A Scalable Approach to Attack Graph Generation

*
Xinming Ou
Purdue University

xou@cerias.purdue.edu

ABSTRACT

Attack graphs are important tools for analyzing security
vulnerabilities in enterprise networks. Previous work on
attack graphs has not provided an account of the scala-
bility of the graph generating process, and there is often
a lack of logical formalism in the representation of attack
graphs, which results in the attack graph being difficult to
use and understand by human beings. Pioneer work by
Sheyner, et al. is the first attack-graph tool based on for-
mal logical techniques, namely model-checking. However,
when applied to moderate-sized networks, Sheyner’s tool en-
countered a significant exponential explosion problem. This
paper describes a new approach to represent and generate
attack graphs. We propose logical attack graphs, which di-
rectly illustrate logical dependencies among attack goals and
configuration information. A logical attack graph always
has size polynomial to the network being analyzed. Our
attack graph generation tool builds upon MulVAL, a net-
work security analyzer based on logical programming. We
demonstrate how to produce a derivation trace in the Mul-
VAL logic-programming engine, and how to use the trace to
generate a logical attack graph in quadratic time. We show
experimental evidence that our logical attack graph gener-
ation algorithm is very efficient. We have generated logical
attack graphs for fully connected networks of 1000 machines
using a Pentium 4 CPU with 1GB of RAM.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General;
K.6.5 [Management of Computing and Information
Systems]|: Security and Protection

General Terms

Security, Management

*As of August 14, 2006, Xinming Ou’s affiliation is Kansas
State University. This work was conducted when he was a
post-doctoral research associate at Purdue University. We
would like to thank Purdue University and CERIAS for sup-
porting his work.

Copyright 2006 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee, contrac-
tor or affiliate of the U.S. Government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

CCS’06, October 30-November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

Wayne F. Boyer
Idaho National Laboratory

Wayne.Boyer@inl.gov

Miles A. McQueen
Idaho National Laboratory

Miles.McQueen@inl.gov

Keywords

Attack graphs, enterprise network security, logic-programming

1. INTRODUCTION

When analyzing the security of an enterprise network, it is
important to consider multi-stage, multi-host attacks. A de-
termined attacker is not likely to stop at the machine he first
compromises, but can be expected to try to penetrate deeper
into the network by jumping from one machine to another.
For this reason, configuring an enterprise network securely
is a daunting task for human beings. There are many po-
tential interactions among multiple hosts and components
in a network, such that the configuration of one machine
will affect the security of others in the network. It is there-
fore important to design automatic tools that can analyze
the configuration of an enterprise network and find potential
security vulnerabilities. Such a tool will not be very useful
if it cannot inform a system administrator with detailed in-
formation about the discovered problems. In particular, an
attack graph that illustrates all possible multi-stage, multi-
host attack paths is crucial for a system administrator to
understand the nature of the threats and decide upon ap-
propriate countermeasures.

Various kinds of attack graphs have been proposed for an-
alyzing network security [8, 11, 1, 5, 2, 13]. Although some
of them addressed the scalability problem [1, 5], none of the
works has shown solid evidence that the graph generation
tool can scale to an enterprise network with realistic sizes.
In practice it is desirable to compute attack graphs for en-
terprise networks with 1000 to 10,000 hosts. Lippmann and
Ingols gave a good overview on various attack graph tools
in the past [3]. It shows that “although research has made
significant progress in the past few years, no system has an-
alyzed networks with more than 20 hosts, and computation
for most approaches scales poorly and would be impractical
for networks with more than even a few hundred hosts.”

Besides the scalability problem, many of the existing at-
tack graph tools adopt an ad-hoc way to represent input
information and output graph data structures. The graph
generation tools often required various auxiliary inputs in
custom-designed data format, and the resulting attack graphs
are often hard to comprehend and use by a human. These
have made those attack graph tools difficult to use in prac-
tice.

The work by Sheyner, et al. [11] is the first formal treat-
ment of attack graphs. Sheyner uses model checking to
compute multi-stage, multi-host attack paths in a network.
The state of the network is formally modeled as a collection

of Boolean variables, representing configuration parameters
and attacker’s privileges. Attacker’s actions are modeled as
state-transition relations. The security property of the net-
work is specified as a temporal formula, which can be au-
tomatically checked against the model by a model checker.
Unlike a traditional model checker, which only outputs one
counter example when the temporal formula is not satisfied,
Sheyner’s tool can output all counter examples in the form
of a scenario graph. In the case of network security, the
scenario graph is an attack graph illustrating all the multi-
stage, multi-host attack paths that can potentially break a
network’s security property.

A formal, logic-based approach to attack graph genera-
tion, like the one by Sheyner, is advantageous compared
to ad-hoc graph generation methods. Using mature logi-
cal techniques is less error-prone than custom-designed algo-
rithms, especially for the complex problem of security analy-
sis. A clear logical semantics for attack graphs also makes it
easier to conduct further analysis based on the graph data
structure. However, a logic-based attack graph tool must
scale well with the size of the network to make it feasible to
use in practice. When we tried to apply Sheyner’s tool to
analyze real world networks we found that the graph gen-
eration time and graph size were prohibitively large. For
example, a network of only 10 hosts with 5 vulnerabilities
per host takes about 15 minutes to generate and results in
a graph of 10 million edges.

We observe that in Sheyner’s attack graph, every node is
a collection of Boolean variables encoding the entire network
state at an attack stage. While the number of variables is
polynomial in the size of the network, the possible number
of states is exponential. Even though not all the states are
reachable in the search, the potential state explosion asso-
ciated with a model-checking based methodology makes it
impractical except for small networks with very few vulner-
abilities.

