Declarative Infrastructure Configuration Synthesis and
Debugging®

Sanjai Narain, Gary Levin and Vikram Kaul, Telcardiechnologies, Inc.

Sharad Malik, Princeton University

Abstract

There is a large conceptual gap between end-tordrastructure requirements and detailed component
configuration implementing those requirements. odss gap is manually bridged so large numbers of
configuration errors are made. Their adverse effentinfrastructure security, availability, and tcofs
ownership are well documented. This paper preseotdigAssure to help automatically bridge the above
gap. It proposes solutions to four fundamental lgrob: specification, configuration synthesis,
configuration error diagnosis, and configuratioroerepair. Central to ConfigAssure is a Requiremen
Solver. It takes as input a configuration datalzasgaining variables, and a requirement as adirdér

logic constraint in finite domains. The Solver $ri®@ compute as output, values for variables thaktem

the requirement true of the database when instadtigith these values. If unable to do so, it corepa
proof of unsolvability. The Requirement Solver ged in different ways to solve the above problems.

The Requirement Solver is implemented with Kodlkeo&AT-based model finder for first-order logic.
While any requirement can be directly encoded idkeal, parts of it can often be solved much more
efficiently by non model-finding methods using infaation available in the configuration database.
Solving these parts and simplifying can yield auestl constraint that truly requires the power otiato
finding. To implement this plan, a quantifier-frieem, QFF, is defined. A QFF is a Boolean combimati
of simple arithmetic constraints on integers. Auiegment is specified by defining a partial evatmahat
transforms it into an equivalent QFF. This QFFfiiently solved by Kodkod. The partial evaluater
implemented in Prolog. ConfigAssure is shown taatiral and scalable in the context of a realistic,
secure and fault-tolerant datacenter.

! This material is based upon work supported byFairce Rome Laboratories (AFRL) under contract FAB®?3-
C-0030, funded by Dr. Carl Landwehr. Any opiniofisdings and conclusions or recommendations exprkss
this material are those of the authors and do ec¢ssarily reflect the views of Air Force Rome Liabories.

This paper will appear idournal of Network and Systems Management, Spssiaé on Security Configuratipn
eds., Ehab Al-Shaer, Charles Kalmanek and Felix 2008.

1 Introduction

There is a large conceptual gap between end-tordrastructure requirements and detailed component
configurations implementing those requirements.aipthis gap is manually bridged. This causes large
numbers of configuration errors whose adverse &ffec infrastructure security, availability, andgtcof
ownership are well documented [7, 8, 9, 10]. Tlapgy presents ConfigAssure to help automatically
bridge this gap.

Requirement Configuration Database

Requirement Solvel

Solution

Figure 1. Requirement Solver

Central to ConfigAssure is a Requirement Solvestesvn in Figure 1. This takes as input a
configuration database, and a requirement on titabdse. Tuples in the configuration database can
contain configuration variables. The Solver trizedmpute values for these variables such that when
these are replaced by their values, the resultisiantiated database satisfies the requirement. If
unsuccessful, the Solver also computes a proohsdtisfiability. The Requirement Solver is used to
solve the following fundamental problems for briggithe gap between requirements and configurations:

» Specification: All requirements are expressed as constraintoofigurations. A constraint is a
unifying concept. Requirements on security, fur@idy, performance and reliability can all be
naturally regarded as constraints. Configuratidariation is conveniently represented with a
database. The meaning of requirements is definedgartial evaluator that computes an
equivalent quantifier-free form.

» Configuration synthesis: The declarative nature of the Requirement Sgivevides the very
important advantage of compositionality. Given liegmentsA andB, if the Solver computes a
solution toAB the solution is guaranteed to satisfy batandB. Compositionality is not
guaranteed with procedural approacheB. i enforced afteA is, thenA may well become false.
The configurations foB may overwrite those fak.

» Configuration error diagnosis: If a requirement is unsolvable, the Solver compat@roof of
unsolvability as a set of primitive constraintsttisaalso unsolvable. If it contains a constraint
the formx=c where x is a configuration variable and constant, thex=c is a useful root cause.
It pinpoints which configuration parameter’s valseontributing to unsolvability.

» Configuration error repair: If a constraink=c occurs in the proof of unsolvability, and also in
the original requirement, then removing this caristrfrom the requirement is a good heuristic

for restoring solvability. Repair is a hard prahlsince changing a configuration to satisfy one
requirement may violate others. Thus, the chang# simultaneously satisfy all requirements,
not just the violated one.

Requirement Configuration database

! Partial Requirement
: Evaluator Solver

Quantifier-free constraint

Kodkod Boolean ZChaff
E Model Finder | Constraints SAT Solver

Solution

Figure 2. Internal Architecture of Requirement Solver

As shown in Figure 2, the Requirement Solver islémgnted with Kodkod, a model-finder [3, 4].
Kodkod allows specification of first-order logicrestraints in finite domains, transforms these into
Boolean ones, solves these with SAT (satisfiaBiBylvers, then reflects results back into a model
first-order logic. If unable to do so, it outputp@of of unsolvability. Modern SAT solvers such as
ZChaff [2, 16] can solve millions of Boolean comdtits in millions of Boolean variables (or output
proofs of their unsolvability) in seconds.

Kodkod serves a critical role as an expressivégiefft and scalable front-end to a SAT solverirectly
accepts QFFs as input. It provides solutions oofgrof unsolvability in easy to manipulate data
structures. Its optimizations, such as logarithenicoding of integer variables, greatly reduce sifes
generated Boolean constraints.

However, while any requirement can be directly @ecband solved in Kodkod, many parts of it can
often be solved much more efficiently by specializenstraint solvers, database engines or algasithm
that use partial information available in the cgofation database. Solving these parts and sinmudify
can yield a reduced constraint that truly requibespower of model-finding. A partial evaluatioage
where a requirement is transformed into such aaedigonstraint can scale up model-finding, and éenc
the Requirement Solver, to handle problems of sgalsize.

ConfigAssure implements this plan by defining argiieer-free form, QFF, consisting of Boolean
combinations of simple arithmetic constraints aegers. A requirement is specified by defining gigh
evaluator for it that transforms it into an equéral QFF. A guiding principle for keeping the sidte
QFF small is to disallow any constraint in it tkah be evaluated via non model-finding methods. The
QFF is submitted to Kodkod for solution. The PafE@aluator in Figure 2 is the specification of all
requirements of interest in a domain. It is curdgeimiplemented in Prolog [5,18]. QFFs offer several
advantages:

* Their high-level nature simplifies the design of trartial evaluator.

