) that any reasonable translation to boolean
constraints will expand non-polynomially in the arity of the function symbols.
Comparing with algorithm D (see Theorem 4) we see that D runs in time linearly
dependent on amaz for the uniform case, hence boolean representation should,
in general, only be used in case arities are known to be small.

Sa t i s f i ab i l i t y o f t r a n s l a t i o n ~ Each constraint in the translation is of the form
al [3...N a,~ < a0, where the a~ are variables or constants ranging over the lattice
{0, 1}. These constraints are isormorphie to Horn-clauses, and can hence be
solved in t ime linear in the size of the constraint set using a ~ORNSAT-procedure
[71.

5 Intractability of extensions

We have seen that algorithm D efficiently decides the uniform satisfiability prob-
lem (i.e., uniform in both F and C), when instances /~ are restricted to be
meet-closed. It is relevant to ask whether this can be extended to cover more

293

relations than the meet-closed ones (perhaps by finding an algorithm entirely
different from D.) The main purpose of this section is to demonstrate that, un-
less P = N P , no such extension is possible for any meet-semilattice L. This
shows that algorithm D is complete for a maximal tractable class of problems,
namely the meet-closed ones. If L is a meet-semilattice, we say that a problem
/" = (L, S) is a maximal meet-closed problem if -P is meet-closed and for any
R C L k which is not meet-closed, the (particular, non-uniform) satisfiability
problem (L, S U {R})-SAT is NP-complete. We first show that any distributive
lattice has a maximal meet-closed problem and deal with the general case after-
wards. The proof is by composing Birkhoff's Representation Theorem for finite
lattices 5 with Schaefer's Dichotomy Theorem [20] for the complexity of logical
satisfiability problems.

For lattice L, let Idl(L) be the set of order ideals of L and Irr(L) the
set of join-irreducible elements of L. If L is a finite, distributive lattice with
I r r (n) = c l , . . . , c n any fixed enumeration of I r r (L) , then Birkhoff's Repre-
sentation Theorem entails that, with r/ : L -4 Id l (I r r (L)) defined by y(x) =
{y E Irr (L) I Y -< z}, the map ~ : L -+ 2 n becomes an order-embedding by set-
ting [~(x)]i = 1, if ci E rl(x), and [to(x)]i = 0, if ci ~ ~(x), for i = 1 , . . . , n .
We refer to ~ as the canonical embedding of L. For _R C L k we let 6 T(R) =

e n) , so x n r W i t h r =

(L, S), L distributive, define the problem ~(Y) = (2, ~(S)) with ~(S) = {~(R) j
R E S}. We use ~(R) to denote the relation symbol corresponding to the relation
r If C is a constraint set over ~(F), one has ~(R) _C 2 k" for all relations
~(R) E ~(S), where n = IIrr(L)l and k is the arity of R.

Now, we are interested in problems F such that ~(F)-SAT becomes polyno-
mial time reducible to F-SAT. The problem here is that such reduction is not
possible in general, because the constraint language of T(F) is more expressive
than that of F. For instance, a unary relation symbol R may get translated into
a symbol ~(R) of arity n = IIrr(L)t with n > 1, so we can write (taking n = 3)
constraints with patterns like {!o(R)(x, y, z), T (R) (z , y, z)} expressing that there
exists b E 23 such that both that it and its reversal is in ~(R); in general this
cannot be expressed in the constraint language of Y. However, if F has a certain
kind of relations, then this becomes possible. Given distributive lattice L with
canonical embedding T and IIrr(L) l = n we let IIL denote the set of "projection
relations" rij C_ L 2, i , j E {1,.~., n}, defined as follows

= e L I =

5 See [5]. We recall also that, for lattice L, an order idealin L is a down-closed subset
of L; x E L is join-irreducible if x r .L and x = y tJ z implies x = y or x = z for
all y ,z E L; L is distributiveif (:r U y) Vlz = (xVlz) U (y ~ z) for all x , y , z E L; an
order-embedding of lattices is an injective map preserving meet and join.