In this paper, we propose a new logic-based approach for
representing and generating attack graphs. In our repre-
sentation, a node in the graph is a logical statement. This
logical statement does not encode the entire state of the net-
work, but only some aspect of it. In some sense it can be
viewed as one Boolean variable in the nodes of Sheyner’s
graph. The edges in the graph specify the causality rela-
tions between network configurations and an attacker’s po-
tential privileges. Intuitively, Sheyner’s attack graph illus-
trates snapshots of attack steps, or “how the attack can
happen”, whereas our attack graph illustrates causes of the
attacks, or “why the attack can happen”. To differentiate
these two kinds of attack graphs, we call the former “sce-
nario attack graphs”, and the latter “logical attack graphs”.

One advantage of a logical attack graph is that it clearly
specifies the causality relations between system configura-
tion information and an attacker’s potential privileges. In
a scenario attack graph, one would have to delve into the
Boolean variables and follow several steps upstream to iden-
tify what really causes the adverse situation that enables an
attacker’s action at a stage. In a logical attack graph, such
causality would be specific as graph edges. From a logical
attack graph, it is also possible to enumerate all possible at-
tack scenarios by depth-first traversing. Most importantly,
the size of a logical attack graph is always polynomial in
the size of the network, whereas in the worst case a scenario
attack graph’s size could be exponential.

In the past people have proposed “exploit dependency
graph” as a way to represent computer attacks [5, 2]. In
an exploit dependency graph, the pre- and post-conditions
for exploits are encoded as graph nodes and edges. Seman-
tically this is equivalent to our logical attack graph. Our
contribution is to formally represent such dependency re-
lations in the form of logic, and generate attack graphs
through automatic logic deduction, as opposed to a custom-
designed graph search algorithm. We believe the logic-based
approach has the advantage of better clarity and trustwor-
thiness.

Our logical attack graphs require that the cause of an at-
tacker’s potential privileges be expressible as a propositional
formula in terms of network configuration parameters. At-
tack conditions that cannot be expressed in propositional
formulas cannot be captured by logical attack graphs. In
our experience, we have not found any situations where this
becomes a problem. After all, all computer attacks have
a cause, and unsurprisingly those causes are almost always
rooted in misconfigurations. For a security tool that aims
at finding such misconfigurations, the semantics of logical
attack graphs exactly suits that goal.

1.1 Security analysis based on logic program-
ming

The work presented in this paper is based on the Mul-
VAL project [6]. MulVAL is a reasoning system for au-
tomatically identifying security vulnerabilities in enterprise
networks. The key idea behind MulVAL is that most config-
uration information can be represented as Datalog' tuples,
and most attack techniques and OS security semantics can
be specified using Datalog rules. Following is a Datalog rule
for the remote exploit of a privilege-escalation vulnerability
in a service program.

execCode (Attacker, Host, User) :-
networkService (Host, Program,
Protocol, Port, User),
vulExists(Host, VulID, Program,
remoteExploit, privEscalation),
netAccess(Attacker, Host, Protocol, Port).

Figure 1: An interaction rule for remote exploit.

Capitalized identifiers are variables in Datalog and can
be instantiated with any concrete term during evaluation.
This is a generic rule specifying the pre- and post-condition
for this attack: if Program is running as User on Host as
a service listening on Protocol and Port, it contains a re-
motely exploitable vulnerability whose impact is privilege
escalation, and the attacker can access the service through
the network, then the attacker can execute arbitrary code on
the machine as User. Logically, “:-” can be replaced with
a reversed “implies” connector. The rule can be viewed as
a logical formula V®.Rule, where ® contains all the Prolog
variables appearing in the rule.

Predicates such as vulExists and networkService are
“primitive” and they represent configuration information re-
ported by host and network scanners. Predicates such as
execCode and netAccess are “derived” and they are com-
puted from the configuration information by iteratively ap-
plying the interaction rules on the input. The architecture

LA syntactic subset of Prolog

)

Security) 9| Interaction rules
advisories g.
8
= MulVAL
[0} .
Network s :> reasoning
configuration o engine
(0]
=
Machine - ‘:—_;’.
configuration 5

Logical
attack graph

8oBJ) UoIRINWIS YoByY

Figure 2: Logical Attack Graph Generator

of the Logical Attack Graph tool is illustrated in Figure 2.
The MulVAL reasoning engine uses XSB [9], a Prolog system
developed by StonyBrook, to evaluate the Datalog interac-
tion rules on input facts. We modified the MulVAL engine
so that the trace of the evaluation is recorded and sent to
the graph builder, where the logical attack graph is output.

Our logical attack graph is in essence a derivation graph
for Datalog programs. XSB, like other Prolog systems, does
not provide functionalities for generating proofs of a suc-
cessful query. The justifier program for XSB [7] can record
execution trace for interactively retrieving reasons for a suc-
cessful Prolog query, but does not provide the capability
of constructing derivation graphs that illustrate all possi-
ble derivations. We use a similar approach to XSB’s jus-
tifier program to record derivation steps when evaluating
the MulVAL Datalog program. Those derivation steps are
called attack simulation trace, which contains sufficient in-
formation to construct a logical attack graph.

In the following sections, we will review some of the re-
lated works. We will then give a formal definition of logi-
cal attack graphs, describe the algorithms for constructing
them, and analyze the complexity of the algorithms. We
have implemented the algorithm in a combination of Pro-
log and C++. Experimental results show that our logical
attack graph tool is very efficient and can handle networks
with thousands of machines.

