

1

Declarative Infrastructure Configuration Synthesis and
Debugging1

Sanjai Narain, Gary Levin and Vikram Kaul, Telcordia Technologies, Inc.

Sharad Malik, Princeton University

Abstract
There is a large conceptual gap between end-to-end infrastructure requirements and detailed component
configuration implementing those requirements. Today, this gap is manually bridged so large numbers of
configuration errors are made. Their adverse effects on infrastructure security, availability, and cost of
ownership are well documented. This paper presents ConfigAssure to help automatically bridge the above
gap. It proposes solutions to four fundamental problems: specification, configuration synthesis,
configuration error diagnosis, and configuration error repair. Central to ConfigAssure is a Requirement
Solver. It takes as input a configuration database containing variables, and a requirement as a first-order
logic constraint in finite domains. The Solver tries to compute as output, values for variables that make
the requirement true of the database when instantiated with these values. If unable to do so, it computes a
proof of unsolvability. The Requirement Solver is used in different ways to solve the above problems.

The Requirement Solver is implemented with Kodkod, a SAT-based model finder for first-order logic.
While any requirement can be directly encoded in Kodkod, parts of it can often be solved much more
efficiently by non model-finding methods using information available in the configuration database.
Solving these parts and simplifying can yield a reduced constraint that truly requires the power of model-
finding. To implement this plan, a quantifier-free form, QFF, is defined. A QFF is a Boolean combination
of simple arithmetic constraints on integers. A requirement is specified by defining a partial evaluator that
transforms it into an equivalent QFF. This QFF is efficiently solved by Kodkod. The partial evaluator is
implemented in Prolog. ConfigAssure is shown to be natural and scalable in the context of a realistic,
secure and fault-tolerant datacenter.

1 This material is based upon work supported by Air Force Rome Laboratories (AFRL) under contract FA8750-07-
C-0030, funded by Dr. Carl Landwehr. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of Air Force Rome Laboratories.

This paper will appear in Journal of Network and Systems Management, Special Issue on Security Configuration,
eds., Ehab Al-Shaer, Charles Kalmanek and Felix Wu, 2008.

2

1 Introduction
There is a large conceptual gap between end-to-end infrastructure requirements and detailed component
configurations implementing those requirements. Today, this gap is manually bridged. This causes large
numbers of configuration errors whose adverse effects on infrastructure security, availability, and cost of
ownership are well documented [7, 8, 9, 10]. This paper presents ConfigAssure to help automatically
bridge this gap.

Figure 1. Requirement Solver

Central to ConfigAssure is a Requirement Solver as shown in Figure 1. This takes as input a
configuration database, and a requirement on that database. Tuples in the configuration database can
contain configuration variables. The Solver tries to compute values for these variables such that when
these are replaced by their values, the resulting instantiated database satisfies the requirement. If
unsuccessful, the Solver also computes a proof of unsatisfiability. The Requirement Solver is used to
solve the following fundamental problems for bridging the gap between requirements and configurations:

• Specification: All requirements are expressed as constraints on configurations. A constraint is a
unifying concept. Requirements on security, functionality, performance and reliability can all be
naturally regarded as constraints. Configuration information is conveniently represented with a
database. The meaning of requirements is defined by a partial evaluator that computes an
equivalent quantifier-free form.

• Configuration synthesis: The declarative nature of the Requirement Solver provides the very
important advantage of compositionality. Given requirements A and B, if the Solver computes a
solution to A∧B the solution is guaranteed to satisfy both A and B. Compositionality is not
guaranteed with procedural approaches. If B is enforced after A is, then A may well become false.
The configurations for B may overwrite those for A.

• Configuration error diagnosis: If a requirement is unsolvable, the Solver computes a proof of
unsolvability as a set of primitive constraints that is also unsolvable. If it contains a constraint of
the form x=c where x is a configuration variable and c a constant, then x=c is a useful root cause.
It pinpoints which configuration parameter’s value is contributing to unsolvability.

• Configuration error repair: If a constraint x=c occurs in the proof of unsolvability, and also in
the original requirement, then removing this constraint from the requirement is a good heuristic

Requirement

Solution

Configuration Database

Requirement Solver

3

for restoring solvability. Repair is a hard problem since changing a configuration to satisfy one
requirement may violate others. Thus, the change must simultaneously satisfy all requirements,
not just the violated one.

Figure 2. Internal Architecture of Requirement Solver

As shown in Figure 2, the Requirement Solver is implemented with Kodkod, a model-finder [3, 4].
Kodkod allows specification of first-order logic constraints in finite domains, transforms these into
Boolean ones, solves these with SAT (satisfiability) solvers, then reflects results back into a model of
first-order logic. If unable to do so, it outputs a proof of unsolvability. Modern SAT solvers such as
ZChaff [2, 16] can solve millions of Boolean constraints in millions of Boolean variables (or output
proofs of their unsolvability) in seconds.

Kodkod serves a critical role as an expressive, efficient and scalable front-end to a SAT solver. It directly
accepts QFFs as input. It provides solutions or proofs of unsolvability in easy to manipulate data
structures. Its optimizations, such as logarithmic encoding of integer variables, greatly reduce sizes of
generated Boolean constraints.

However, while any requirement can be directly encoded and solved in Kodkod, many parts of it can
often be solved much more efficiently by specialized constraint solvers, database engines or algorithms
that use partial information available in the configuration database. Solving these parts and simplifying
can yield a reduced constraint that truly requires the power of model-finding. A partial evaluation stage
where a requirement is transformed into such a reduced constraint can scale up model-finding, and hence
the Requirement Solver, to handle problems of realistic size.

ConfigAssure implements this plan by defining a quantifier-free form, QFF, consisting of Boolean
combinations of simple arithmetic constraints on integers. A requirement is specified by defining a partial
evaluator for it that transforms it into an equivalent QFF. A guiding principle for keeping the size of the
QFF small is to disallow any constraint in it that can be evaluated via non model-finding methods. The
QFF is submitted to Kodkod for solution. The Partial Evaluator in Figure 2 is the specification of all
requirements of interest in a domain. It is currently implemented in Prolog [5,18]. QFFs offer several
advantages:

• Their high-level nature simplifies the design of the partial evaluator.

Partial
Evaluator

Quantifier-free constraint

Requirement Configuration database

Solution

Kodkod
Model Finder

Requirement
Solver

ZChaff
SAT Solver

Boolean
Constraints

4

• They can be efficiently solved by Kodkod.

• Their proofs of unsolvability simplify diagnosis and repair algorithms.

Section 2 outlines the design of a realistic, secure and fault-tolerant datacenter. It is the context for
illustrating ConfigAssure. Section 3 describes the design of the Requirement Solver. Section 4 presents
the partial evaluator for several representative requirements. Section 5 describes the application of
ConfigAssure to solve fundamental configuration problems for the datacenter. Section 6 discusses
ConfigAssure’s performance for the datacenter and a related example. Section 7 discusses relationship
with previous work. Section 8 presents a summary and outlines directions for future work.

5

2 A Secure, Fault-Tolerant Data Center

Figure 3. Secure, Fault-Tolerant Data Center

ConfigAssure will be illustrated in the context of a realistic datacenter as shown in Figure 3. This
datacenter operates a shared wireless service backend for tens of external customers. It has to satisfy
stringent requirements on security, performance and fault-tolerance. Hosts host1,..,host4 are the servers.
Packets from these are statically routed via rina/rinb through firewalls fwa and fwb and out of gateway
routers rexa/rexb. They then travel via IPSec tunnels to the external customer sites. Firewalls permit only
predefined packet flows defined by source, destination and ports and protocols at source and destination.
IPSec tunnels encrypt sensitive flows. The hot standby routing protocol, HSRP, run by external interfaces
of rexa and rexb provides a virtual IP address to the outside world. If one router fails, the other takes over
the virtual IP address to restore IP connectivity to the outside world. Requirements that capture the above
datacenter design are:

IP Addressing

• All addresses are within a definite address range.