6 We use the notation (Yl, . . . ,yk) , for yl E L '~, to denote the "flattened"
kn-vector z obtained by concatenating the tuples y l , . . . ,yk into a single tu-
ple, in that order; in detail, z = (zl ,zkn) with zl = [yl]l ,z,~ =
[Yl] z(k-1)~+, = [yk]l,.. . ,zk~ = [Yk]n. For x = (x l , . . . ,xk) e L k we write
~(x) for (9(xl) , . . . ,~(x~)).

294

It is easy to check that r i j are all meet-closed relations, since T is an order-
embedding. If L is non-trivial, there must be a, b 6 L with a < b, so that
~(a) < ~(b), and hence [~(a)]j = 0 and [~(b)]j = 1 for some j; we can therefore
express that [~(z)]i = 0 and [~,(x)]i = 1 by ~rij(x, a) and zrij(x, b), respectively.
Constraints of the form ~qj (z, y) will be written as [~(x)]i = [~o(y)]/or [T(z)]i = b
(b 6 {0, 1}). One does not, of course, need explicit reference to T in order to
define the projection relations, so long as one can talk about the join-irreducible
elements in an appropriate way:

Example 1. Let ~ = (L, F) , I r r(L) = e l , . . . , cn and suppose we have a function
fc, 6 F for each ci 6 I r r (L) where fc, (x) = T if ci _< x and fr (x) = 2_ otherwise.
Then all fc, are distributive functions, and since the condition [~(x)]i - [~(y)]j
is equivalent to the condition ci <_ x ~ cj < y, the first mentioned condition
can be expressed by distributive inequalities over r because ci < x ::~ cj < y is
equivalent to the distributive constraint f~, (x) _< f~j (y).

If s = (L, ,.q) and C is a constraint set over ~(F) , we describe a translation
of C, called ~ - t (C) , to a constraint set over 1TM = (L , $ U I I L) , as follows. Let
t l , . . . , tm be an enumeration of the constraint terms in C. Each ts can be written
as a term of the form G = ~(R)((A1, . . . , Ak)), where each Ai is a vector of n
atomic terms, n =]Irr(L)], k the arity of R. We let G ~ (P, i) = [Ap]i (1 < p

�9 k, 1 < i < n.) For each term t, we let a t , . . . , a t be k unique, fresh variables to be
used in the translation of term t~. The relational term to = ~ (R) ((A 1 , . . . , A~))
then gets translated into the constraint set C0 = C0,1 U C8,2 u C0,3, where

=

Co, = = b l JAil, = b with b e {0, t } }
C~,3 { [~(a;)]i = [T(aq)]j It, ~ (p, i) is variable x A 3tu E C. t~ ~ (q, j) = z }

For C = t l , . . . , t i n we define ~-1(C) = U~m=l c0. The constraints in ~ - I (C)
using ~rij can simulate all patterns in ~(C)~ so we can show

L e m m a 10. Let F = (L, $) with L non-trivial distributive lattice, and let C be
a constraint set over ~v(F). Then C is satisfiable over ~(F) if and only i f T - l (C)
is satisfiable over F' = (L, $ U ILL).

Since each set C0,3 in p - l (C) contributes at most ICI 2 new constraints, because
each new constraint is determined by a distinct pair of occurrences of variables
in C, it is straight-forward to show

L e m m a l l . For every constraint set C over T(F) one has]T-I(C)I <: IV[2 �9
(2lCl + 3).

We now recall the contents of Schaefer's Dichotomy Theorem [20]. It yields the
following very powerful classification (see also [14]):

T h e o r e m 12 Schae fe r [20]. Let F = (2, $) be any boolean problem. Then the
satisfiability problem F-SAT is polynomial time decidable, i f one of the follow-
ing four conditions are satisfied: either (1) every relation in S is closed under

295

disjunction, or (2) every relation in S is closed under conjunction, or (3) ev-
ery relation in S is bijunctive, i.e., it satisfies the closure condition gx, y, z E
2k.x, y, z E R ~ (x A y) V (y A z) Y (z A x) E R, or (4) every relation in S is affine,
i.e., it satisfies the closure condition Vx, y, z E 2 ~. x, y, z E R ~ x @ y @ z E R,
where @ is the exclusive disjunction.