2. RELATED WORK

Sheyner et al. uses model checking techniques to com-
pute attack graphs [11]. We encountered significant scala-
bility problems in applying this tool. One reason for the
blow up is that there are many duplicate attack paths in
the graph that differ only in the order in which independent
attack steps are attempted. Partial-order reduction can re-
move such duplicate paths, but it has not been shown that
the technique can significantly improve the scalability for
attack graphs. Even after removing such duplicate paths,
the resulting graphs could still be exponential. We also find
it is hard to decode the meaning of the Boolean values in
a node, and logical correlation among nodes is not always
obvious.

Philips and Swiler developed a tool for generating attack
graphs [8, 12] in 1998. Like the model checking approach,
the nodes in their attack graphs represent the state of the
network in the form of a collection of variables, and the

edges represent an attacker’s actions that change the state.
Instead of using a model checker, Philips and Swiler de-
veloped a customized search engine to conduct the analysis.
Like Sheyner’s work, this state-based attack graph represen-
tation has inherent exponential problems, and such explo-
sion was indeed reported by the authors. They hence used
a technique similar to partial-order reduction to eliminate
the duplicate attack paths that contributed to the explo-
sion, but it is not clear from the paper how effective this
method has been and no performance data was given.
Ammann, et al. also noticed the scalability problem in
the model checking-based attack graph tool, and proposed
a graph search-based algorithm, which was then used in the
Topological Vulnerability Analysis tool [2]. They pointed
out that for most computer attacks, one can assume the
monotonicity property, where an attacker does not decrease
his ability by launching attacks, and hence does not need to
relinquish privileges he already gained. Under this assump-
tion, an attacker’s privileges always increase during the anal-
ysis. Since there are only a polynomial number of privileges
an attacker can gain, the analysis algorithm will terminate
in polynomial time. Our logical attack graph gives another
perspective for this monotonicity property. We observe that
most attacks, whether monotonic or non-monotonic, have
rooted causes in configuration information. Thus, at an ap-
propriate level all those attacks’ preconditions can be spec-
ified using propositional formulas on configuration informa-
tion. In some sense non-monotonic attacks can be treated
as monotonic if one ignores the low-level details on how the
attack can happen. For this reason simple Datalog rules can
capture almost all kinds of attack conditions in a network.
Ammann gave a theoretical upper bound for their algorithm
as O(|A)?-|E|), where | A| is the number of “attributes” (de-
scribing attack pre- and post-conditions) and | E| is the num-
ber of “exploits”. The paper stated that typically an exploit
involves two hosts, yielding a quadratic number of concrete
exploits. The paper did not discuss the number of attributes
in terms of network size. We believe the attributes should
include host connectivity information, thus the number of
attributes is also quadratic in the number of hosts. This will
give us an O(N®) complexity. It is certainly a very conserva-
tive estimation of the algorithm’s complexity, but we could
not find experimental data showing the performance of the
proposed algorithm on large configuration settings. In this
paper we will show an algorithm that has O(N2) complexity

firewall
p —
webServer
firewall
J go
webPages g H '
i‘ 5 prOJectPIan
workStation
binaries fileServer

Figure 3: Example

under the assumption of constant table look-up time, and
experimental results that demonstrate the worst-case run-
ning time of our graph generator grows between O(N?) and
O(N?) for networks from a handful to a thousand machines.

Noel and Jajodia gave a good review on various repre-
sentations of attack graphs in their work on using aggre-
gation techniques to manage attack graph complexity [4].
Their work finally chose the “exploit-dependency graph”.
An exploit-dependency graph can be viewed as a logical at-
tack graph and the two can be translated back and forth.
However, we believe an attack-graph that explicitly uses
predicates and logical connectives to represent security cor-
relations in a network is better suited for rigorous security
analysis and hardening. Noel’s work focuses on aggregation
techniques for exploit dependency graphs, and does not de-
scribe how the attack graphs can be built from configuration
information or the scalability of the graph building process.

Schneier introduced the general idea of attack trees for
representing security threats [10]. The logical attack graph
presented in this paper is a special case of Schneier’s attack
tree. We apply the idea to the specific problem of enterprise
network security, formally define the semantics of the attack
graph in this context, and describe algorithms for automat-
ically computing attack graphs from network and machine
configuration information. We also show experimental evi-
dence on the scalability of our approach.

Our logical attack graph toolkit was based on the Mul-
VAL toolkit. The original MulVAL work [6] did not have
the ability to compute complete attack graphs. Rather, sep-
arate attack paths can be output by using Prolog’s meta-
programming techniques. Even for a polynomial attack sim-
ulation process, the number of unique attack paths could be
exponential in the worst case. And we indeed experienced
such exponential blow-up when applying MulVAL’s meta-
programming based attack path generator to analyze a real
network with 20 machines. The logical attack graph tool de-
scribed in this paper has the ability of generating complete
attack graphs for networks with thousands of machines.

s (6) |
i i
Figure 4: An example logical attack graph

3. LOGICAL ATTACK GRAPH

The example network in Figure 3 is directly borrowed
from the MuLVAL paper [6]. Suppose the following poten-
tial attack paths are discovered after analyzing the configu-
ration.