» They can be efficiently solved by Kodkod.
» Their proofs of unsolvability simplify diagnosisérepair algorithms.

Section 2 outlines the design of a realistic, seeund fault-tolerant datacenter. It is the conteixt
illustrating ConfigAssure. Section 3 describesdbsign of the Requirement Solver. Section 4 present
the partial evaluator for several representatigeirements. Section 5 describes the application of
ConfigAssure to solve fundamental configurationbbems for the datacenter. Section 6 discusses
ConfigAssure’s performance for the datacenter areledied example. Section 7 discusses relationship
with previous work. Section 8 presents a summadyautlines directions for future work.

2 A Secure, Fault-Tolerant Data Center

host4
Ethernet_0O

FastEthernetO_| FastEthernet0 0
bgel bgel
wh
bge0

FastEthern stEthernet0_1
FastEthergetf 0 P FastEthernetl_0O
- - -
- - - e —
et o [Replicated IPSec tunnels i
> ———— ., _toremote customer routers;

Figure 3. Secure, Fault-Tolerant Data Center

ConfigAssure will be illustrated in the contextabfealistic datacenter as shown in Figure 3. This
datacenter operates a shared wireless servicerzhtitetens of external customers. It has to satisf
stringent requirements on security, performancefanit-tolerance. Hostsost1,..,host4 are the servers.
Packets from these are statically routedrivia/rinb through firewallfwa andfwb and out of gateway
routersrexal/rexb. They then travel via IPSec tunnels to the extarastomer sites. Firewalls permit only
predefined packet flows defined by source, destinand ports and protocols at source and degtimati
IPSec tunnels encrypt sensitive flows. The hotditgmouting protocol, HSRP, run by external intees
of rexa and rexb provides a virtual IP addresf¢oautside world. If one router fails, the othdweimover
the virtual IP address to restore IP connectivatihie outside world. Requirements that captureatwe
datacenter design are:

IP Addressing
» All addresses are within a definite address range.
» All addresses in a subnet are unique.
* No two distinct subnets overlap.

Routing

» If an IPSec tunnel protects a packet, there iaticsiute that directs it into the tunnel.
Fault tolerance
» External interfaces of external routers participatan HSRP group

» If an IPSec tunnel originates at an interface pgodting in an HSRP group, then the IPSec tunnel
is replicated at all interfaces participating iattlgroup.

Security
» Every packet flow to a customer site is protectieadan IPSec tunnel at both external routers.
» Only negotiated packet flows to and from custoniteissare permitted through firewalls.
* Rule sets on all firewalls are identical.

To implement these requirements, system compoentsas hosts, routers and firewalls need to be
configured. Some configuration parameters are:

* IP addresses and masks of interfaces.
» Static route destinations and next hops on routers.

» IPSec tunnel source, destination, encryption asth hgorithms, keys, and packet flows to be
encrypted. Tunnels are configured on routers.

* HSRP groups, interfaces participating in these gga@and virtual address for each group. HSRP is
configured on sets of interfaces.

» Firewall rules specifying what packet flows arerpitted or denied. Firewall rules are configured
on firewalls and routers.

A typical router’s configuration file can containyavhere from a hundred to several thousand
configuration commands. Ensuring that these arsistamt with end-to-end requirements is hard, sgela
numbers of configuration errors are made. Theseaage loss of connectivity, security breachegjlsin
points of failure and performance degradation.

A configuration error actually caused a single poirfailure in the datacenter, in spite of redumda
resources in place. It arose from an interestimpddence between security and fault-toleranceelf t
active HSRP router fails, then the backup routsures the virtual IP address. However, this is not
sufficient to restore IPSec connectivity with cusey sites. Every IPSec tunnel originating from the
active router must also be replicated at the bac&ufer. This is the reason for the second faldtremce
requirement. This requirement was incorrectly immated for one customer site, so that site waslat r
of losing service to the datacenter.

3 Requirement Solver Design

This section presents a precise definition of teguRement Solver then shows how it is used toesolv
fundamental configuration problems.

3.1 Definitions

Primitive Basis. We assume an enumerably infinite set of configaratiariables, and function
symbols, predicate symbols and configuration datlsgmbols of zero or more arguments. Zero-
argument function symbols are also called scaldrs.set of scalars includes integers.

A Requirement Solver for a particular configuratagplication will contain only a finite number of
variables and symbols but all drawn from the als®te

Terms. Every configuration variable and scalar is defiteete a term. Iky,..,X, are terms an# is ak-
argument function symbol thé¥{(xy,..,Xy) is a term. An example of a term is the lisd$tl-hl, rexa-
rAl, rexb-rB1] containing three host-interface pairs. HgxeB, C] is an abbreviation for the tertA,
[(B, |(C, [1))) where] is a list constructor symbol aiffdis the symbol for the empty list. AlsA;B is an
abbreviation for~(A, B) where— is a pair constructor symbel.is different from the symbol for
subtraction, and meanings are distinguished fromtex.

Configuration Database. WhereP is a database symbol lofarguments ang,..,x, are either scalars
or configuration variables thd?(x,,..,x) is a database tuple. A finite set of database$uigla
configuration database, for example:

ipAddress(hostl, hl, '121.96.41.1", 24).

ipAddress(rexa, rAl, '121.96.41.2', 24).

hsrp(rexa, rAl, int(1), int(2)).

hsrp(rexb, rB1, int(3), int(4)).

ipSecTunnel('121.96.41.1", '192.168.1.2", 3des, sha, xxx, profile)
flow(rexa, profile, ‘1.1.1.1’, 80, ‘2.2.2.2’, 80, tcp)

staticRoute(host1, ‘192.168.1.2’, ‘255.255.255.255’, ‘121.96.41.3").

The first tuple states that the IP address offiatehl onhostl is ‘121.96.41.1" with a 24 bit mask. An
n-bit mask is a bit sequencembnes followed by2-n zeros. Similarly, for the second. The third states
that interfaceAl of rexa participates in an HSRP grouy(1) with virtual IP addresst(2). Similarly,

for the fourth. Herent(1), int(2), int(3), int(4) are configuration variables. The fifth tuple statieat there
is an IPSec tunnel between addresses in theMicsfi¢lds with encryption algorithr8des, hash
algorithmsha, preshared keyxx. The packets this tunnel protects are specifiethbyflow profile. The
sixth tuple defineprofile onrexa as the set of packets with source address, sportedestination
address, destination port, and protocol as spdadifi¢he third through the seventh fields, respetfi

The last tuple states that bostl there is a static route to the address range spetif the second and
third fields via the next hop in the last field.

The syntactic convention followed a configuration databasis that all compound terms, suchirigl),
int(2) are configuration variables.