Otherwise, i f none of the above conditions are satisfied, the problem /"-SAT
is NP.comple te under log-space reductions.

I fL is a meet-semilattice which is not a lattice, we let L T denote the extension
of L to a lattice under addition of a top element, as earlier. If L is already a lat-
tice, we let L T -- L, by definition. We say that L is a distributive meet-semilattice
if L is a meet-semilattice such that L T is a distributive lattice. If L is a distribu-
tive meet-semilattice we know by previous remarks that L r has a canonical em-
bedding into 2 '~, and this map ~ will be referred to as the canonical embedding
of L also. For any meet-semilattice L we let ML -- {(x, y, z) e L 3 I z = x I'q y},
the meet-relation of L. The following results are proved in detail in [19].

L e m m a 13. Let L be a non-trivial distributive meet-semilattice, and let 9~ be its
canonical embedding. Then the relation ~(ML) satisfies: ~(ML) is closed under
conjunction, ~(ML) is not closed under disjunction, ~(ML) is not bijunetive,
and ~o(ML) is not affine.

Let L be distributive and S = / / z U {ML}; then the problem _~ = (L, S) is
meet-closed. We can show that, for any relation R over L which is not meet-
closed, the problem/"+-SAT with F + = (L, S U {R}) is NP-hard, by reduction
from W(/")-SAT, which, in turn, can be shown to be NP-hard by Lemma 10,
Lemma 11, Lemma 13 together with Schaefer's Dichotomy Theorem. We there-
fore have

T h e o r e m 14. (Intractability of extensions, distributive case) For any non-trivial,
distributive meet-semilattice L the problem F = (L, IIL U {ML}) is maximal
meet-closed.

By Birkhoff's Theorem we know that L embeds into 2 n if and only if L is
distributive, hence the method used to prove Theorem 14 will not work for ar-
bitrary finite lattices. However, if L is an arbitrary meet-semilattice we have the
following weaker result by direct reduction from CNF-SAT:

T h e o r e m l5 . (Intractability of extensions, general case) Let L be any non-
trivial meet-semilattice and let R C L k be any relation over L which is not
meet-closed. Then there exists a meet-closed problem/" = (L, S) such that the
problem .P-SAT is NP-complete with ? = (L, S U {R}).

Theorem 15 entails that the uniform satisfiability problem restricted to meet-
closed relations becomes NP-hard no matter how it is extended, since the the-
orem says that there will always be a particular (non-uniform) problem over
such an extension which is NP-hard; here the hard problem depends on the

296

given extension. In contrast, Theorem 14 asserts the existence of a particular
(non-uniform) problem which becomes hard no matter how it is extended. The
results given here extend, in the case of finite domains, the results of [13], which
considers totally ordered domains. See also [15].

6 A p p l i c a t i o n s t o p r o g r a m a n a l y s i s

An application of the constraint solving technology shown in this paper is pro-
gram analysis by annotated type systems~ In these systems, programs are given
types annotated with elements from a finite lattice. The type rules impose con-
straints between the annotations of the types of a term and its sub-terms. A typ-
ing of a program will generate a set of constraints, which must then be solved.
Often, the constraints will have a form suitable for solution by the methods
presented here.

One such example is the usage count analysis from [17] which has annotations
in the lattice {0, 1, c~} with 0 < 1 < oo. The constraints use the following binary
operators:

kl + k2 kl �9 k~ kl C, k2

' ot 0of! 0 0 ~176176 ~ 1 1 oooo I 0 1 oo 1 0 1 0 0
oo oo oo ,oo o 0 o 0 i c ~

+ and . are addition and multiplication over counts, hi t> k2 is 0 if kl = 0,
otherwise kz t> k2 = k2.