An attacker first compromises webServer by remotely ex-
ploiting vulnerability CVE-2002-0392 to get local access on
the server. Since webServer is allowed to access fileServer
through the NFS protocol, he can then try to modify data
on the file server. There are two ways to achieve this. If
there are vulnerabilities in the NF'S service daemons, he can
try to exploit them and get local access on the machine; or
if the NFS export table is not set up appropriately, he can
modify files on the server through the NF'S protocol by using
programs like NFS Shell?2. Once he can modify files on the
file server, the attacker can install a Trojan-horse program
in the executable binaries on fileServer that are mounted
by machine workStation. The attacker can now wait for
an innocent user on workStation to execute it and obtain
control on the machine.

The logical attack graph corresponding to the above sce-
narios is illustrated in Figure 4. A logical attack graph is a
directed graph and can be represented in the form of a tree
with possible cross links between nodes. Figure 5 shows the
tree representation of the same attack graph. There are two
kinds of nodes in the graph: a derivation node and a fact
node. A derivation node is represented as a rectangle and
a fact node is represented as a circle. There are also two
kinds of fact nodes: a primitive fact node (represented as a
solid small circle), and a derived fact node (represented as
a circle with a number in it).

Every fact node in a logical graph is labeled with a logi-
cal statement in the form of a predicate applied to its argu-
ments. The root node is the attack goal; in the example it is
execCode (attacker,workStation,root), meaning “the at-
tacker can execute arbitrary code as user root on machine
workStation”. Every derivation node is labeled with an in-
teraction rule that is used for the derivation step. In the
tree representation, every internal node is started with a
node number in a bracket, followed by the node’s label. A
leaf node does not have a node number and is led by an
empty square bracket.

The edges in the graph represent the “depends on” rela-
tion. A fact node is dependent on one or more derivation
nodes, each of which represents an application of an inter-

“Downloadable from
http://www.deter.com/unix/software /nfsshell.c

<0>|--execCode(attacker,workStation,root)
<rO>Rule5: Trojan horse installation

<1>|--accessFile(attacker,workStation,write,/usr/local/share)

<ri1>Rulel4d: NFS semantics

[1-nfsMounted (workStation, /usr/local/share,fileServer,/export,read)
<2>||--accessFile(attacker,fileServer,write,/export)

<r2a>Rulel0: execCode implies file access

[1-fileSystemACL(fileServer,root,write,/export)

<3>|--execCode(attacker,fileServer,root)

<r3>Rule3: remote exploit of a server program
[]-networkServiceInfo(fileServer,mountd,rpc,100005,root)
[J-vulExists(fileServer,CVE-2003-0252,mountd,
remoteExploit,privEscalation)
<4>|--netAccess(attacker,fileServer,rpc,100005)

<r4>Rule6: multi-hop access

[]-hacl(webServer,fileServer,rpc,100005)
<5>|--execCode (attacker,webServer,apache)
<r5>Rule3: remote exploit of a server program
[]-networkServiceInfo(webServer,httpd,tcp,80,apache)
[1-vulExists(webServer,CAN-2002-0392,httpd,

remoteExploit,privEscalation)

<6>|--netAccess(attacker,webServer,tcp,80)
<r6>Rule7: direct network access
[]-hacl(internet,webServer,tcp,80)
[J-located(attacker,internet)

<r2b>Rulelb5: NFS shell

[1-hacl(webServer,fileServer,rpc,100003)
[1-nfsExportInfo(fileServer,/export,write,webServer)
| -—execCode (attacker,webServer,apache)==> <5>

Figure 5: An example logical attack graph, tree representation

action rule that yields the fact; A derivation node is depen-
dent on one or more fact nodes, which together satisfy the
preconditions of the rule. Thus a logical attack graph is a
bipartite directed graph. The derivation nodes serve as a
medium between a fact and its “reasons”, i.e., how the fact
becomes true. Since a fact may have different ways to be-
come true, the derivation nodes directed from a fact node
form a disjunction. A derivation node represents a successful
application of an interaction rule, where all its preconditions
are satisfied by its children. Thus the fact nodes directed
from a derivation node form a conjunction.

For example, node 2 has two derivation nodes as its chil-
dren: r2a and r2b (note that the tree representation uses | |
to signify that a fact node has more than one derivation).
That is, there are two ways the attacker can modify files
on fileServer. One way is to get root on file server by
exploiting bug CVE-2003-0252 in the mountd program, and
the other is to use the NFS Shell program. Both depend on
the condition that an attacker already gained some access
on webServer (node 5). In the tree representation, there
is a cross link (==> <5>) pointing to node 5 in the second
derivation branch.

A logical attack graph can be viewed as a derivation graph
for a successful Datalog query. There may be many different
ways to derive a fact in Datalog (corresponding to multiple
paths to break into a network), thus we explicitly introduced
the derivation node to represent one possible derivation step.
Logically, a derivation node is an “and” node, where all its
children are the arguments of a conjunction that derives
the node; a derived fact node is an “or” node, where all its
children represent different ways to derive them. A primitive
fact node is a leaf node in the graph. It represents a piece of
configuration information. Following is the formal definition
of our logical attack graph.

Definition 1. (Nr, Np, N4, E, L, G) is alogical attack graph,
where N,., N, and Ny are three sets of disjoint nodes in the
graph, E C (N, X (Np U Ng)) U (Ng X N;), £ is a mapping
from a node to its label, and G € Ny is the attacker’s goal.

N,, N, and N4 are the sets of derivation nodes, prim-
itive fact nodes, and derived fact nodes, respectively. A
fact is primitive if it comes from the input to the MulVAL
reasoning engine. A derived fact is the result of applying
interaction rules iteratively on the input facts. The edges in
a logical attack graph can only go from a derived fact node
to a derivation node, or from a derivation node to a fact
node. The labeling function maps a fact node to the fact it
represents, and a derivation node to the rule that is used for
the derivation. Formally, the semantics of a logical attack
graph is defined as follows.