For exposition purposes, IP addresses are shoduotied quad notation but in the implementationy the
are represented by integers. For exanmipi®].96.41.1’ is represented 3036345089=121*256"3 +
96*256”2 + 41*256 +1.

Requirements. If x;,..,xcare terms an® is ak-argument predicate symbol thB(x,,..,Xy) is a
requirement. IR1 andR2 are requirements then so a@(R1), and(R1, R2), or(R1, R2),

implies(R1, R2). Requirements don’t have explicit quantifiers thay can be given a meaning that is
equivalent to a first-order logic formula that doAsconfiguration variable-free requirement is imded
to be true or false of a configuration variablesfoatabase. We use “constraints” and “requirements”
interchangeably. Examples of requirements are:

» all_physical _addresses_distinct. For a database, this means that no two phyd$tcatitiresses
in the database are equal. This requirement hdgitnmiversal quantification.

* address_space(121.96.0.0, 16). For a database, this means that all address$keatidatabase
are in the rang&21.96.0.0 t0121.96.255.255.

» subnet([host1-h1, rexa-rAl, rexb-rB1]). For a database, this means that the databasertontai
tuples defining IP addresses and masks for intestak, rAl, rB1 on devicedostl, rexa, rexb
respectively. Furthermore, these interfaces argaome subnet in that their network identifiers are
identical. The network identifier of an interfacedbtained by bitwise-anding its IP address and
mask.

* hsrp_subnet([rexa-rAl, rexb-rB1]). For a database, this means that the databassrcotiples
defining HSRP group identifiers and virtual IP asklres for interface#\1, rB1 on devicesexa,
rexb respectively. Furthermore, these interfaces hiawedentical group identifier and virtual
address, and this virtual address and physicakadds of interfaces are in the same subnet.

e contained('121.96.41.1’, 16, ‘121.96.41.2’, 24). This means that the network identifier
121.96.41.1/16 contains the subnet ranide1.96.41.2'/124. A/M is the network identifier
formed from bitwise-anding the IP addrésand maskv.

Quantifier-Free Forms. A quantifier-free form, QFF, is a constraint fornfeaim configuration
variables, integers, function symbols for additisabtraction and bitwise operations, and predicate
symbols=, <, >, >=, =<. An example of a QFF is:

and(mask(1)<mask(2),
bitwiseand(addr(1), 4294967295<<(32-mask(1)))
= bitwiseand(addr(2), 4294967295<<(32-mask(1))))

This is an expansion of the constrainhtained(addr(1), mask(1), addr(2), mask(2)). The binary
representation 0§294967295 is a sequence of 32 1s. It is left shifted to tws the actual mask.

Partial Evaluator. The meaning of requirements in the context of alukde is defined by the Partial
Evaluator. The evaluator transforms a requirenmotan equivalent QFF. Letbe an assignment of
variables to integesx;=v:>,..,<x=V\>}, eachx; a configuration variable and eaghan integer. Let

Req be a requiremenDB a database ar@ a QFF. LeReqo be the result of replacing each variable in
Req by its value iro. Similarly, for DBo andCo. Now, eval(Req, DB, C) means that for any
assignment, Reqo is trueof DBo iff Co. In practiceDB is implicit and we define the predicate
eval(Req, C).

The Partial Evaluator for a configuration applioatis the definition of theval predicate for all
requirements and databases of interest in thatcagiph. It is implemented in Prolog.

A central guiding principle in the implementatioheval(Req, DB, C) is thatC should not contain a
constraint that can be evaluated by non-modeltimdnethods. Kodkod will still evaluate such a
constraint but incur needless overhead. For exarapt§2+3>4, mask(1)=24) should be reduced to
mask(1)=24 before being submitted to Kodkod.

Kodkod Interface. This interface is defined by a Prolog predicaitve(Q, Result) whereQ is a QFF.
If Q is solvableResult is a termsolvable:o whereo is a assignment of configuration variables to
integers satisfyin®. If Q is unsolvableResult is a ternmunsolvable:P whereP is a proof of
unsolvability. This proof is a list of QFFs whosmngunction is itself unsolvable. An examplebbfs
[mask(0)=16, not(mask(0)=16)]. Usually, this conjunction is much smaller tl@nThe implementation
of solve calls Kodkod methods for initializing Kodkod, setf up the QFF in Java, solving it and finally
importing a solution or a proof of unsolvabilitydkainto Prolog.

3.2 Solving Fundamental Configuration Problems

The above framework greatly simplifies the solutidfiundamental configuration problems. Jmecify a
requirement, define the partial evaluatoeval) for it. One need not defireval for each requirement
but rather for requirement templates suckwmet(L) above. For a particular application domain a
Requirement Library is envisioned that containcpdures to efficiently solve fundamental classes of
requirements in that domain. A user can compossetteedefine complex requirements. As this library
grows, the task of specifying new requirements ha¢ome simpler.

For configuration synthesis, given a requiremerR and a configuration databaB8, to find a variable
valuationo such thaRo is true ofDBag, use the following Prolog query:

eval(R, DB, Q), solve(Q, solvable: X)
If the query succeeds, the Prolog variableill be bound tao.

For configuration error diagnosis, letDB be a configuration database containing variakes.,xy. Let
Relaxable be the conjunction of the primitive constrairisvs,..,X,=Vx Where eacl; is a configuration
variable and each is an integerRelaxable is used not only to specify initial values fored of variables
but also to indicate that these values can beedléxecessary. Suppose for sdrex), DB andQ,
eval(Req, DB, Q) butand(Q, Relaxable) is unsolvable. Then the Prolog query:

eval(Req, DB, Q), solve(and(Q, Relaxable), unsolvable:Proof)

will succeed, binding the Prolog varial®eoof to a list of QFFs whose conjunction is also unable. If
a constraink=v; is a member oProof then it becomes a useful root cause of the unbiityaof and(Q,
Relaxable). If such a constraint cannot be found, the algorittaits.

For configuration error repair, to find an alternative value &f removex=v; from Relaxable to create
Relaxable’ and try to solvand(Q, Relaxable’). If solve succeeds, it will find a new value xf in
effect repairing the incorrect valweit was set to. If not, compute a new proof ofalnability and
repeat. If such a constraint cannot be found, liperighm halts.

10

4 Partial Evaluator Examples

This section describes the partial evaluator farpmesentative set of requirements. The partiduater
is implemented in Prolog.