• All addresses in a subnet are unique.

• No two distinct subnets overlap.

Routing

rexa rexb

FastEthernet1_0 FastEthernet1_0

fwa fwb

host2
Ethernet_0

host1
Ethernet_0

host3
Ethernet_0

host4
Ethernet_0

rina rina

FastEthernet0_1 FastEthernet0_1

bge0 bge0

bge1 bge1
FastEthernet0_0 FastEthernet0_0

Eth2_0

Eth2_1 Eth2_2

Eth2_3
Eth2_0

Eth2_1 Eth2_2

Eth2_3

rexa rexa rexb rexb

FastEthernet1_0 FastEthernet1_0

fwa fwb

host2
Ethernet_0

host2
Ethernet_0

host1
Ethernet_0

host1
Ethernet_0

host3
Ethernet_0

host3
Ethernet_0

host4
Ethernet_0

host4
Ethernet_0

rina rina rina rina rina rinb

FastEthernet0_1 FastEthernet0_1

bge0 bge0

bge1 bge1
FastEthernet0_0 FastEthernet0_0

Eth2_0

Eth2_1 Eth2_2

Eth2_3
Eth2_0

Eth2_1 Eth2_2

Eth2_3

Replicated IPSec tunnels
to remote customer routers

6

• If an IPSec tunnel protects a packet, there is a static route that directs it into the tunnel.

Fault tolerance

• External interfaces of external routers participate in an HSRP group

• If an IPSec tunnel originates at an interface participating in an HSRP group, then the IPSec tunnel
is replicated at all interfaces participating in that group.

Security

• Every packet flow to a customer site is protected via an IPSec tunnel at both external routers.

• Only negotiated packet flows to and from customer sites are permitted through firewalls.

• Rule sets on all firewalls are identical.

To implement these requirements, system components such as hosts, routers and firewalls need to be
configured. Some configuration parameters are:

• IP addresses and masks of interfaces.

• Static route destinations and next hops on routers.

• IPSec tunnel source, destination, encryption and hash algorithms, keys, and packet flows to be
encrypted. Tunnels are configured on routers.

• HSRP groups, interfaces participating in these groups and virtual address for each group. HSRP is
configured on sets of interfaces.

• Firewall rules specifying what packet flows are permitted or denied. Firewall rules are configured
on firewalls and routers.

A typical router’s configuration file can contain anywhere from a hundred to several thousand
configuration commands. Ensuring that these are consistent with end-to-end requirements is hard, so large
numbers of configuration errors are made. These can cause loss of connectivity, security breaches, single
points of failure and performance degradation.

A configuration error actually caused a single point of failure in the datacenter, in spite of redundant
resources in place. It arose from an interesting dependence between security and fault-tolerance. If the
active HSRP router fails, then the backup router assumes the virtual IP address. However, this is not
sufficient to restore IPSec connectivity with customer sites. Every IPSec tunnel originating from the
active router must also be replicated at the backup router. This is the reason for the second fault-tolerance
requirement. This requirement was incorrectly implemented for one customer site, so that site was at risk
of losing service to the datacenter.

7

3 Requirement Solver Design

This section presents a precise definition of the Requirement Solver then shows how it is used to solve
fundamental configuration problems.

3.1 Definitions
Primitive Basis. We assume an enumerably infinite set of configuration variables, and function
symbols, predicate symbols and configuration database symbols of zero or more arguments. Zero-
argument function symbols are also called scalars. The set of scalars includes integers.

A Requirement Solver for a particular configuration application will contain only a finite number of
variables and symbols but all drawn from the above set.

Terms. Every configuration variable and scalar is defined to be a term. If x1,..,xk are terms and F is a k-
argument function symbol then F(x1,..,xk) is a term. An example of a term is the list [host1-h1, rexa-
rA1, rexb-rB1] containing three host-interface pairs. Here [A, B, C] is an abbreviation for the term |(A,
|(B, |(C, []))) where | is a list constructor symbol and [] is the symbol for the empty list. Also, A-B is an
abbreviation for –(A, B) where – is a pair constructor symbol. – is different from the symbol for
subtraction, and meanings are distinguished from context.

Configuration Database. Where P is a database symbol of k-arguments and x1,..,xk are either scalars
or configuration variables then P(x1,..,xk) is a database tuple. A finite set of database tuples is a
configuration database, for example:

ipAddress(host1, h1, '121.96.41.1', 24).

ipAddress(rexa, rA1, '121.96.41.2', 24).

hsrp(rexa, rA1, int(1), int(2)).

hsrp(rexb, rB1, int(3), int(4)).

ipSecTunnel(‘121.96.41.1’, ‘192.168.1.2’, 3des, sha, xxx, profile)

flow(rexa, profile, ‘1.1.1.1’, 80, ‘2.2.2.2’, 80, tcp)

staticRoute(host1, ‘192.168.1.2’, ‘255.255.255.255’, ‘121.96.41.3’).

The first tuple states that the IP address of interface h1 on host1 is ‘121.96.41.1’ with a 24 bit mask. An
n-bit mask is a bit sequence of n ones followed by 32-n zeros. Similarly, for the second. The third states
that interface rA1 of rexa participates in an HSRP group int(1) with virtual IP address int(2). Similarly,
for the fourth. Here int(1), int(2), int(3), int(4) are configuration variables. The fifth tuple states that there
is an IPSec tunnel between addresses in the first two fields with encryption algorithm 3des, hash
algorithm sha, preshared key xxx. The packets this tunnel protects are specified by the flow profile. The
sixth tuple defines profile on rexa as the set of packets with source address, source port, destination
address, destination port, and protocol as specified in the third through the seventh fields, respectively.
The last tuple states that on host1 there is a static route to the address range specified by the second and
third fields via the next hop in the last field.

The syntactic convention followed in a configuration database is that all compound terms, such as int(1),
int(2) are configuration variables.

For exposition purposes, IP addresses are shown in dotted quad notation but in the implementation, they
are represented by integers. For example, ‘121.96.41.1’ is represented by 2036345089=121*256^3 +
96*256^2 + 41*256 +1.

8

Requirements. If x1,..,xk are terms and R is a k-argument predicate symbol then R(x1,..,xk) is a
requirement. If R1 and R2 are requirements then so are not(R1), and(R1, R2), or(R1, R2),
implies(R1, R2). Requirements don’t have explicit quantifiers but they can be given a meaning that is
equivalent to a first-order logic formula that does. A configuration variable-free requirement is intended
to be true or false of a configuration variable-free database. We use “constraints” and “requirements”
interchangeably. Examples of requirements are:

• all_physical_addresses_distinct. For a database, this means that no two physical IP addresses
in the database are equal. This requirement has implicit universal quantification.

• address_space(121.96.0.0, 16). For a database, this means that all addresses in that database
are in the range 121.96.0.0 to 121.96.255.255.

• subnet([host1-h1, rexa-rA1, rexb-rB1]). For a database, this means that the database contains
tuples defining IP addresses and masks for interfaces h1, rA1, rB1 on devices host1, rexa, rexb
respectively. Furthermore, these interfaces are on same subnet in that their network identifiers are
identical. The network identifier of an interface is obtained by bitwise-anding its IP address and
mask.