PROPERTY 1. For every derivation node R, let P be R’s
parent node and C be the set of R’s child nodes, then
(NL(C)) = L(P) is an instantiation of interaction rule
L(R).

Here A is the conjunction operator. For example, the
derivation node r3 is an application of the interaction rule
shown in Figure 1. The free variables in the rule have all
been instantiated with ground terms.

4. ALGORITHMS

We modified the MulVAL reasoning engine so that besides
a “yes” or “no” answer, a Datalog query also records an at-
tack simulation trace as a side effect of the evaluation. This
is achieved by a source-to-source translation of MulVAL in-
teraction rules. For example, for the interaction rule shown
in Figure 1, it will be translated into the following form:

execCode(Attacker, Host, User) :-
networkService (Host, Program,
Protocol, Port, User),
vulExists(Host, VulID, Program,
remoteExploit, privEscalation),
netAccess(Attacker, Host, Protocol, Port),
assert_trace(because(
’remote exploit of a server program’,
execCode(Attacker, Host, User),
[networkService (Host, Program,
Protocol, Port, User),
vulExists(Host, VullD, Program,
remoteExploit, privEscalation),
netAccess(Attacker, Host,
Protocol, Port)])).

In addition to the sub-goals in the original rule, a new
sub-goal is added which calls the function assert_trace.
When the evaluation of the rule succeeds, this function will
record the successful derivation into a trace file. In essence
this method for recording execution traces is similar to the
one used by the “justifier” program in XSB [7]. The attack
simulation trace has the following format.

Definition 2. Attack simulation trace.

TraceStep ::= because(interactionRule,

Fact, Conjunct)

Fact ::= predicate(list of constant)
Conjunct : : = [list of Fact]

interactionRule is a string uniquely associated with a Mul-
VAL interaction rule. A list is represented as a series of
items separated by commas. The semantic meaning of a
trace step is “Conjunct = Fact is an instantiation of inter-
actionRule”. It records the reason why a goal is true during
Datalog evaluation.

In order to compute attack graphs that contain all possi-
ble attack paths, the logic engine must traverse all possible
derivation paths and record trace steps in the process. The
XSB logic engine used in MulVAL is a Prolog system that
supports tabled execution [15]. Tabling is a form of mem-
oization that can both save computation time and resolve
cycles in the derivation. The added assert_trace predicate
will be called whenever XSB successfully satisfies all the pre-
conditions of an interaction rule. Under tabled execution,
all possible answers to a query will be computed. Thus the
logic engine will have traversed all possible derivation paths
before returning.

A logical attack graph can be constructed from the trace
step information. The algorithm is depicted in Figure 6. In
simple words, every TraceStep term becomes a derivation
node in the attack graph. The Fact field in the trace step
becomes the node’s parent and the Conjunct field becomes
its children. The maximum number of iterations for the
inner loop at line 7 is the same as the largest number of
pre-conditions among all the interaction rules, which is con-
stant for a fixed interaction rule set. Thus, if the look-up
operation on line 4 and line 8 is constant time, the graph
building algorithm takes time linear in the number of trace
steps.

4.1 Loops in attack graphs

Even though the interaction rules contain cycles, the XSB

logic engine can avoid entering an infinite loop through tabling.

However, the resulting trace steps can still contain loops

Input: set 7 containing all the TraceStep terms,
attacker’s goal G
Output: logical attack graph (N, Np, Ng, E, L, G).

1. NpyNp,Ng, E, L — 0
2. ForeachteT {
let t = because(interactionRule, Fact, Conjunct)

3. Create a derivation node r
N, — N, U{r}
L — LU{r — interactionRule}
Look up n € Ng such that £(n) = Fact,
5. If such n does not exist {

create a new fact node n

L — LU{n — Fact}

e~

Ng «— Ng U {n}
}
6. E— EU{(n,m)}
7. For each fact f in Conjunct {
8. Look up fact node ¢ € (N, U Ng) such that
£e) = .
9. If such ¢ does not exist {

create a new fact node ¢
L—LU{c— [}
If f is primitive { N, «<— N, U{c} }
else {Ng — NaU{c} }
}

10. E— EU{(r,o)}
}
}
Figure 6: Graph building algorithm

from those cyclic rules. For example, the following two in-
teraction rules form a cycle.

Rule ’execCode implies file access’:
accessFile(Attacker, Host, write, Path) :-
execCode (Attacker, Host, root).

Rule ’Trojan horse installation’:
execCode (Attacker, Host, root) :-
accessFile(Attacker, Host, write, Path).

An attacker can write files on a machine if he can exe-
cute arbitrary code on the machine as root; conversely, if
an attacker can modify files on a machine, he can install a
Trojan horse on it and potentially become root as well. A
standard Prolog system will enter an infinite loop when en-
countering such rules, even though the program has a well
defined meaning under the least fixed point semantics. A
tabled Prolog system such as XSB will not loop. However,
if both rules’ preconditions are satisfied, both of them will
be evaluated, in which case the output trace file will contain
trace steps that form a loop. For example,

because(’execCode implies file access’,
accessFile(attacker,workStation,
write,/usr/local/share),
[execCode(attacker, workStation, root)]).

because(’Trojan horse installation’,
execCode (attacker, workStation, root),
[accessFile(attacker,workStation,
write,/usr/local/share)]).