4.1 All Physical IP Addresses Distinct

The partial evaluator for the requiremaiit physical_addresses_distinct finds the set of all address
fields in allipAddress tuples in the configuration database, then compheQFF for all of these to be
distinct. LetU andA be two distinct fields. If any of these is a cgnifiation variable then one cannot
evaluate whethdd andA are unequal snot(U=A) is included in the QFF. Otherwisggt(U=A) is
evaluated by Prolog. If true, then it is not in@ddn the QFF. If false, then the Qféfise is output
signifying thatall_physical _addresses_distinct cannot be true for the given database. This plan
illustrates ConfigAssure’s guiding principle thBaiconstraint can be evaluated by non model-figdin
methods then it not be included in the QFF. Tha gamplemented by the following Prolog rules:

eval(all_physical_addresses_distinct, C):-,
findall(X, HAN™"M7ipAddress(H, |, X, M), S),
eval(no_duplicates(S), C).

eval(no_duplicates([]), true).
eval(no_duplicates([U|V]), and(D, E)):-
eval(no_duplicates(V), D),

eval(non_member(U, V), E).

eval(non_member(U, []), true).
eval(non_member(U, [A|B]), and(C, D)):-
check([not(U=A)], C),

eval(non_member(U, B),D).

The first rule states that the QFF &k physical_addresses_distinct is C providedsS is the set of all IP
addresses in the configuration database Giizdthe QFF fono_duplicates(S). The second states that if
S is empty, this QFF iBue. The third computes two QFFs, one for the tatb@ind another for the
requirement that the head $ot be a member of the tail 8f Finally, it returns the conjunction of the
two QFFs. The fourth and fifth rules compute the=@&r an address not being a member of a list. The
check procedure binds C toot(U=A) if one ofU andA is a configuration variable, and to true if bath
andA are distinct integers. J andA are equalgcheck fails. This failure causesval to returnfalse via a
default rule, not shown here. The Prolog guergl(all_ip_addresses_distinct, C) for the database:

ipAddress(rexa, ha, '121.96.41.1', 24).
ipAddress(rexb, hb, '121.96.41.2", 24).
ipAddress(rexc, hc, addr(1), 24).

11

bindsC to the QFFand(not(addr(1)="121.96.41.1"), not(addr(1)="121.96.41.2’)). Note that
not('121.96.41.1'="121.96.41.2") does not appear in the QFF because it is alreaalyated to be true.
In general, if there weteinterfaces and addressesket interfaces are known, then the QFF would
contain onlyk-1 constraints. It wouldotcontaink*(k-1)/2 inequalities from a straightforward
interpretation otll_physical_addresses_distinct.

4.2 All Interfaces In Same Subnet

The partial evaluator for a more complex requiretygurbnet(L) whereL is a list of host-interface pairs
computes the QFF for the subnet identifier of aatdrface to be equal. It does so via thatained(A,
M, B, N) requirement template defined earlier. It is impéeed by the following Prolog rules:

eval(subnet([]), true).

eval(subnet([_]), true).

eval(subnet([H-1, H1-11|Rest]), C):-
ipAddress(H, I, A, M),
ipAddress(H1, 11, A1, M1),
check([contained(A, M, Al, M1)], C1),
check([M=M1], C2),
eval(subnet([H1-11 | Rest]), CR),
simplify(and(C1, and(C2, CR)), C).

The first two rules state that if there is justazer one interface ih, the QFF is true. The last rule states
if there is more than one interface, then the GREFwhere:

» Clisthe QFF for the network identifier of the fimsterface inL containing the network
identifier for the second.

» C2isthe QFF for the masks of the first and secotetfaces being equal
* CRisthe QFF for all interfaces In except the first one, being on the same subnet
» Cisthe Boolean simplification @nd(C1, and(C2, CR)).

The first two calls in the body retrieve addres&ea81 and mask#$/1, M1 from the configuration
database. The third call in the body evaluatesdmeainment constraint féx, M, A1, M1. If these are
not all constants, then the constraint cannot laduated andC1 is bound to (an unevaluated version) of
the constraint itself. If the constraint can beleated, therC1 is bound to its valudrue or false.
Similarly, for the fourth call in the body. Thesalls to check again illustrate the ConfigAssuredgg
principle that if a constraint can be evaluatedtigh non model-finding means it should not becoart p
of the final QFF. IfC1 or C2 are bound to true or false, the calstmplify will filter these away leading
to an even more reduced QFF. The definitionhsck is:

12

check([], true).
check([contained(A,M,A1,M1) | Z], Rest):-
forall(member(X, [A, M, A1, M1]), number(X)),
M>=M1,
chk_subnet_id(A, M, N),
chk_subnet_id(A1,M, N),
check(Z, Rest).
check([U=V | Z], Rest):-
atomic(V),
atomic(V),
U=V,
check(Z, Rest).

chk_subnet_id(A, Mask, N):-
two_to_the_thirty two_minus_one(X),
Z is X<<Mask,
NisZ/N\A.

The first rule states that if the list of consttaito be checked is empty, then return the QFF Trhe

second rule states that if arguments of the comim constraint are numbers and the containing sk

is greater than or equal to the contained mskevaluate it via the two calls eheck_subnet_id. If

the result is true, discard this constraint (sihégalready true) and return the result of chegkhe rest

of the list. The third rule is analogous to theasetbut for equality. The fourth rule defines
chk_subnet_id for computing the network identifier given an agkly and a mask (the latter expressed as
the number of zeros in the conventional represemntaf a mask). The sequence of 32 1s is leftethilty
Mask and then bitwise-anded withto return the network identifié.

WhereR is the requiremergubnet([rexa-ha, rexb-hb, rexc-hc]) andDB is the database:
ipAddress(rexa, ha, '121.96.41.1', 24).
ipAddress(rexb, hb, '121.96.41.2", 24).
ipAddress(rexc, hc, '121.96.41.3', mask(1)).
the Prolog query eval(R, C) will bind C to the QFF:
and(contained('121.96.41.1’, 24, ‘121.96.41.3', mask(1)), mask(1)=24).

Note thatC does not contain any constraint ab@xa-ha andrexb-hb belonging to the same subnet. It
has already been evaluated to be true.

4.3 All Interfaces Participating in HSRP Group

We now present the partial evaluator for a crossgaol requirementisrp_subnet(L) whereL is a list
of host-interface pairs participating in the san&R® group. It captures the dependence between HSRP
and IP addressing configurations. This dependentiet the virtual IP address of an interface rhash

13

the subnet of that interface’s physical IP addréks. Prolog rules implementing it are similar toga for
subnet(L):

eval(hsrp_subnet([]), true).
eval(hsrp_subnet([H-1]), true).
eval(hsrp_subnet([H1-11, H2-I12|Rest]), and(C, CRest)):-
hsrp(H1, 11, G1, V1),
hsrp(H2, 12, G2, V2),
ipAddress(H1, 11, A1, M1),
check([contained(Al, M1, V1, 32)], C1),
check([contained(Al, M1, V2, 32)], C2),
check([G1=G2, V1=V2], C3),
andEach([C1, C2, C3], C),
eval(hsrp_subnet([H2-12|Rest]), CRest).