• hsrp_subnet([rexa-rA1, rexb-rB1]). For a database, this means that the database contains tuples
defining HSRP group identifiers and virtual IP addresses for interfaces rA1, rB1 on devices rexa,
rexb respectively. Furthermore, these interfaces have the identical group identifier and virtual
address, and this virtual address and physical addresses of interfaces are in the same subnet.

• contained(‘121.96.41.1’, 16, ‘121.96.41.2’, 24). This means that the network identifier
121.96.41.1/16 contains the subnet range ‘121.96.41.2’/24. A/M is the network identifier
formed from bitwise-anding the IP address A and mask M.

Quantifier-Free Forms. A quantifier-free form, QFF, is a constraint formed from configuration
variables, integers, function symbols for addition, subtraction and bitwise operations, and predicate
symbols =, <, >, >=, =<. An example of a QFF is:

and(mask(1)<mask(2),

 bitwiseand(addr(1), 4294967295<<(32-mask(1)))

 = bitwiseand(addr(2), 4294967295<<(32-mask(1))))

This is an expansion of the constraint contained(addr(1), mask(1), addr(2), mask(2)). The binary
representation of 4294967295 is a sequence of 32 1s. It is left shifted to construct the actual mask.

Partial Evaluator. The meaning of requirements in the context of a database is defined by the Partial
Evaluator. The evaluator transforms a requirement into an equivalent QFF. Let σ be an assignment of
variables to integers {<x1=v1>,..,<xk=vk>}, each xi a configuration variable and each vi an integer. Let
Req be a requirement, DB a database and C a QFF. Let Reqσ be the result of replacing each variable in
Req by its value in σ. Similarly, for DBσ and Cσ. Now, eval(Req, DB, C) means that for any
assignment σ, Reqσ is true of DBσ iff Cσ. In practice, DB is implicit and we define the predicate
eval(Req, C).

The Partial Evaluator for a configuration application is the definition of the eval predicate for all
requirements and databases of interest in that application. It is implemented in Prolog.

A central guiding principle in the implementation of eval(Req, DB, C) is that C should not contain a
constraint that can be evaluated by non-model finding methods. Kodkod will still evaluate such a
constraint but incur needless overhead. For example, and(2+3>4, mask(1)=24) should be reduced to
mask(1)=24 before being submitted to Kodkod.

9

Kodkod Interface. This interface is defined by a Prolog predicate solve(Q, Result) where Q is a QFF.
If Q is solvable, Result is a term solvable:σ where σ is a assignment of configuration variables to
integers satisfying Q. If Q is unsolvable, Result is a term unsolvable:P where P is a proof of
unsolvability. This proof is a list of QFFs whose conjunction is itself unsolvable. An example of P is
[mask(0)=16, not(mask(0)=16)]. Usually, this conjunction is much smaller than Q. The implementation
of solve calls Kodkod methods for initializing Kodkod, setting up the QFF in Java, solving it and finally
importing a solution or a proof of unsolvability back into Prolog.

3.2 Solving Fundamental Configuration Problems
The above framework greatly simplifies the solution of fundamental configuration problems. To specify a
requirement, define the partial evaluator (eval) for it. One need not define eval for each requirement
but rather for requirement templates such as subnet(L) above. For a particular application domain a
Requirement Library is envisioned that contains procedures to efficiently solve fundamental classes of
requirements in that domain. A user can compose these to define complex requirements. As this library
grows, the task of specifying new requirements will become simpler.

For configuration synthesis, given a requirement R and a configuration database DB, to find a variable
valuation σ such that Rσ is true of DBσ, use the following Prolog query:

eval(R, DB, Q), solve(Q, solvable: X)

If the query succeeds, the Prolog variable X will be bound to σ.

For configuration error diagnosis, let DB be a configuration database containing variables x1,…,xk. Let
Relaxable be the conjunction of the primitive constraints x1=v1,..,xk=vk where each xi is a configuration
variable and each vi is an integer. Relaxable is used not only to specify initial values for a set of variables
but also to indicate that these values can be relaxed if necessary. Suppose for some Req, DB and Q,
eval(Req, DB, Q) but and(Q, Relaxable) is unsolvable. Then the Prolog query:

eval(Req, DB, Q), solve(and(Q, Relaxable), unsolvable:Proof)

will succeed, binding the Prolog variable Proof to a list of QFFs whose conjunction is also unsolvable. If
a constraint xi=vi is a member of Proof then it becomes a useful root cause of the unsolvability of and(Q,
Relaxable). If such a constraint cannot be found, the algorithm halts.

For configuration error repair, to find an alternative value of xi, remove xi=vi from Relaxable to create
Relaxable’ and try to solve and(Q, Relaxable’). If solve succeeds, it will find a new value of xi, in
effect repairing the incorrect value vi it was set to. If not, compute a new proof of unsolvability and
repeat. If such a constraint cannot be found, the algorithm halts.

10

4 Partial Evaluator Examples

This section describes the partial evaluator for a representative set of requirements. The partial evaluator
is implemented in Prolog.

4.1 All Physical IP Addresses Distinct
The partial evaluator for the requirement all_physical_addresses_distinct finds the set of all address
fields in all ipAddress tuples in the configuration database, then computes the QFF for all of these to be
distinct. Let U and A be two distinct fields. If any of these is a configuration variable then one cannot
evaluate whether U and A are unequal so not(U=A) is included in the QFF. Otherwise, not(U=A) is
evaluated by Prolog. If true, then it is not included in the QFF. If false, then the QFF false is output
signifying that all_physical_addresses_distinct cannot be true for the given database. This plan
illustrates ConfigAssure’s guiding principle that if a constraint can be evaluated by non model-finding
methods then it not be included in the QFF. The plan is implemented by the following Prolog rules:

__

eval(all_physical_addresses_distinct, C):-,

 findall(X, H^I^M^ipAddress(H, I, X, M), S),

 eval(no_duplicates(S), C).

eval(no_duplicates([]), true).

eval(no_duplicates([U|V]), and(D, E)):-

 eval(no_duplicates(V), D),

 eval(non_member(U, V), E).

eval(non_member(U, []), true).

eval(non_member(U, [A|B]), and(C, D)):-

 check([not(U=A)], C),

 eval(non_member(U, B),D).

__

The first rule states that the QFF for all_physical_addresses_distinct is C provided S is the set of all IP
addresses in the configuration database, and C is the QFF for no_duplicates(S). The second states that if
S is empty, this QFF is true. The third computes two QFFs, one for the tail of S and another for the
requirement that the head of S not be a member of the tail of S. Finally, it returns the conjunction of the
two QFFs. The fourth and fifth rules compute the QFF for an address not being a member of a list. The
check procedure binds C to not(U=A) if one of U and A is a configuration variable, and to true if both U
and A are distinct integers. If U and A are equal, check fails. This failure causes eval to return false via a
default rule, not shown here. The Prolog query eval(all_ip_addresses_distinct, C) for the database:

ipAddress(rexa, ha, '121.96.41.1', 24).

ipAddress(rexb, hb, ‘121.96.41.2’, 24).

ipAddress(rexc, hc, addr(1), 24).

11

binds C to the QFF and(not(addr(1)=’121.96.41.1’), not(addr(1)=’121.96.41.2’)). Note that
not(‘121.96.41.1’=’121.96.41.2’) does not appear in the QFF because it is already evaluated to be true.
In general, if there were k interfaces and addresses of k-1 interfaces are known, then the QFF would
contain only k-1 constraints. It would not contain k*(k-1)/2 inequalities from a straightforward
interpretation of all_physical_addresses_distinct.