Such loops often times render useless information in the
attack graph. For example, the above two trace steps would
introduce a loop in the attack graph of Figure 4. We show

the loop in Figure 7 (only relevant derived fact nodes are
shown; the derivation nodes and primitive fact nodes are
ignored).

Figure 7: A loop in the example

Obviously, the back edge from node 3 to node 2 is mean-
ingless, because the reason node 2 can be true is that node
3 is true in the first place. Such back edges should be
eliminated from the graph. One may tend to think that
a standard directed graph DFS algorithm that removes all
the back edges will give us a correct DAG that represents
all meaningful attack paths. However, this is not the case.
Consider the two attack graphs in Figure 8. When starting
from node 1, both (2, 3) and (3, 2) could be back edges, de-
pending on the order in which the DFS algorithm traverses
node 1’s two child nodes. In case (a), only edge (3, 2) should
be removed. If edge (2, 3) were removed, the attack path
(1, 2, 3, 4) would be lost. Note that path (1, 3, 2) is not
a valid derivation because it does not end in a leaf node.
For case (b), neither (2, 3) nor (3, 2) should be removed,
because then either attack path (1, 2, 3, 4) or (1, 3, 2, 5)

would be lost.
(D (1)
(2)

o)
@ &5 @
a) (b)

Figure 8: Two more loop examples

—

In general, an edge in an attack graph does not provide
any useful information if it does not contribute to any valid
logical derivation for attack goals. We call such edges “use-
less edges”. To determine if an edge (u, v) is useless, we can
remove u from the graph and test if v can still be derived
in the graph. This can be done by a DFS search from v.
If so the edge is not useless because there is a derivation
path for v that does not involve u; otherwise the edge is
useless and should be removed. The algorithm for finding
all useless edges in an attack graph is at most quadratic in
the size of the graph. We leave the implementation of this
algorithm for future work. We also note that loops are not
unique phenomena for logical attack graphs; they exist in
other attack graph works as well, although we have not seen
the problem addressed in the past.

S. COMPLEXITY ANALYSIS

The process of computing a logical attack graph consists
of two stages. The first stage computes attack simulation
traces through Datalog evaluation in XSB; the second stage
builds attack graph data structures using the algorithm in
Figure 6.

5.1 Complexity of computing attack trace

The generation of attack trace only introduces a constant-
time overhead for every successful Datalog derivation. So
the complexity of the first stage is the same as the complex-
ity of evaluating the MulVAL Datalog program in XSB. The
complexity of evaluating a fixed Datalog program against
variable size inputs depends on the particular details of the
program. The XSB documentation has some discussion on
how to determine the complexity of evaluating a tabled Dat-
alog program in XSB [14]. To make it easy to understand,
let’s consider the following Datalog interaction rule in Mul-
VAL:

netAccess(Attacker, H2, Protocol, Port) :-
execCode(Attacker, H1, _User),
hacl(H1, H2, Protocol, Port).

The meaning of the rule is: if an attacker can become
a local user on machine H1, and the network allows H1 to
access H2 through Protocol and Port, then the attacker can
access H2 through the protocol and port. This rule illustrates
multi-hop network access in a network: an attacker can use
a machine he controls as a stepping stone to compromise
other machines.

When XSB evaluates this rule, it will first compute all
possible machines an attacker can execute arbitrary code on
(the first sub-goal), and then it will exhaustively search all
H1 and H2’s between which network access is possible (the
second sub-goal). When all these tuples are computed, the
goal predicate netAccess will be computed by matching the
results of the two sub-goals. Pattern matching in XSB is
very efficient due to the use of hash tables and tries. So
the time spent is dominated by the number of intermediate
tuples that need to be computed. The intermediate compu-
tation may of course invoke other interaction rules. In XSB’s
tabled execution, an invocation will compute all results of
that goal, thus they can be reused later. One can think
that all the rules are evaluated simultaneously in parallel
with all possible instantiation of variables in their bodies.
Each rule’s evaluation time is determined by the number of
different instantiations it needs to try. For a fixed Datalog
program, the total running time is dominated by the rules
that has the maximum number of different instantiations for
the variables in its body.

THEOREM 1. Ewaluating MulVAL interaction rules against
configuration tuples representing N hosts takes O(N2) deriva-
tion steps.

PRrROOF. In MulVAL, the rule that has the most number
of different body-variable instantiations happens to be the
one we have shown above. In this rule two variables, H1
and H2, can be instantiated with every possible machine in
the network; the other variables in the rule are not affected
by the size of the network. Thus there are O(N?) possible
instantiations for this rule. [

If the pattern matching in XSB is constant time, ev-
ery derivation step needs constant time to finish and the
overall running time for MulVAL Datalog evaluation will
be quadratic. In our experiments we have seen a slightly
higher growth than quadratic in the worst test case, due to
increased time in pattern matching for large inputs.

Since every trace step was produced by one derivation step
in Datalog evaluation, we have the following:

COROLLARY 1. The number of trace-step terms produced
in attack simulation is O(N?).

5.2 Complexity of graph building

THEOREM 2. The logical attack graph for a network with
N machines has a size at most O(N?).

PRrROOF. There is a one-to-one correspondence between
TraceStep terms and derivation nodes. Let D be the num-
ber of trace steps, then there are D derivation nodes in the
graph. If the maximum number of preconditions for an in-
teraction rule is m, the number of edges in the graph is at
most mD, and the maximum number of fact nodes is mD+1.
By Corollary 1 we know D is O(N?), and sois mD +1. O

THEOREM 3. The graph building algorithm in Figure 6
takes O(SN?) time to complete, where N is the number of
hosts in the network, and § is the maximum time spent in
table look up at line 4 and 8 of the algorithm.