4.4 Security And Fault-Tolerance Requirement

We now present the partial evaluator for anothessiprotocol requirement whose QFF can contain an
implication. This requirement from Section 2 is &l IPSec tunnel originates at an interface paetog
in an HSRP group, then the IPSec tunnel is regttat all interfaces participating in that grouips.
partial evaluator enumerates all hsrp-ipsec listh®form[Sourcel, Source2, D, EA, HA, K, F]
whereSourcel andSource2 are addresses participating in an HSRP grouparith\, HA, K, F are
parameters of an IPSec tunnel, respectively, dagtim encryption algorithm, hash algorithm, key an
protection profile. For each such list, the evaluahecks that if there is a tunnel originatingiiro
Sourcel with the tunnel parameters then there is alsmadloriginating fronSource2 with the same
parameters. If any field in the list is a configioa variable, an implication is added to the QFF.
Otherwise, the list is evaluated for conformancthtorequirement. If conformingrue is added to the
QFF. If falsegval is made to returfalse. This requirement is namedl_ipsec_cloned_at_hsrp. Its
partial evaluator is implemented by the followinglBg rules:

14

eval(all_ipsec_cloned_at_hsrp, C):-
findall(C, T(ipsec_hsrp_tuple(T), eval(ipsec_cloned(T), C)), S),
andEach(S, C).

ipsec_hsrp_tuple([Sourcel, Source2, D, EA, HA, K, F]):-
ipSecTunnel(_, D, EA, HA, K, F),

hsrp_address_pair(Sourcel, Source?2).

eval(ipsec_cloned([Sourcel, Source2, D, EA, HA, K, F]), implies(C1, C2)):-,
eval(ipSecTunnel(Sourcel, D, EA, HA, K, F), C1),
eval(ipSecTunnel(Source2, D, EA, HA, K, F), C2).

The first rule computes the set of all hsrp-ipssts| computes the QFF for each satisfying the
ipsec_cloned requirement and returns a conjunctidghe QFFs. The second rule computes an hsrp-ipsec
list. The third rule evaluates the requirementsiach a list.

4.5 Top-Level Datacenter Requirement

Definitions ofeval for above requirements and those for many others@mbined into that for the top-
level requirementdatacenter as follows

eval(datacenter, QFF):-
eval(addressing, CA),
eval(routing, CR),
eval(fault_tolerance, CFT),
eval(security, CS)
andEach([CA, CR, CFT, CS], QFF).

Hereaddressing, routing, fault_tolerance, andsecurity implement the requirements in Section 2. The
definition ofeval for addressing calls those foall_physical _addresses_distinct andsubnet(L), and
that for fault_tolerance calls that fall_ipsec_cloned_at_hsrp.

15

5 Examples of Use of ConfigAssure

We now illustrate how fundamental configurationtpems are solved by ConfigAssure in the context of
the above datacenter. ConfigAssure also contairzsigiliary system called the Adaptation Engind tha
responds to external events by generating thermat$ to the Requirement Solver: a requirementaand
configuration database.

5.1 Configuration Synthesis

int(4)/mask (5) ra int(8)/mask (9)

Adaptation Engiﬂ‘— .! l
L - int(0)/mask (1)

rB1 int(2)/mask (3)

2b. Requirement generated

¢ ipAddress(hostl, h1, int(0), mask(1)).
fommmmmmm e ¢ | subnet([hostl -h1, rexa -rAl, rexb -rB1]) ipAddress(rexa, rAL,int(2), mask(3)).
H L subnet([rexa -rA2, rexb -rB2]) ipAddress(rexa, rA2,int(4), mask(5)).
tr-----------—{ j all_physical addresses_distinct ipAddress(rexb, rB1,int(6), mask(7)).
:: ipAddress(rexb, rB2,int(8), mask(9)).
]
:E i 2a. Database with variables generated
:: {"t contained(int(2), mask(3), int(6), mask(7))
hod mask(3)=mask(7)
.j ->-."= contained(int(0), mask(1), int(2), mask(3))
1 || mesk(l)=mask(3) Requirement Solver
! i | contained(int(4), mask(5), int(8), mask(9))
v A4 mask(5)=mask(9) e I
1 /1 not(int(6)=int(8))
! 1§ not(int(4)=int(6)) int(0)=121.96.128.35, mask(1)=17
! not(int(4)=int(8)) ! int(2)=121.96.128.43, mask(3)=17
' not(int(2)=int(4)) 4. Solution to QFF found { int(6)=121.96.128.47, mask(7)=17
Lo not(int(2)=int(6)) !nt(4):121.96.0.11, mask(5)=25
&) _ = =
»'"': nol(ini(2)=ini(8)) L L~ 121.96.0.11/25 rA B2 121.96.0.7/25
not(int(0)=int(2)) ¢
not(in(0)=int(4)) ipAddress(hostL, h1, '121.96.128.35, 17).
{ | not(int(0)=int(6)) ipAddress(rexa , rAl, '121.96.128.43, 17).
i | not(int(0)=int(8)) ipAddress(rexa , rA2, '121.96.0.11", 25). 121.96.128.437 rAl . (Bl 121.96.128.47/17
ipAddress(rexb , rB1, '121.96.128.47", 17). h
3. QFF generated by Partial Evaluator iSAddressErexb . 1B2,'121.96.0.7', 25).) 21.96.128.3517

inside Requirement Solver

5. Instantiated Configuration Database

Figure 4. Configuration Synthesis

In Figure 4, in step 1 at upper right, the Adaptatcngine receives a request to set up addressirige
network as shown. This has two routers and a fibstlower subnet connects interfac&% on router
rexA, rB1 on routerexb, andhl onhostl. The upper subnet connecté® andrB2. The configuration
database is currently empty. This represents anfiedek deployment.

In step 2a, the Adaptation Engine generates agunafiion database consisting of five tuples, each
representing the IP address and mask of an ingerfac

In step 2b, the Engine also generates three regeires. The first states that three interfacesardtver
subnet are to be on the same subnet. This meanséwork IDs must be identical. The second states
the same for the interfaces on the upper subnetlast states that all addresses must be distinct.

In step 3, when the configuration database witialées and requirements are submitted to the
Requirement Solver, it generates the QFF on theThe first 6 constraints are lower-level
representations of the first two constraints irp&b.