4.2 All Interfaces In Same Subnet
The partial evaluator for a more complex requirement, subnet(L) where L is a list of host-interface pairs
computes the QFF for the subnet identifier of each interface to be equal. It does so via the contained(A,
M, B, N) requirement template defined earlier. It is implemented by the following Prolog rules:

__

eval(subnet([]), true).

eval(subnet([_]), true).

eval(subnet([H-I, H1-I1|Rest]), C):-

 ipAddress(H, I, A, M),

 ipAddress(H1, I1, A1, M1),

 check([contained(A, M, A1, M1)], C1),

 check([M=M1], C2),

 eval(subnet([H1-I1 | Rest]), CR),

 simplify(and(C1, and(C2, CR)), C).

__

The first two rules state that if there is just zero or one interface in L, the QFF is true. The last rule states
if there is more than one interface, then the QFF is C where:

• C1 is the QFF for the network identifier of the first interface in L containing the network
identifier for the second.

• C2 is the QFF for the masks of the first and second interfaces being equal

• CR is the QFF for all interfaces in L, except the first one, being on the same subnet

• C is the Boolean simplification of and(C1, and(C2, CR)).

The first two calls in the body retrieve addresses A, A1 and masks M, M1 from the configuration
database. The third call in the body evaluates the containment constraint for A, M, A1, M1. If these are
not all constants, then the constraint cannot be evaluated and C1 is bound to (an unevaluated version) of
the constraint itself. If the constraint can be evaluated, then C1 is bound to its value, true or false.
Similarly, for the fourth call in the body. These calls to check again illustrate the ConfigAssure guiding
principle that if a constraint can be evaluated through non model-finding means it should not become part
of the final QFF. If C1 or C2 are bound to true or false, the call to simplify will filter these away leading
to an even more reduced QFF. The definition of check is:

 __

12

check([], true).

check([contained(A,M,A1,M1) | Z], Rest):-

 forall(member(X, [A, M, A1, M1]), number(X)),

 M>=M1,

 chk_subnet_id(A, M, N),

 chk_subnet_id(A1,M, N),

 check(Z, Rest).

check([U=V | Z], Rest):-

 atomic(U),

 atomic(V),

 U=V,

 check(Z, Rest).

chk_subnet_id(A, Mask, N):-

 two_to_the_thirty_two_minus_one(X),

 Z is X<<Mask,

 N is Z /\ A.

__

The first rule states that if the list of constraints to be checked is empty, then return the QFF true. The
second rule states that if arguments of the containment constraint are numbers and the containing mask M
is greater than or equal to the contained mask M1, evaluate it via the two calls to check_subnet_id. If
the result is true, discard this constraint (since it is already true) and return the result of checking the rest
of the list. The third rule is analogous to the second but for equality. The fourth rule defines
chk_subnet_id for computing the network identifier given an address and a mask (the latter expressed as
the number of zeros in the conventional representation of a mask). The sequence of 32 1s is left shifted by
Mask and then bitwise-anded with A to return the network identifier N.

Where R is the requirement subnet([rexa-ha, rexb-hb, rexc-hc]) and DB is the database:

ipAddress(rexa, ha, '121.96.41.1', 24).

ipAddress(rexb, hb, ‘121.96.41.2’, 24).

ipAddress(rexc, hc, '121.96.41.3', mask(1)).

the Prolog query eval(R, C) will bind C to the QFF:

and(contained(‘121.96.41.1’, 24, ‘121.96.41.3’, mask(1)), mask(1)=24).

Note that C does not contain any constraint about rexa-ha and rexb-hb belonging to the same subnet. It
has already been evaluated to be true.

4.3 All Interfaces Participating in HSRP Group
We now present the partial evaluator for a cross-protocol requirement hsrp_subnet(L) where L is a list
of host-interface pairs participating in the same HSRP group. It captures the dependence between HSRP
and IP addressing configurations. This dependence is that the virtual IP address of an interface must be in

13

the subnet of that interface’s physical IP address. The Prolog rules implementing it are similar to those for
subnet(L):

__

eval(hsrp_subnet([]), true).

eval(hsrp_subnet([H-I]), true).

eval(hsrp_subnet([H1-I1, H2-I2|Rest]), and(C, CRest)):-

 hsrp(H1, I1, G1, V1),

 hsrp(H2, I2, G2, V2),

 ipAddress(H1, I1, A1, M1),

 check([contained(A1, M1, V1, 32)], C1),

 check([contained(A1, M1, V2, 32)], C2),

 check([G1=G2, V1=V2], C3),

 andEach([C1, C2, C3], C),

 eval(hsrp_subnet([H2-I2|Rest]), CRest).

__

4.4 Security And Fault-Tolerance Requirement
We now present the partial evaluator for another cross-protocol requirement whose QFF can contain an
implication. This requirement from Section 2 is “If an IPSec tunnel originates at an interface participating
in an HSRP group, then the IPSec tunnel is replicated at all interfaces participating in that group”. Its
partial evaluator enumerates all hsrp-ipsec lists of the form [Source1, Source2, D, EA, HA, K, F]
where Source1 and Source2 are addresses participating in an HSRP group and D, EA, HA, K, F are
parameters of an IPSec tunnel, respectively, destination, encryption algorithm, hash algorithm, key and
protection profile. For each such list, the evaluator checks that if there is a tunnel originating from
Source1 with the tunnel parameters then there is also a tunnel originating from Source2 with the same
parameters. If any field in the list is a configuration variable, an implication is added to the QFF.
Otherwise, the list is evaluated for conformance to the requirement. If conforming, true is added to the
QFF. If false, eval is made to return false. This requirement is named all_ipsec_cloned_at_hsrp. Its
partial evaluator is implemented by the following Prolog rules:

14

eval(all_ipsec_cloned_at_hsrp, C):-

 findall(C, T^(ipsec_hsrp_tuple(T), eval(ipsec_cloned(T), C)), S),

 andEach(S, C).

ipsec_hsrp_tuple([Source1, Source2, D, EA, HA, K, F]):-

 ipSecTunnel(_, D, EA, HA, K, F),

 hsrp_address_pair(Source1, Source2).

eval(ipsec_cloned([Source1, Source2, D, EA, HA, K, F]), implies(C1, C2)):-,

 eval(ipSecTunnel(Source1, D, EA, HA, K, F), C1),

 eval(ipSecTunnel(Source2, D, EA, HA, K, F), C2).

__

The first rule computes the set of all hsrp-ipsec lists, computes the QFF for each satisfying the
ipsec_cloned requirement and returns a conjunction of the QFFs. The second rule computes an hsrp-ipsec
list. The third rule evaluates the requirement for such a list.

4.5 Top-Level Datacenter Requirement
Definitions of eval for above requirements and those for many others are combined into that for the top-
level requirement, datacenter as follows:

__

eval(datacenter, QFF):-

 eval(addressing, CA),

 eval(routing, CR),

 eval(fault_tolerance, CFT),

 eval(security, CS)

 andEach([CA, CR, CFT, CS], QFF).

__

Here addressing, routing, fault_tolerance, and security implement the requirements in Section 2. The
definition of eval for addressing calls those for all_physical_addresses_distinct and subnet(L), and
that for fault_tolerance calls that for all_ipsec_cloned_at_hsrp.

15

5 Examples of Use of ConfigAssure

We now illustrate how fundamental configuration problems are solved by ConfigAssure in the context of
the above datacenter. ConfigAssure also contains an auxiliary system called the Adaptation Engine that
responds to external events by generating the two inputs to the Requirement Solver: a requirement and a
configuration database.