PRrROOF. The loop in the graph building algorithm in Fig-
ure 6 goes through all the TraceStep terms. By Corollary 1,
we know there are O(N?) such terms. In each iteration, the
algorithm creates a derivation node for the TraceStep term
and makes links from its parent and to its children. Every
operation is constant time except for table look-up at line 4
and 8. [

Thus the time needed to construct the graph data struc-
ture is quadratic in the number of hosts, given a constant-
time lookup table to store graph nodes. For our implementa-
tion we simply used the “map” container in C++’s standard
library, which has log(n) look up time. From Theorem 2 we
know that the table size is O(N?). So § = log(N?) and the
graph generation running time will be O(NZlog(N)).

The next section shows performance data from our exper-
iments.

6. EXPERIMENTAL RESULTS

Our Logical Attack Graph Generator was tested in the
following environment. The CPU was a Pentium 4 3.2 GHz
with 1GB of RAM, the operating system was Microsoft Win-
dows XP Professional Version 2002 Service Pack 2, with
XSB version 2.7.1.

The network configuration, machine configuration and vul-
nerability information were simulated for a variety of net-
work sizes, topologies and vulnerability densities. The net-
work configuration was simulated by the creation of a set of
hacl (hostnamel,hostname2,protocol,port) Datalog tuples
as input to the MulVAI reasoning engine. Those tuples spec-
ify the allowed network traffic among machines in the net-
work, including the attacker machine located on the Inter-
net. The vulnerabilities were simulated by the creation of a

set of vulExists and vulProperty Datalog tuples such that
the same vulnerabilities exist on each of the simulated ma-
chines, and each vulnerability is a remote exploit of a service
program running at a unique protocol and port number.

The “fully-connected” network topology simulation spec-
ified network accessibility of all protocols and ports between
every pair of machines. The ”star” topology was simulated
to consist of one centralized machine (not the target ma-
chine) that has two-way accessibility of all protocols and
ports to every other machine. The non-centralized ma-
chines, among which are the attacking and target machines,
have no direct network access to any other machine. The
’ring” topology was simulated with one machine (not the
target machine) of the ring connected to the Internet, and
all the other machines on the ring connected only to its
two immediate neighbors with two-way access of all proto-
cols and ports. The “partitioned” topology was simulated
as two approximately equal sized fully-connected networks
connected to each other only by one pair of machines (nei-
ther is the target machine), one on each sub-network. The
only connection to the Internet is through a third machine
located on the subnet that does not contain the target ma-
chine.

10000
—e— Fully connected
&
1000 Partitioned i
—-a—- Ring '.J
]
100 4 —>— Star -
H
2
o
E 10 A
=]
&
1
B «
0.1 1 e
0.01 ‘ ‘
] 10 100 1000

Number of hosts

Figure 9: Graph generation CPU usage as a function
of network size for several network topologies.

Figure 9 shows the graph generation CPU time for each of
the simulated analysis problems of various sizes and topolo-
gies. The worst case is for a fully connected network. In
this case the asymptotic CPU time is between O(n?) and
O(n?), where n is the number of hosts. In the discussion of
Section 4, we noted that ideally the complexity is O(n?), if
table look-up takes constant time. However, our implemen-
tation uses the simple “map” template in C++ standard
library and its look-up time depends on the size of the ta-
ble. We believe after we replace it with a custom-designed
hash table implementation the graph generation time will
be near quadratic even for the worst case.

Figure 10 shows the memory usage as a function of net-
work size for the same four network topologies. The worst
case here is again a fully connected network, which has an
asymptotic memory usage slightly lower than O(n?). In the

1000

—e— Fully connected
---4--- Partitioned
—a—Ring

100 | —-=-—Star

RAM usage (MB)

1 T T
1 10 100 1000

Number of hosts

Figure 10: Graph generation memory usage as a
function of network size for several network topolo-
gies.

two biggest cases (1000 host for fully-connected and parti-
tioned network), we almost exhausted the 1GB memory on
the test machine. The memory usage for the “star” and
“ring” topology are not identical, although the difference is
not visible on logarithmic scale.

1000000
&
+
—e— Fully connected Jf
100000 H - R Partitioned -
» —a—Ring
§ —-E- - Star
o 10000 1
o
g
k]
g 1000
£
=1
=2
100
10 T T
1 10 100 1000
Number of hosts

Figure 11: Number of trace-steps as a function of
network size for various network topologies.

In Figure 11 the number of attack simulation trace steps,
which is the input to the graph builder, is shown for the same
set of test cases. For the worst case scenario, the number of
trace steps is a quadratic function of the number of hosts.
This verifies that Datalog evaluation in MulVAL reasoning
engine takes O(n?) derivation steps to complete (Theorem
1).

Figure 12 shows that the number of derived fact nodes in
the attack graph grows linearly with the size of the network.

3500

3000 -

—e—Fully connected
o500 |- TF - Partitioned
—-&-—Ring

—m— Star

2000 -

1500 +

1000 ~

Number of derived fact nodes

500

0 200 400 600 800 1000 1200
Number of hosts

Figure 12: Number of derived fact nodes as a func-
tion of network size for various network topologies.

An interesting case is the one for the “star” topology, where
the graph nodes remain constant regardless of the network
size. This is because in that topology, the only attack path
is from the attack machine to the hub, and then from the
hub to the target machine.