The last 10 constraints in Step 3 are the QFFethird requirement in Step 2b. These are the)(8*4
pairs of IP address inequalities for the five ifdees.

16

In step 4, the Requirement Solver produces a solats shown. When the configuration database with
variables is instantiated with this solution, tleefiguration database at the bottom is computed.
Addressing is set up as shown on the lower right.

5.2 Configuration Error Diagnosis

1. Event: Set up addressing for network but fix
int(0) and int(2) to be 121.96.41.1

int(4)/mask(5) rad go int(8)/mask(9)
IAdaptation Engﬂdi {) {}

int(0)/mask(1) ra1] rB1 int(2)/mask(3)

int(6)/mask(7)

ipAddresghostl, h1,int(0), mask(1)).
ipAddresgrexa, rA1, int(2), mask(3)).
ipAddresgrexa, rA2, int(4), mask(5)).
ipAddresgrexb, rB1, int(6), mask(7)).
ipAddresgrexb, rB2, int(8), mask(9)).

2b. Requirement generated

subnet([hostl-h1, rexarAl, rexb-rB1]) i
subnet([rexarA2, rexb-rB2]) i
all_physical_addresses_distinct
int(0)=121.96.41.1
int(2)=121.96.41.1

/ 2a. Database with variables generated

3. Unsolvability proof generated L Requirement Solver]
1(int(0) = int(2))
int(0) =121.96.41.1
int(2) =121.96.41.1

Figure 5. Configuration Error Diagnosis

Figure 5 shows how to do configuration error disgiseia analysis of proof of unsolvability. In Stép
the Adaptation Engine receives a request to satddpessing for the same network but whére and

rA2 have already been configured with the same IPeaddi21.96.41.1. In steps 2a and 2b, the Engine
generates the same configuration database andrBewuit as before. However, it also strengthens
Requirement with the constraintg(0)=121.96.41.1=int(2). The Requirement Solver transforms
Requirement into a QFF but is unable to solvehe Tequiremendll_physical_addresses_distinct
cannot be satisfied.

In step 3, it produces the root cause as a séred conditions that cannot be satisfied. It isdrtgmt to
note that this set is much smaller than the 18tcainss in the full QFF. In particular, only thedw
relevant variables appear, not the other eightewveat ones.

The root cause is a good basis for repairing candiipn errors as shown next.

17

5.3 Configuration Error Repair

1. Event: Set up addressing for network but fix
int(0) and int(2) to be 121.96.41.1

int(4)/mask(5) p2 INt(8)/mask(9)

Adaptation Engine +—————

int(0)/mask(1) a1

2b. Requirement generated
subnet([hostl-h1, rexa-rAl, rexb-rB1]) ipAddress(hostl, h 1, int(0), mask(1)).
subnet(frexa+A2, rexb1B2)) ipAddress(rexa, rAl, int(2), mask(3)).
; o ipAddress(rexa, rA2, int(4), mask(5)).
ﬁiltzzp)gszl(iajg%agfrfsses_d Istinct ipAddress(rexb, rB1, int(6), mask(7)).
iy ipAddress(rexb, rB2, int(8), mask(9)).

/ \ 2a. Database with variables generated

Requirement Solver

|

int(0)=121.96.41.2, mask(1)=25
int(2)=121.96.41.1, mask(3)=25
int(4)=121.96.68.252, mask(5)=17
int(6)=121.96.41.0, mask(7)=25
int(8)=121.96.59.0, mask(9)=17

3. Solution to QFF found

Figure 6. Configuration Error Repair

In Figure 6, the proof of unsolvability is fed backthe Adaptation Engine. In it, the Engine find®
constraints of the form=c wherex is a variable and is a constant. These an(0)=121.96.41.1 and
int(2)=121.96.41.1. The Engine removes one of these constraints eottlipes a new Requirement as
shown in Step 2b. The Solver now computes a sol@sshown.

5.4 Defense Hardening

One method of increasing an adversary’s effortireguor his success is to increase the number of
conditions he needs to satisfy to succeed. For pbagiifi packets fronml travel througirexa then in
order to deny service tul, an adversary could gain accessetxa and shut it down. To make it harder
for the adversary to do so, one can make the mpgaticipate in a fault-tolerance protocol suclas
Standby Router Protocol, HSRP. TheexA andrexB would offer a virtual address twst1. All packets
from hostl would be directed towards this virtual addresse}A is shut downrexB will take over the
virtual IP address sloostl’s packets will continue to be routed out.

This idea is easy to implement in ConfigAssureh# infrastructure needs to satisfy requireni®rénd

the defense hardening conditiorSisfind a solution tdR[JS. To harden defense against denial-of-service,
the new requirement generated by the AdaptatiomnEngpntains an extra constraint to add HSRP on the
lower subnet:

18

subnet([hostl-h1, rexa-rAl, rexb-rB1])
subnet([rexa-rA2, rexb-rB2])
hsrp_subnet([rexa-rAl, rexb-rB1]).

Assuming one wants to keep an existing addresgramsint and only compute HSRP configurations, a
configuration database with variables is:

hsrp(rexa, rA1, int(1), int(2)).

hsrp(rexb, rB1, int(3), int(4)).
ipAddress(hostl, hl, '121.96.0.106', 25).
ipAddress(rexa, rAl, '121.96.0.72', 25).
ipAddress(rexb, rB1, '121.96.0.21', 25).
ipAddress(rexa, rA2, '121.96.93.148', 17).
ipAddress(rexb, rB2, '121.96.31.182', 17).

The first tuple states that interface rAl belormthe HSRP groumt(1) and its virtual address iist(2).
Similarly, forrB1. The Requirement Solver computes the conjunctidheofollowing QFFs:

contained(‘'121.96.0.72’, 25, int(2), 32)
contained(‘'121.96.0.72’, 25, int(4), 32)
int(1)=int(3)
int(2)=int(4)

The first constraint states that the subng®)/32 must be contained i121.96.0.72/25’. This means
that the virtual address oAl must be on the subneti@1. Similarly, for the second. The next two state
that the groups and virtual addresses of bothfattes must be equal.