5.1 Configuration Synthesis

Figure 4. Configuration Synthesis

In Figure 4, in step 1 at upper right, the Adaptation Engine receives a request to set up addressing for the
network as shown. This has two routers and a host. The lower subnet connects interfaces rA1 on router
rexA, rB1 on router rexb, and h1 on host1. The upper subnet connects rA2 and rB2. The configuration
database is currently empty. This represents a greenfield deployment.

In step 2a, the Adaptation Engine generates a configuration database consisting of five tuples, each
representing the IP address and mask of an interface.

In step 2b, the Engine also generates three requirements. The first states that three interfaces in the lower
subnet are to be on the same subnet. This means their network IDs must be identical. The second states
the same for the interfaces on the upper subnet. The last states that all addresses must be distinct.

In step 3, when the configuration database with variables and requirements are submitted to the
Requirement Solver, it generates the QFF on the left. The first 6 constraints are lower-level
representations of the first two constraints in Step 2b.

The last 10 constraints in Step 3 are the QFF for the third requirement in Step 2b. These are the (5*4)/2
pairs of IP address inequalities for the five interfaces.

Adaptation Engine

Requirement Solver

subnet([host1 - h1, rexa -rA1, rexb -rB1])
subnet([rexa -rA2, rexb -rB2])
all_physical_addresses_distinct

contained(int(2), mask(3), int(6), mask(7))
mask(3)=mask(7)
contained(int(0), mask(1), int(2), mask(3))
mask(1)=mask(3)
contained(int(4), mask(5), int(8), mask(9))
mask(5)=mask(9)
not(int(6)=int(8))
not(int(4)=int(6))
not(int(4)=int(8))
not(int(2)=int(4))
not(int(2)=int(6))
not(int(2)=int(8))
not(int(0)=int(2))
not(int(0)=int(4))
not(int(0)=int(6))
not(int(0)=int(8))

ipAddress (host1, h1, int (0), mask (1)).
ipAddress (rexa , rA1, int (2), mask (3)).
ipAddress (rexa , rA2, int (4), mask (5)).
ipAddress (rexb , rB1, int (6), mask (7)).
ipAddress (rexb , rB2, int (8), mask (9)).

2a. Database with variables generated

2b. Requirement generated

3. QFF generated by Partial Evaluator
inside Requirement Solver

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexa rexb rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexa rexb rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexa rexb rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexa rexb rexb

h1
rA1

rA2 rB2

rB1

ipAddress(host1, h1, '121.96.128.35', 17).
ipAddress(rexa , rA1, '121.96.128.43', 17).
ipAddress(rexa , rA2, '121.96.0.11', 25).
ipAddress(rexb , rB1, '121.96.128.47', 17).
ipAddress(rexb , rB2, '121.96.0.7', 25).

5. Instantiated Configuration Database
host1

rexa rexb

h1
rA1

rA2 rB2

rB1

121.96.128.35/17

121.96.128.43/17

121.96.0.11/25

121.96.128.47/17

121.96.0.7/25

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexa rexb rexb

h1
rA1

rA2 rB2

rB1

121.96.128.35/17

121.96.128.43/17

121.96.0.11/25

121.96.128.47/17

121.96.0.7/25

int(0)=121.96.128.35, mask(1)=17
int(2)=121.96.128.43, mask(3)=17
int(6)=121.96.128.47, mask(7)=17
int(4)=121.96.0.11, mask(5)=25
int(8)=121.96.0.7, mask(9)=25

4. Solution to QFF found

int(4)/mask (5) int (8)/mask (9)

int (6)/mask (7)

int(0)/mask (1) int (2)/mask (3)

16

In step 4, the Requirement Solver produces a solution as shown. When the configuration database with
variables is instantiated with this solution, the configuration database at the bottom is computed.
Addressing is set up as shown on the lower right.

5.2 Configuration Error Diagnosis

Figure 5. Configuration Error Diagnosis

Figure 5 shows how to do configuration error diagnosis via analysis of proof of unsolvability. In Step 1,
the Adaptation Engine receives a request to set up addressing for the same network but where rA1 and
rA2 have already been configured with the same IP address, 121.96.41.1. In steps 2a and 2b, the Engine
generates the same configuration database and Requirement as before. However, it also strengthens
Requirement with the constraints int(0)=121.96.41.1=int(2). The Requirement Solver transforms
Requirement into a QFF but is unable to solve it. The requirement all_physical_addresses_distinct
cannot be satisfied.

In step 3, it produces the root cause as a set of three conditions that cannot be satisfied. It is important to
note that this set is much smaller than the 18 constraints in the full QFF. In particular, only the two
relevant variables appear, not the other eight irrelevant ones.

The root cause is a good basis for repairing configuration errors as shown next.

Adaptation Engine

Requirement Solver

ipAddress (host1, h1, int (0), mask (1)).
ipAddress (rexa , rA1, int (2), mask (3)).
ipAddress (rexa , rA2, int (4), mask (5)).
ipAddress (rexb , rB1, int (6), mask (7)).
ipAddress (rexb , rB2, int (8), mask (9)).

1. Event: Set up addressing for network but fix
int(0) and int(2) to be 121.96.41.1

2a. Database with variables generated

2b. Requirement generated
host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexa rexb rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexa rexb rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexa rexb rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexb

h1
rA1

rA2 rB2

rB1

host1

rexa rexa rexb rexb

h1
rA1

rA2 rB2

rB1

int (4)/mask (5) int (8)/mask (9)

int (6)/mask (7)

int (0)/mask (1) int (2)/mask (3)

subnet([host1 - h1, rexa - rA1, rexb - rB1])
subnet([rexa - rA2, rexb - rB2])
all_physical_addresses_distinct
int(0)=121.96.41.1
int(2)=121.96.41.1

3. Unsolvability - proof generated
!(int(0) = int(2))
int(0) = 121.96.41.1
int(2) = 121.96.41.1
!(int(0) = int(2))
int(0) = 121.96.41.1
int(2) = 121.96.41.1

17

5.3 Configuration Error Repair

Adaptation Engine

Requirement Solver

ipAddress(host1, h1, int(0), mask(1)).
ipAddress(rexa, rA1, int(2), mask(3)).
ipAddress(rexa, rA2, int(4), mask(5)).
ipAddress(rexb, rB1, int(6), mask(7)).
ipAddress(rexb, rB2, int(8), mask(9)).

1. Event: Set up addressing for network but fix
int(0) and int(2) to be 121.96.41.1

2a. Database with variables generated

2b. Requirement generated
host1

rexa rexb

h1

rA1

rA2 rB2

rB1

host1

rexa rexb

h1

rA1

rA2 rB2

rB1

host1

rexarexa rexbrexb

h1

rA1

rA2 rB2

rB1

host1

rexa rexb

h1

rA1

rA2 rB2

rB1

host1

rexa rexb

h1

rA1

rA2 rB2

rB1

host1

rexarexa rexbrexb

h1

rA1

rA2 rB2

rB1

host1

rexa rexb

h1

rA1

rA2 rB2

rB1

host1

rexa rexb

h1

rA1

rA2 rB2

rB1

host1

rexarexa rexbrexb

h1

rA1

rA2 rB2

rB1

host1

rexa rexb

h1

rA1

rA2 rB2

rB1

host1

rexa rexb

h1

rA1

rA2 rB2

rB1

host1

rexarexa rexbrexb

h1

rA1

rA2 rB2

rB1

int(4)/mask(5) int(8)/mask(9)

int(6)/mask(7)

int(0)/m ask(1) int(2)/mask(3)

subnet([host1-h1, rexa-rA1, rexb-rB1])
subnet([rexa-rA2, rexb-rB2])
all_physical_addresses_distinct
int(2)=121.96.41.1

3. Solution to QFF found

int(0)=121.96.41.2, mask(1)=25
int(2)=121.96.41.1, mask(3)=25
int(4)=121.96.68.252, mask(5)=17
int(6)=121.96.41.0, mask(7)=25
int(8)=121.96.59.0, mask(9)=17

Figure 6. Configuration Error Repair

In Figure 6, the proof of unsolvability is fed back to the Adaptation Engine. In it, the Engine finds two
constraints of the form x=c where x is a variable and c is a constant. These are int(0)=121.96.41.1 and
int(2)=121.96.41.1. The Engine removes one of these constraints and produces a new Requirement as
shown in Step 2b. The Solver now computes a solution as shown.