The constraints are of one of the forms kl = k2, 1 < k, k~ < k2, kl + k2 <_ ka,
~ - k l < k2, kl .k2 < ka or kl I>k2 < ka. Hence (noting that kl = k~ is equivalent
to kl <_ k2, k2 < kl), they are of the kind that can be solved by the methods
shown, either by the direct method or by translation into boolean constraints.
The translation uses the mapping shown below for lattice elements.
Hence, we replace each constraint variable kt by two variables li and ri over the
binary domain, with the constraint li <_ r i.

The constraints are translated using the translation shown in section 4.2. The
table below shows the result after reduction has been made for the constraints
that involve constants.

trans- constraint
count lation kz = k2

0 00 l_<k
i Ol kl < k~

c~ II k z + k ~ ~ k s
~ . k~ "2Z_- k2
kl �9 k2 << k z

translation
ll m ~2~ r l : r2
r = l
li _< 12, r l _< r~
l~ < lz, rl < rs, l~ < lz, r2 < r~, rl A r2 <_ Iz
rl _< 12
rl A r~. 5 rs, 11 A r2 _< l~, 12 h rl _< Is
rl h l~ :< 13, rl h r2 _< rz

@
We end this section by giving some further examples of how our results can

be used to reason about problems of interest in program analysis.

297

Example 2. The problem �9 = (2, {A}) is maximal meet-closed. To see this, repre-
sent �9 as relational problem/~ = (2, {M2, <}). It then follows from Theorem 14
that F is maximal, because all relations in the set II2 can already be defined in
terms of/1//2, by Horn-definability (cf. comment after Theorem 6) together with
the fact that all relations in II2 are meet-closed.

Example 3. Let 3 denote the three-point chain 0 < 1 < oo. The distributive lat-
tice 3 occurs in many practical contexts, such as, e.g., program analyses involving
usage counting [17], [21],[1].

Let pred denote the predecessor function on 3, with pred(O) = 0, pred(1) =
O, pred(oo) = 1. Then pred is a distributive function. Consider the problem ~ =
(3, {N, prea~), it is clearly meet-closed (viewed relationally), and, moreover, it
is maximal. To see this, first note that the join-irreducible elements are {1, co}.
Now define the function fl by setting fl (x) = 1 gl x and define the function
foo by setting foo(x) = pred(x). Then f l (x) - 1 if 1 < x and f l(x) = 0
otherwise; moreover, f~o (x) = 1 if oo < x and f ~ (x) = 0 otherwise. Recalling
Example 1 we see that the functions fl and foo are sufficient to represent the
projection relations i n / / 3 , since we can express the condition ci < x =~ cj < y,
for ci, cj e Irr(3), by the distributive constraint re, (x) < fei (Y)- It then follows
from Theorem 14 that 4~ is a maximal problem.

Example~. Consider the uniform function problem restricted to distributive in-
equalities. By Theorem 6 this problem contains all meet-closed problems. There-
fore, it follows from Theorem 15 that any uniform extension of the problem be-
comes NP-hard. In other words, if monotone function symbols can occur on
the left side of inequalities and any single non-distributive function symbol can
occur arbitrarily on the right side, then the uniform problem is NP-hard.

Example 5. In many applications in program analysis the semilattice L will be
thought of as a domain of abstract program properties with lower elements rep-
resenting more information than higher elements 7 If an analysis can be imple-
mented as a constraint problem with minimal solutions it will have the desirable
property that it is guaranteed to yield a uniquely determined piece of informa-
tion which is optimal relative to the abstraction of the analysis. Theorem 6 says
that all and only inequality constraint problems with this natural property can
be represented as definite inequalities and hence can be solved in linear time
using algorithm D.