It is important to note that even though the regentsubnet([host1-h1, rexa-rAl, rexb-rB1]) and
subnet([rexa-rA2, rexb-rB2]) are input to the Requirement Solver, the QFF ¢ostao constraints
relating to addressing. This is because the Sol@thecheck predicate, used the addressing
information in the configuration database to eveduhese constraints to trugne size of the QFF is
independent of the number of subnet requiremerntgtat of ipAddress tuples as long as these tuples
consistent witlsubnet requirementsThis again illustrates ConfigAssure’s guiding pipie that any
constraint that can be evaluated by non modeldfijpanethods not be included in the QFF. When this
QFF is solved by Kodkod, one obtains the fully amsiated configuration database:

hsrp(rexa, rAl, 0, '121.96.0.1").
hsrp(rexb, rB1, 0, '121.96.0.1").
ipAddress(hostl, h1, '121.96.0.106', 25).
ipAddress(rexa, rAl, '121.96.0.72', 25).
ipAddress(rexb, rB1, '121.96.0.21', 25).
ipAddress(rexa, rA2, '121.96.93.148', 17).
ipAddress(rexb, rB2, '121.96.31.182', 17).

19

6 Implementation Notes and Performance Evaluation

6.1 Implementation Notes

The configuration database is conveniently impleiegmvith a Prolog database. Ténal andsolve
predicates are also implemented in Prolog. Wehisstable, public-domain SWI-Prolog implementation
[5]. Prolog calls Kodkod via the Java to Prologenféice called JPL [6]. QFFs are preprocessed ilogro
before being submitted to Kodkod. Solutions or fgad unsolvability returned from Kodkod are
postprocessed into Prolog data structures.

The reason for restricting values of configuratianiables to integers is Kodkod'’s logarithmic eriogd

of integers. If there ane elements in a set then one only néledsn bits to encode an element of that set.
For example, while each IPv4 address takes 32diepresent, each mask just takes 5 bits if a nsask
represented by the number of 1s in it. For 1000esiets and 1000 masks, without logarithmic encoding
64K bits = 1000*32+1000*32 are needed. With lodemiic encoding, just 37K bits = 1000*32+1000*5
are needed. This leads to drastic reduction irsite2of generated Boolean constraints and SAT rsplvi
time.

6.2 Performance Evaluation for Datacenter Configuration Synthesis

All requirements in Section 2 were encoded in Gph$isure and associated configurations synthesized.
For the largest case, configurations were synthdsiz about 2.5 minutes. The performance is
summarized in Table 1 below.

Cust Gen QFF Setup K2 K2QFF K2 Trans K2 Solve o] cnf primary |QFF| #Vars |DB|
sec sec sec sec sec
1 0 1 0.03 0.375 0.297 28406 79933 2798 967 111 63
10 0.11 1.31 0.11 0.906 1.844 127046 188023 7694 4855 291 180
20 0.3 2 0.16 2 0.953 359006 308123 13134 12215 491 310
30 0.61 3.58 0.27 3.688 12.015 719766 428223 18574 22775 691 440
40 1.05 6.23 0.36 6.375 27.063 1209326 548323 24014 36535 891 570
50 1.53 10.59 0.53 8.703 84.422 1827686 668423 29454 53495 1091 700
60 2.25 15.53 0.64 12.031 98.281 2574846 788523 34894 73655 1291 830
70 3.09 23.33 1 15.797 90.547 3450806 908623 40334 97015 1491 960

Table 1. Performance Evaluation For Datacenter Configuration Synthesis

Columns are as follows:
» Cust: Number of datacenter customer sites
* Gen QFF: Time in seconds to generate the QFF femuirements
* Setup K2: Time in seconds to initialize Kodkod
* K2QFF: Time in seconds to set up QFF in Kodkod
« K2 trans: Time in seconds for Kodkod to translak-@nto Boolean constraint
* K2 Solve: Time in seconds for ZChaff to solve Ba@sleonstraint
* p: Number of Boolean variable occurrences in thé&-CN
» cnf: Number of clauses in the CNF
* primary: The number of distinct Boolean variableshie CNF
* |QFF|: Number of constraints in the QFF

20

» #Vars: Number of configuration variables in the QFF

« |DBJ: Number of tuples in the configuration databas

6.3 Performance Evaluation for Address Assignment

For a separate network, we enforced just the IPesdthg requirements of Section 2 together with
requirements of the forsubnet(L) specifying which interfaces belonged to the sauntmst. The
configuration database only hgmAddress(Host, Interface, Address, Mask) tuples withAddress and
Mask as variables. The results are summarized in Table

Subnets Gen QFF Setup K2 K2QFF K2 Trans K2 Solve p cnf primary |QFF| #Vars |DB|
sec sec sec sec sec

50 0.03 1.09 0.08 1.843 1.907 216062 584046 2664 2589 143 72

100 0.16 2.31 0.16 7.968 43.875 856376 2323146 6290 10281 339 170

150 0.36 5.41 0.25 18.735 750.187 1915317 5204372 9472 22932 511 256

200 0.64 10.89 0.44 NA NA NA NA NA 40602 683 342

Table 2. Performance Evaluation For Greenfield Address Assignment

The largest network that could be addressed caddiB0 subnets and 256 interfaces, as shown in the
columns on the extreme left and right. The totakttaken was 12.9 minutes. For 200 subnets, the
Kodkod process did not terminate even after twatida all cases, the time taken to compute the @QFF
Prolog was a small fraction of the overall timeeTtumber of constraints grows as the square of the
number of subnets because of the requirement thiatm subnets overlap.

However, the performance is far superior for thenemn real-world scenario where most of the
configuration is fixed and only a relatively smadirt of it needs reconfiguration. We emulated this
scenario by starting with a fully instantiated dgaofation database but changing the IP addressnas#t
for interfaces in 50 subnets to variables. As T@dows, even with 463 subnets containing 830
interfaces, values of variables were found in 3®eds. This illustrates the benefit of the partial
evaluator. It determined that of the 463 subnet8,Were already consistent with requirements, thexe
did not include constraints for these in the QFbmsitted to Kodkod. Thus, it drastically reduced siwe
of the QFF.