5.4 Defense Hardening
One method of increasing an adversary’s effort required for his success is to increase the number of
conditions he needs to satisfy to succeed. For example, if packets from h1 travel through rexa then in
order to deny service to h1, an adversary could gain access to rexa and shut it down. To make it harder
for the adversary to do so, one can make the routers participate in a fault-tolerance protocol such as Hot
Standby Router Protocol, HSRP. Then, rexA and rexB would offer a virtual address to host1. All packets
from host1 would be directed towards this virtual address. If rexA is shut down, rexB will take over the
virtual IP address so host1’s packets will continue to be routed out.

This idea is easy to implement in ConfigAssure. If the infrastructure needs to satisfy requirement R, and
the defense hardening condition is S, find a solution to R∧S. To harden defense against denial-of-service,
the new requirement generated by the Adaptation Engine contains an extra constraint to add HSRP on the
lower subnet:

18

subnet([host1-h1, rexa-rA1, rexb-rB1])

subnet([rexa-rA2, rexb-rB2])

hsrp_subnet([rexa-rA1, rexb-rB1]).

Assuming one wants to keep an existing address assignment and only compute HSRP configurations, a
configuration database with variables is:

hsrp(rexa, rA1, int(1), int(2)).

hsrp(rexb, rB1, int(3), int(4)).

ipAddress(host1, h1, '121.96.0.106', 25).

ipAddress(rexa, rA1, '121.96.0.72', 25).

ipAddress(rexb, rB1, '121.96.0.21', 25).

ipAddress(rexa, rA2, '121.96.93.148', 17).

ipAddress(rexb, rB2, '121.96.31.182', 17).

The first tuple states that interface rA1 belongs to the HSRP group int(1) and its virtual address is int(2).
Similarly, for rB1. The Requirement Solver computes the conjunction of the following QFFs:

contained(‘121.96.0.72’, 25, int(2), 32)

contained(‘121.96.0.72’, 25, int(4), 32)

int(1)=int(3)

int(2)=int(4)

The first constraint states that the subnet int(2)/32 must be contained in ‘121.96.0.72/25’. This means
that the virtual address of rA1 must be on the subnet of rA1. Similarly, for the second. The next two state
that the groups and virtual addresses of both interfaces must be equal.

It is important to note that even though the requirements subnet([host1-h1, rexa-rA1, rexb-rB1]) and
subnet([rexa-rA2, rexb-rB2]) are input to the Requirement Solver, the QFF contains no constraints
relating to addressing. This is because the Solver, via the check predicate, used the addressing
information in the configuration database to evaluate these constraints to true. The size of the QFF is
independent of the number of subnet requirements and that of ipAddress tuples as long as these tuples are
consistent with subnet requirements. This again illustrates ConfigAssure’s guiding principle that any
constraint that can be evaluated by non model-finding methods not be included in the QFF. When this
QFF is solved by Kodkod, one obtains the fully instantiated configuration database:

hsrp(rexa, rA1, 0, '121.96.0.1').

hsrp(rexb, rB1, 0, '121.96.0.1').

ipAddress(host1, h1, '121.96.0.106', 25).

ipAddress(rexa, rA1, '121.96.0.72', 25).

ipAddress(rexb, rB1, '121.96.0.21', 25).

ipAddress(rexa, rA2, '121.96.93.148', 17).

ipAddress(rexb, rB2, '121.96.31.182', 17).

19

6 Implementation Notes and Performance Evaluation

6.1 Implementation Notes
The configuration database is conveniently implemented with a Prolog database. The eval and solve
predicates are also implemented in Prolog. We use the stable, public-domain SWI-Prolog implementation
[5]. Prolog calls Kodkod via the Java to Prolog interface called JPL [6]. QFFs are preprocessed in Prolog
before being submitted to Kodkod. Solutions or proofs of unsolvability returned from Kodkod are
postprocessed into Prolog data structures.

The reason for restricting values of configuration variables to integers is Kodkod’s logarithmic encoding
of integers. If there are n elements in a set then one only needs log2n bits to encode an element of that set.
For example, while each IPv4 address takes 32 bits to represent, each mask just takes 5 bits if a mask is
represented by the number of 1s in it. For 1000 addresses and 1000 masks, without logarithmic encoding,
64K bits = 1000*32+1000*32 are needed. With logarithmic encoding, just 37K bits = 1000*32+1000*5
are needed. This leads to drastic reduction in the size of generated Boolean constraints and SAT solving
time.

6.2 Performance Evaluation for Datacenter Configuration Synthesis
All requirements in Section 2 were encoded in ConfigAssure and associated configurations synthesized.
For the largest case, configurations were synthesized in about 2.5 minutes. The performance is
summarized in Table 1 below.

Cust Gen QFF Setup K2 K2QFF K2 Trans K2 Solve p cnf primary |QFF| #Vars |DB|
sec sec sec sec sec

1 0 1 0.03 0.375 0.297 28406 79933 2798 967 111 63
10 0.11 1.31 0.11 0.906 1.844 127046 188023 7694 4855 291 180
20 0.3 2 0.16 2 0.953 359006 308123 13134 12215 491 310
30 0.61 3.58 0.27 3.688 12.015 719766 428223 18574 22775 691 440
40 1.05 6.23 0.36 6.375 27.063 1209326 548323 24014 36535 891 570
50 1.53 10.59 0.53 8.703 84.422 1827686 668423 29454 53495 1091 700
60 2.25 15.53 0.64 12.031 98.281 2574846 788523 34894 73655 1291 830
70 3.09 23.33 1 15.797 90.547 3450806 908623 40334 97015 1491 960

Table 1. Performance Evaluation For Datacenter Configuration Synthesis

Columns are as follows:

• Cust: Number of datacenter customer sites

• Gen QFF: Time in seconds to generate the QFF from requirements

• Setup K2: Time in seconds to initialize Kodkod

• K2QFF: Time in seconds to set up QFF in Kodkod

• K2 trans: Time in seconds for Kodkod to translate QFF into Boolean constraint

• K2 Solve: Time in seconds for ZChaff to solve Boolean constraint

• p: Number of Boolean variable occurrences in the CNF

• cnf: Number of clauses in the CNF

• primary: The number of distinct Boolean variables in the CNF

• |QFF|: Number of constraints in the QFF

20

• #Vars: Number of configuration variables in the QFF

• |DB|: Number of tuples in the configuration database.

6.3 Performance Evaluation for Address Assignment
For a separate network, we enforced just the IP addressing requirements of Section 2 together with
requirements of the form subnet(L) specifying which interfaces belonged to the same subnet. The
configuration database only had ipAddress(Host, Interface, Address, Mask) tuples with Address and
Mask as variables. The results are summarized in Table 2.