7 Conclus ion

We have studied efficient solution methods for the following classes of constraint
problems over finite meet-semilattices:

7 Alternatively, elements with more information may sit higher in the semilattice. Our
results still apply, since the whole development in this paper can of course be dualized
in the lattice-theoretic sense to encompass join-semilattices and join-closed problems
over such.

298

- Definite inequalities involving monotone functions.
- Distributive inequalities.
- Boolean inequalities (Horn clauses).
- Meet-closed relational constraints.

We have shown that these classes are equivalent modulo linear time transforma-
tions for any fixed problem, and we have estimated the constant factors involved.
For any fixed lattice and any fixed set of function/relation symbols the meth-
ods are linear time in the size of the constraint set, but, in the case of boolean
representation, the time depends non-linearly on the maximal arity of relation
symbols used. Furthermore, we have shown that these classes can be solved uni-
formly in polynomial time and that they are are maximal in the sense that any
extension leads to NP-hard uniform problems.

A c k n o w l e d g e m e n t s We wish to thank Fritz Henglein, Nell Jones, Helmuth
Seidl, Muds Torte and our referees for helpful discussions and comments.

A Algorithm D

Algorithm D is shown in Figure i. We outline the data-structures and op-
erations assumed for a linear time implementation (more details are in [19].) A
list Ilist of records representing the inequalities in C. Each record also holds
a boolean variable, called inserted. An array Clist[/3] indexed by variables
in Vat(C). Each entry Clist[fl] holds an array of pointers to inequalities in
Ilist, one entry for each inequality in C in which/3 occurs. Thus, to each item
Clist[~][k] there corresponds a unique occurrence of/3 in C, Hence, the number
of distinct items CIist[fl][k] is bounded by [C]. The structure NS is a doubly
linked list of of pointers to inequalities in [list which are also in Co~r, and the
item in flist has a back-pointer set to the representing item in NS. There is a
pointer to the head element of NS. The idea is that NS holds holds pointers
to those inequalities in C, ar which are not satisfied under the current interpre-
tation p (see below.) A finite map p mapping each distinct variable of C to an
element in L. The map p holds the current "guess" at a satisfying valuation for
C~ar- The map • is the map which sends every variable of C to the
bottom element of L. The map p is implemented as an array of lattice elements
indexed by the variables. We write p(/3) for p[fl]. Evaluating p(fl) is a constant
time operation, and so is the operation of updating p at/?.

Operation PoP removes the head element of NS and returns it after setting
the corresponding inserted field to false. INSERT(i) inserts an inequality pointer i
at the front of NS, updating the inserted field. If the inserted field is true, then
INSERT does nothing. DRoP(i), removes i, a pointer to an element in NS, from
NS, using the inserted filed in analogy with INSERT. All these operations can
be implemented as constant time operations, using the data-structures above.
Operation L-NORMALIZE transforms a definite set into an equivalent L-normal
set and runs in time O(ICI) (using Lemma 2 and Lemma 1.)

299

1. Input
A finite set C = {7"~ < A~},ez of definite inequalities over �9 = (L, F), F =
{ f : L "l --+ L} with each f monotone, L finite lattice, Vat(C) =]],~ for some
m.

2. Initially
C : = L-NORMALIZE(C)

p : ~ -l-I),n--+L
C~,~ := {7" < A E C] A is a variable)
Initialize the lists Clist[a], for every distinct variable a in C.
Initialize [list to hold the inequalities in C.
N S := {r_< ;9 EC~a~ [L, pV=7"<;9}

3. Iteration
whi le NS ~ O do

r </9 := eoP(NS);

p(Z) := [~-]p u p(Z);

for a < 7 E Clist~3] do
if p, L~=a<'r
t hen INSERT(O" <~ 7)
else Drtov(cr < 7)

end; (* for *)

4.
end;(* while *)

Output
I f L, p ~ 7" < c for all r < c E C~...t t hen output p else FAIL.