10000
—e—win=100
1000 ---m - win=50 »
—-a—- win=10 /ﬁ(
In=1 S
100 ——¢—wln: o
© &
Q
L
g 10
>
o
o 14
0.1
0.01 T T
1 10 100 1000

Number of hosts

Figure 13: Graph generation CPU time for a fully
connected network and number of vulnerabilities
per host varying from 1 to 100.

In Figure 13 the attack graph generation CPU time is
shown as a function of the network size for a fully connected
network and for the number of vulnerabilities per host var-
ied from 1 to 100. It shows that vulnerability density has a
bigger impact when the network size is small. As the net-
work size grows the CPU time is dominated by the number
of machines, and thus vulnerability density has a less visible
impact.

1000 - .
s
100 . ---e--- Sheyner Attack-
graph toolkit
.
% 10 ; —=— MulVAL
'g B
o e
(3] .
9 !
L 14
° :
E ;
E I.
5 014 =
bt
0.01 ‘ ‘ ‘ ‘ |
10 20 30 40 50
0.001 -
Number of hosts

Figure 14: Graph generation CPU time compared
to Sheyner attack graph toolkit. Fully connected
network and 5 vulnerabilities per host.

Our graph builder was directly compared to the Sheyner
attack graph toolkit by running both tools with equivalent
input data. The Sheyner attack graph toolkit was tested on
a Pentium III-M CPU, 256MB RAM, Fedora Core 1 LINUX
operating system. Figure 14 is a comparison of graph builder
CPU time for the case of a fully connected network and
5 vulnerabilities per host (note that only the Y axis is on
logarithmic scale in this chart). From the diagram it is clear
that the running time for Sheyner’s tool grows exponentially.
The growth trend for MulVAL is not obvious in this diagram
because the running time is too short. But the difference
between the two tools is obvious.

7. CONCLUSIONS

We have proposed a new approach to represent and gener-
ate attack graphs. Logical attack graphs directly illustrate
logical dependencies among attack goals and configuration
information and therefore have the significant advantage of
improved clarity in guiding the user to an understanding of
the causality relationship between system configuration and
a successful attack. Our logical attack graph approach has
dramatically improved scalability compared to previous ap-
proaches. We have shown that a logical attack graph has
size polynomial to the network being analyzed. Our at-
tack graph generation tool builds upon MulVAL, a network
security analyzer based on logical programming. We have
demonstrated how to produce a derivation trace in the Mul-
VAL logic-programming engine, and how to use the trace to
generate a logical attack graph in quadratic time. We have
shown experimental evidence that our logical attack graph
generation algorithm is very efficient.

8. REFERENCES
[1] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable,
graph-based network vulnerability analysis. In
Proceedings of 9th ACM Conference on Computer and
Communications Security, Washington, DC,
November 2002.

[2] S. Jajodia, S. Noel, and B. O’Berry. Topological
analysis of network attack vulnerability. In V. Kumar,
J. Srivastava, and A. Lazarevic, editors, Managing
Cyber Threats: Issues, Approaches and Challanges,
chapter 5. Kluwer Academic Publisher, 2003.

[3] R. Lippmann and K. Ingols. An annotated review of
past papers on attack graphs. Technical report, MIT
Lincoln Laboratory, March 2005.

[4] S. Noel and S. Jajodia. Managing attack graph
complexity through visual hierarchical aggregation. In
VizSEC/DMSEC ’04: Proceedings of the 2004 ACM
workshop on Visualization and data mining for
computer security, pages 109-118, New York, NY,
USA, 2004. ACM Press.

[5] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs.
Efficient minimum-cost network hardening via exploit
dependency graphs. In 19th Annual Computer Security
Applications Conference (ACSAC), December 2003.

[6] X. Ou, S. Govindavajhala, and A. W. Appel.
MulVAL: A logic-based network security analyzer. In
14th USENIX Security Symposium, Baltimore, MD,
USA, August 2005.

[7] G. Pemmasani, H.-F. Guo, Y. Dong,

C. Ramakrishnan, and I. Ramakrishnan. Online
justification for tabled logic programs. In The 7th
International Symposium on Functional and Logic
Programming, April 2004.

[8] C. Phillips and L. P. Swiler. A graph-based system for
network-vulnerability analysis. In NSPW ’98:
Proceedings of the 1998 workshop on New security
paradigms, pages 71-79. ACM Press, 1998.

[9] P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and
J. Freire. XSB: A system for efficiently computing
well-founded semantics. In Proceedings of the 4th
International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR’97), pages 2-17,
Dagstuhl, Germany, July 1997. Springer Verlag.

[10] B. Schneier. Secrets & Lies: Digital Security in a
Networked World, chapter 21. John Wiley & Sons,
2000.

[11] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M.
Wing. Automated generation and analysis of attack
graphs. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, pages 254—265, 2002.

[12] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian.
Computer-attack graph generation tool. In DARPA
Information Survivability Conference and Exposition
(DISCEX 1I'01), volume 2, June 2001.

[13] T. Tidwell, R. Larson, K. Fitch, and J. Hale.
Modeling Internet attacks. In Proceedings of the 2001
IEEE Workshop on Information Assurance and
Security, West Point, NY, June 2001.

[14] D. S. Warren. On the Complezity of Tabled Datalog
Programs. Department of Computer Science, SUNY @
Stony Brook, Stony Brook, NY 11794-4400, U.S.A.,
July 1999.

[15] D. S. Warren. Programming in Tabled Prolog.
Department of Computer Science SUNY @ Stony
Brook, July 1999.