Subnets Gen QFF Setup K2 K2QFF K2 Trans K2 Solve p cnf primary |QFF| #Vars |DB|
sec sec sec sec sec

50 0.03 1.09 0.08 1.843 1.907 216062 584046 2664 2589 143 72
100 0.16 2.31 0.16 7.968 43.875 856376 2323146 6290 10281 339 170
150 0.36 5.41 0.25 18.735 750.187 1915317 5204372 9472 22932 511 256
200 0.64 10.89 0.44 NA NA NA NA NA 40602 683 342

Table 2. Performance Evaluation For Greenfield Address Assignment

The largest network that could be addressed contained 150 subnets and 256 interfaces, as shown in the
columns on the extreme left and right. The total time taken was 12.9 minutes. For 200 subnets, the
Kodkod process did not terminate even after two hours. In all cases, the time taken to compute the QFF in
Prolog was a small fraction of the overall time. The number of constraints grows as the square of the
number of subnets because of the requirement that no two subnets overlap.

However, the performance is far superior for the common real-world scenario where most of the
configuration is fixed and only a relatively small part of it needs reconfiguration. We emulated this
scenario by starting with a fully instantiated configuration database but changing the IP address and mask
for interfaces in 50 subnets to variables. As Table 2 shows, even with 463 subnets containing 830
interfaces, values of variables were found in 33 seconds. This illustrates the benefit of the partial
evaluator. It determined that of the 463 subnets, 413 were already consistent with requirements, therefore
did not include constraints for these in the QFF submitted to Kodkod. Thus, it drastically reduced the size
of the QFF.

Subnets Gen QFF Setup K2 K2QFF K2 Trans K2 Solve p cnf primary |QFF| #Vars |DB|
sec sec sec sec sec

50 0.05 1.39 0.06 3.16 2.05 216,062 584,046 2,664 2,589 143 72
100 0.19 1.58 0.14 2.95 1.94 227,212 601,946 2,664 7,589 143 170
150 0.42 2.27 0.20 3.84 3.02 237,262 617,096 2,664 12,589 143 256
200 0.72 3.22 0.23 4.83 1.97 247,262 632,096 2,664 17,589 143 342
300 1.77 5.95 0.36 6.50 3.73 267,312 662,246 2,664 27,589 143 518
463 4.13 12.91 0.53 11.58 3.89 299,912 711,146 2,664 43,889 143 830

Table 3. Performance Evaluation For Incremental Address Assignment

21

7 Relationship With Previous Work

Kodkod itself contains a partial evaluator for constraints expressible in its first-order relational logic. It
allows one to specify partial information about a relation as a set of tuples in that relation. It uses this
information to ensure that a constraint that can be evaluated from partial information is not represented in
the Boolean constraint that it eventually generates. Thus, the size of Boolean constraints is greatly
reduced. However, often there are more efficient ways of evaluating a constraint than Kodkod’s
algorithms for its general relational logic. For example, while integer constraints are evaluated with a
small number of machine operations in a programming language, they require a much large number of
operations in Kodkod. This is because Kodkod represents integers as bitsets. ConfigAssure performs
constraint evaluation outside of Kodkod and therefore its speed of partial evaluation is much higher. Of
course, ConfigAssure’s QFFs, although adequate for configuration requirements, are less expressive than
Kodkod’s constraints. For example, values of ConfigAssure variables can only be integers whereas those
of Kodkod’s object attributes can be arbitrary relations. Finally, we are investigating how to have QFFs
benefit from Kodkod’s partial evaluation. For example, the constraint x=1 could be specified as Kodkod
partial information rather than explicitly as it is now.

The concept of a Requirement Solver was first proposed in [11]. It was shown how fundamental
configuration management problems could be formalized in Alloy [1]. Alloy is a first-order logic model
finder but with a simple syntax and user interface. However, the Alloy formalization of the Requirement
Solver did not contain a partial-evaluation phase. Neither did that implementation of Alloy have
Kodkod’s partial evaluation optimization. Thus, the Solver did not scale to networks of realistic size.

As mentioned in Section 1, the declarative nature of the Requirement Solver provides the important
advantage of compositionality. This is critical for resolving the inherent tension between security and
functionality. Security is about preventing bad behavior whereas functionality is about enabling good.
Incorrect resolution of this tension can either allow an adversary access to services he shouldn’t be able
to, or equally undesirably, disallow a legitimate user from accessing services he should be able to. By
representing both security and functionality requirements as constraints, and solving these, the tension is
automatically resolved where possible. Procedural approaches for resolving the above tension do not scale
beyond a few rules. Avoiding conflicts between rules for enforcing security and functionality is
tantamount to replicating the capabilities of powerful model-finders and SAT solvers.

A closely related system is MulVAL [13]. It expresses requirements for adversary’s success in Datalog, a
subset of Prolog. If checks whether such a requirement is true and if so, analyzes the associated proof to
compute what configurations to change at minimum cost to block the adversary’s success. It does so by
creating an attack graph, transforming it into a Boolean constraint and solving it with a min-cost SAT
solver [17]. However, MulVAL does not synthesize configurations from high-level requirements. An
idea that seems worthwhile exploring is combining the two methods of identifying which configurations
to change. The first is MulVAL’s method of analyzing a Datalog proof. The second is ConfigAssure’s
method of analyzing the proof of unsolvability.

The configuration error diagnosis problem solved by ConfigAssure is somewhat different from that
solved by other systems such as [14] and [15]. These check whether a requirement is true of a fully
instantiated configuration database, i.e. one without configuration variables. If not, they try to output a
counterexample. For such a database, ConfigAssure’s eval will return true or false but no
counterexample. For its diagnosis to be interesting, the configuration database needs to contain at least
one variable. If configuration parameters whose values could contribute to falsehood can be identified in
advance, these can be replaced by variables in the database. The fact that these parameters are fixed to
their current values is emulated by adding equality constraints as described in Section 3.2. Then,
ConfigAssure would identify which variable is responsible for falsehood. The set of configurations whose
values are to be made into variables does not have to be precisely identified.

22

ConfigAssure can be combined with other diagnosis systems to automate counterexample generation and
repair as follows: replace a counterexample to a requirement with variables in the database; use
ConfigAssure to compute new values so that all end-to-end requirements become simultaneously true, not
just the violated ones.

Finally, a number of prior efforts share the same vision of top down network design as this work. Much of
the early efforts in this direction focused on optimizing the performance of particular protocols, e.g.,
tuning of OSPF weights for traffic engineering purposes [21]. A recent work [22] took a comprehensive
look at enterprise network design and investigated ways to systematically derive device-level VLAN and
packet filter configuration parameters from network-wide operational requirements.

23

8 Summary And Future Directions

This paper identified fundamental configuration problems that need to be solved to automatically bridge
the gap between end-to-end requirements and configurations. These are specification, configuration
synthesis, configuration error diagnosis and configuration error repair. The paper presented a system
called ConfigAssure for solving these problems. Central to ConfigAssure is a Requirement Solver that
takes as input a requirement and a configuration database with variables. It outputs values of variables
that make the requirement true of the database, when instantiated with these values. If unable to do so, it
outputs a proof of unsolvability. The Requirement Solver is used in different ways to solve the above
problems. The Requirement Solver exploits the power of Kodkod, a SAT-based model-finder. A new
method of encoding requirements allows scalability to problems of realistic scale. The idea is to transform
a requirement into an equivalent QFF that truly requires the power of model-finding. A QFF is a Boolean
combination of simple arithmetic constraints on integers.

The novelty of ConfigAssure is its overall framework consisting of the following ideas: that a database
can contain configuration variables, that a requirement can be naturally specified via a partial evaluator
that transforms it into an equivalent QFF, that a QFF is efficiently solved by Kodkod, and that a QFF
simplifies diagnosis and repair algorithms.