Figure 1: Algorithm D for satisfiability of definite constraints over

In the a lgo r i thm we have followed the convent ion of wri t ing the pa t t e rn of
an inequal i ty po in ted to by an inequal i ty poin ter ins tead of the poin ter itself.

References

1. L. Birkedal, M. Torte, and M. Vejlstrup. From region inference to yon Neumann
machines via region representation inference. In Proc. 23rd Annual ACM Sym-
posium on Principles of Programming Languages (POPL), pages 171-183. ACM
Press, January 1996.

2. L. Birkedat and M. Welinder. Binding-time analysis for Standard ML. Lisp and
Symbolic Computation, 8(3):191-208, September 1995.

3. A. Bondorf and J. Jorgensen. Efficient analyses for realistic off-line partial evalu-
ation. Journal of Functional Programming, 3(3):315-346, July 1993.

4. C.C. Chang and H.J. Keisler. Model Theory. Studies in Logic and the Foundation
of Mathematics, Vol. 73, 3rd ed., North Holland, 1990.

5. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
Mathematical Textbooks, Cambridge University Press, 1990.

6. R. Dechter and J. Pearl. Structure identification in relational data. Artificial
Intelligence, 58:237-270, 1992.

300

7. William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional horn formulae. Journal of Logic Programming, 3:267-
284, 1984.

8. Dirk Dussart, Fritz Henglein, and Christian Mossin. Polymorphic recursion and
subtype qualifications: Polymorphic binding-time analysis in polynomial time. In
Proc. 2nd Int'l Static Analysis Symposium (SAS), Glasgow, Scotland, Lecture
Notes in Computer Science. Springer-Verlag, September 1995.

9. M. Garey and D. Johnson. Computers and Intractability- A Guide to the Theory
o/NP.Completeness. Freeman, 1979.

10. R. Greenlaw, H.J. Hoover, and W. Ruzzo. Limits to Parallel Computation. P-
Completeness Theory. Oxford University Press, 1995.

11. F. Henglein. Efficient type inference for higher-order binding-time analysis. In
J. Hughes, editor, Functional Programming Languages and Computer Architecture,
Cambridge, Massachusetts, August 1991 (Lecture Notes in Computer Science~ vol.
523), pages 448-472. ACM, Berlin: Springer-Verlag, 1991.

12. W. Hodges. Model Theory. Encyclopedia of Mathematics and its Applications,
VoI. 42, Cambridge University Press, 1993.

13. P. Jeavons and M. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence, 79:327-339, 1995.

14. Peter Jeavons and David Cohen. An algebraic characterization of tractable con-
straints. In First Annual Conference on Computing and Combinatorics (CO-
COON}, pages 633-642. Springer Verlag, LNCS 959, I995.

15. Peter 3eavons, David Cohen, and Marc Gyssens. A unifying framework for
tractable constraints. In First International Conference on Principles and Practice
of Constraint Programming, pages 276-291. Springer Verlag, LNCS 976, 1995.

16. G. Kildall. A unified approach to global program optimization. Proc. A CA/[Syrup.
on Principles of Programming Languages (POPL), 1973.

17. T. /E. Mogensen. Types for 0, 1 or many uses. Technical report, In preparation,
1996.

18. Vaughan Pratt and Jerzy Tiuryn. Satisfiabifity of' inequafities in a poser. Studia
Logica, Helene Rasiowa memorial issue (to appear), 1996.

19. Jakob Rehof and Torben Mogensen. Report on tractable constraints in fi-
rdte semilattices. Technical report, DIKU, Dept. of Computer Science, Uni-
versity of Copenhagen, Denmark. Available at http://www.diku.dk/research-
groups/topps/personal/ rehof/publications.html, 1996.

20. Thomas J. Schaefer. The complexity of satisfiability problems. In Tenth Annual
Symposium on the Theory of Computing (STOC).~ pages 216-226. ACM, 1978.

21. Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value A-
calculus using a stack of regions. In Proe. 2Ist Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), Portland, Oregon.
ACM, ACM Press, January 1994.