ConfigAssure is illustrated in the context of a realistic, secure and fault-tolerant datacenter. Based on
performance evaluation for this datacenter, ConfigAssure seems viable for solving configuration
problems of realistic scale. ConfigAssure is under trial at a major enterprise to assist in rearchitecting its
network.

While it seems feasible to have ConfigAssure generate “greenfield” configurations for infrastructure of
realistic size, it is particularly well-suited for incremental configuration even for large configuration
databases. Typically, most of the configuration in an infrastructure is fixed. When a change occurs e.g., a
new site is added, only a small number of configuration parameters need to change to reenforce end-to-
end requirements. The partial evaluator will generate only those constraints that are related to these
parameters. It will evaluate away the requirements for all configurations that cannot change.

Besides the two directions to investigate outlined in the previous section, there are several others. The
first is the creation of a Requirement Library for specific domains. Requirements in it will be efficiently
implemented with algorithms that exploit strengths of Kodkod and SAT solvers. Users can compose these
to create complex requirements. A good heuristic for identifying these is to identify logical structures
associated with different protocols and distributed algorithms that are set up via configuration [20]. The
requirements in Section 3.1 are examples of such a library for IP networks.

The second direction to investigate is choice of which constraint to remove from the proof of
unsolvability in the repair algorithm. Different choices may have different impact on efficiency and cost.

The third direction to investigate is the use of Satisfiability Modulo Theories solvers e.g., [19] for solving
QFFs. An SMT constraint is a Boolean constraint in which some variables are replaced by constraints in a
theory. A QFF is an SMT constraint in which the theory is simple arithmetic. The theory is kept simple to
allow efficient solution by pure SAT solvers underlying Kodkod. SMT solvers may allow efficient
solution of a richer class of QFFs e.g., with linear arithmetic constraints.

The last direction to investigate is safe reconfiguration planning. Even if the final infrastructure
configuration is known, in general, all components cannot be concurrently reconfigured. Thus, one needs
to compute the order in which to reconfigure so that in the transition, security breaches do not arise and
mission critical services are not disrupted. While this problem is expressible as a SAT problem [12], how
to scale it up to realistic size seems to be an open question. We are investigating easier but useful versions
of this problem.

24

Acknowledgements
We thank Professor Daniel Jackson, Emina Torlak and Felix Chang at MIT, Professor Simon Ou at
Kansas State University, Professor Ehab Al-Shaer at DePaul University and Professor Geoffrey Xie at
Naval Post Graduate School for very helpful comments on this paper.

Biographies
Sanjai Narain is a Senior Research Scientist at Telcordia Technologies, Inc. His current research is in
principles of secure, survivable infrastructure design. His formal training is in mathematical logic and
programming languages. He received a B.Tech. in Electrical Engineering from Indian Institute of
Technology, New Delhi, in 1979, an M.S. in Computer Science from Syracuse University in 1981, and a
Ph.D. in Computer Science from UCLA in 1988.

Gary Levin is a Senior Research Scientist at Telcordia Technologies. His expertise is in mathematical
logic, programming languages and design of secure, survivable infrastructure. He received a B.S. in
Computer Science from University of Delaware in 1975 and a Ph.D. in Computer Science from Cornell
University in 1980.

Vikram Kaul is a Senior Research Scientist at Telcordia Technologies. His expertise is in software
development and design of secure, survivable infrastructure. He received a B.E. (Hons) in Electrical &
Electronics Engineering from Birla Institute of Technology and Science, Pilani in 1997 and an M.S. from
The Wireless Information Networks Laboratory at Rutgers University in 2000.

Sharad Malik is George Van Ness Lothrop Professor of Electrical Engineering at Princeton University.
His current research is in electronic design automation. The ZChaff SAT Solver developed by his team is
widely used in research and industry. He received a B. Tech. in Electrical Engineering from Indian
Institute of Technology, New Delhi, in 1985, and an M.S. and Ph.D. in Computer Science from
University of California, Berkeley in 1987 and 1990 respectively.

25

References

1. Alloy: http://alloy.mit.edu/

2. ZChaff: http://www.princeton.edu/~chaff/

3. Kodkod: http://web.mit.edu/emina/www/kodkod.html

4. E. Torlak and D. Jackson. Kodkod: A Relational Model Finder. Tools and Algorithms for
Construction and Analysis of Systems (TACAS '07). Braga, Portugal, March 2007. (PDF) (slides)

5. SWI-Prolog: http://www.swi-prolog.org/

6. SWI-Prolog-JPL: http://www.swi-prolog.org/packages/jpl/prolog_api/overview.html

7. Security and business continuity solutions from British Telecom.
http://www.btglobalservices.com/business/global/en/products/docs/28154_219475secur_bro_single.p
df

8. B. Lampson. Computer Security in Real World. Annual Computer Security Applications Conference,
2000.
http://research.microsoft.com/Lampson/64-SecurityInRealWorld/Acrobat.pdf

9. D. Oppenheimer, A. Ganapathy, D. Patterson. Why do Internet Services Fail and What Can Be Done
About It? 4th USENIX Symposium on Internet Technologies and Systems, 2003.
http://roc.cs.berkeley.edu/papers/usits03.pdf

10. John Schwartz. Who Needs Hackers? New York Times, September 12, 2007.
http://www.nytimes.com/2007/09/12/technology/techspecial/12threat.html.

11. Sanjai Narain. Network Configuration Management via Model-Finding. Proceedings of USENIX
Large Installation System Administration (LISA) Conference, San Diego, CA, 2005.

12. B. Selman, H. Kautz, "Planning As Satisfiability," Proceedings of ECAI-92,
http://www.cs.cornell.edu/selman/papers/pdf/92.ecai.satplan.pdf.

13. J. Homer, Xinming Ou, Miles McQueen. From attack graphs to automated configuration management
--- an iterative approach Technical Report 2008-1, Computer Science Department, Kansas State
University.

14. Ehab Al-Shaer and Hazem Hamed . Modeling and Management of Firewall Policies. IEEE
Transactions on Network and Service Management, Volume 1-1, April 2004.

15. Telcordia IPAssure. http://www.argreenhouse.com/papers/narain/TelcordiaIPAssure.pdf.

16. Y.Mahajan, Z. Fu, Sharad Malik. Zchaff2004, An Efficient SAT Solver. Proceedings of 7th
International Conference on Theory and Applications of Satisfiability Testing (SAT), 2004.

17. Z. Fu, Sharad Malik. Solving the Minimum-Cost Satisfiability Problem using Branch and Bound
Search. Proceedings of IEEE/ACM International Conference on Computer-Aided Design ICCAD,
2006

18. Bratko, Ivan. Prolog Programming for Artificial Intelligence. Addison-Wesley International
Computer Science Series, 1990

19. Clark Barrett and Sergey Berezin. CVC Lite: A New Implementation of the Cooperating Validity
Checker. In Proceedings of the 16th International Conference on Computer Aided Verification (CAV
'04), volume 3114 of Lecture Notes in Computer Science, pages 515-518. Springer, July 2004.
Boston, Massachusetts.

26

20. Sanjai Narain, Thanh Cheng, Brian Coan, Vikram Kaul, Kirthika Parmeswaran, William Stephens.
Building Autonomic Systems via Configuration. Proceedings of AMS Autonomic Computing
Workshop, Seattle, WA, 2003.

21. A. Feldmann and J. Rexford. IP network Configuration for Intradomain Traffic Engineering. IEEE
Network Magazine, Sept. 2001

22. Y. Sung, S. Rao, G. Xie, and D. Maltz. Systematic Configurator Design for Enterprise Networks.
Technical Report, TR ECE 08-07, Department of ECE, Purdue University, May 2008.