Subnets Gen QFF Setup K2 K2QFF K2 Trans K2 Solve p cnf primary |QFF| #Vars |DB|
sec sec sec sec sec
50 0.05 1.39 0.06 3.16 2.05 216,062 584,046 2,664 2,589 143 72
100 0.19 1.58 0.14 2.95 194 227,212 601,946 2,664 7,589 143 170
150 0.42 2.27 0.20 3.84 3.02 237,262 617,096 2,664 12,589 143 256
200 0.72 3.22 0.23 4.83 197 247,262 632,096 2,664 17,589 143 342
300 1.77 5.95 0.36 6.50 3.73 267,312 662,246 2,664 27,589 143 518
463 4.13 12.91 0.53 11.58 3.89 299,912 711,146 2,664 43,889 143 830

Table 3. Performance Evaluation For Incremental Address Assighment

21

7 Relationship With Previous Work

Kodkod itself contains a partial evaluator for doaisits expressible in its first-order relationagic. It
allows one to specify partial information abouetation as a set of tuples in that relation. Itsues
information to ensure that a constraint that cae\mduated from partial information is not represérin
the Boolean constraint that it eventually generatbss, the size of Boolean constraints is greatly
reduced. However, often there are more efficientsaa evaluating a constraint than Kodkod's
algorithms for its general relational logic. Foaexple, while integer constraints are evaluated with
small number of machine operations in a programn@nguage, they require a much large number of
operations in Kodkod. This is because Kodkod raprissintegers as bitsets. ConfigAssure performs
constraint evaluation outside of Kodkod and thaeefts speed of partial evaluation is much higkuér.
course, ConfigAssure’s QFFs, although adequatediofiguration requirements, are less expressive tha
Kodkod'’s constraints. For example, values of Coligure variables can only be integers whereas those
of Kodkod's object attributes can be arbitrary tielas. Finally, we are investigating how to haveFQF
benefit from Kodkod'’s partial evaluation. For exdepghe constraint=1 could be specified as Kodkod
partial information rather than explicitly as itrisw.

The concept of a Requirement Solver was first psedan [11]. It was shown how fundamental
configuration management problems could be forradlin Alloy [1]. Alloy is a first-order logic model
finder but with a simple syntax and user interfatewever, the Alloy formalization of the Requirerhen
Solver did not contain a partial-evaluation phassther did that implementation of Alloy have
Kodkod's partial evaluation optimization. Thus, ®elver did not scale to networks of realistic size

As mentioned in Section 1, the declarative nat@itt@Requirement Solver provides the important
advantage of compositionality. This is critical fesolving the inherent tension between security an
functionality. Security is about preventing bad d&ébr whereas functionality is about enabling good.
Incorrect resolution of this tension can eitheowllan adversary access to services he shouldablee

to, or equally undesirably, disallow a legitimaseufrom accessing services he should be ableyto. B
representing both security and functionality reguients as constraints, and solving these, theoterssi
automatically resolved where possible. Procedypi@aches for resolving the above tension do radesc
beyond a few rules. Avoiding conflicts between suier enforcing security and functionality is
tantamount to replicating the capabilities of pdwiemodel-finders and SAT solvers.

A closely related system is MulVAL [13]. It expressrequirements for adversary’s success in Datalog,
subset of Prolog. If checks whether such a requrens true and if so, analyzes the associated ppoo
compute what configurations to change at minimust tmblock the adversary’s success. It does so by
creating an attack graph, transforming it into @lBan constraint and solving it with a min-cost SAT
solver [17]. However, MulVAL does not synthesizmfigurations from high-level requirements. An
idea that seems worthwhile exploring is combinimg two methods of identifying which configurations
to change. The first is MulVAL’'s method of analygia Datalog proof. The second is ConfigAssure’s
method of analyzing the proof of unsolvability.

The configuration error diagnosis problem solvedCiopfigAssure is somewhat different from that
solved by other systems such as [14] and [15]. 8lebeck whether a requirement is true of a fully
instantiated configuration database, i.e. withoutconfiguration variables. If not, they try to outau
counterexample. For such a database, ConfigAssevalswill return true or false but no
counterexample. For its diagnosis to be interestimg configuration database needs to contairaat le
one variable. If configuration parameters whoseesicould contribute to falsehood can be identified
advance, these can be replaced by variables idatiabase. The fact that these parameters aretéixed
their current values is emulated by adding equalitystraints as described in Section 3.2. Then,
ConfigAssure would identify which variable is reggible for falsehood. The set of configurations séo
values are to be made into variables does not taalve precisely identified.

22

ConfigAssure can be combined with other diagnogtesns to automate counterexample generation and
repair as follows: replace a counterexample tayairement with variables in the database; use
ConfigAssure to compute new values so Hibénd-to-end requirements become simultaneously tiate,
just the violated ones.

Finally, a number of prior efforts share the sarnséown of top down network design as this work. Muéh
the early efforts in this direction focused on opting the performance of particular protocols, e.g
tuning of OSPF weights for traffic engineering msps [21]. A recent work [22] took a comprehensive
look at enterprise network design and investigatags to systematically derive device-level VLAN and
packet filter configuration parameters from netwaiikle operational requirements.

23

8 Summary And Future Directions

This paper identified fundamental configurationkgemns that need to be solved to automatically leridg
the gap between end-to-end requirements and caafigns. These are specification, configuration
synthesis, configuration error diagnosis and camfitjon error repair. The paper presented a system
called ConfigAssure for solving these problems.t@dno ConfigAssure is a Requirement Solver that
takes as input a requirement and a configuratitabdae with variables. It outputs values of vagabl
that make the requirement true of the databasen wistantiated with these values. If unable toaats
outputs a proof of unsolvability. The Requiremealv8r is used in different ways to solve the above
problems. The Requirement Solver exploits the payié&todkod, a SAT-based model-finder. A new
method of encoding requirements allows scalabititproblems of realistic scale. The idea is togfarm
a requirement into an equivalent QFF that trulyunexs the power of model-finding. A QFF is a Boolea
combination of simple arithmetic constraints oregdrs.

The novelty of ConfigAssure is its overall framewaonsisting of the following ideas: that a databas
can contain configuration variables, that a reqoeet can be naturally specified via a partial eatu
that transforms it into an equivalent QFF, thatFEQs efficiently solved by Kodkod, and that a QFF
simplifies diagnosis and repair algorithms.

ConfigAssure is illustrated in the context of alister, secure and fault-tolerant datacenter. Based
performance evaluation for this datacenter, Cordguke seems viable for solving configuration
problems of realistic scale. ConfigAssure is urtdaf at a major enterprise to assist in rearchiiigdts
network.

While it seems feasible to have ConfigAssure gareégeenfield” configurations for infrastructuré o
realistic size, it is particularly well-suited fixcremental configuration even for large configimat
databases. Typically, most of the configuratioamnnfrastructure is fixed. When a change occigs a.
new site is added, only a small number of confiiansparameters need to change to reenforce end-to-
end requirements. The partial evaluator will geteecaly those constraints that are related to these
parameters. It will evaluate away the requiremémntsll configurations that cannot change.

Besides the two directions to investigate outlimethe previous section, there are several otfidrs.

first is the creation of a Requirement Library $pecific domains. Requirements in it will be efficily
implemented with algorithms that exploit strengbifigodkod and SAT solvers. Users can compose these
to create complex requirements. A good heuristicdentifying these is to identify logical structsr
associated with different protocols and distribuaégbrithms that are set up via configuration [20je
requirements in Section 3.1 are examples of suithay for IP networks.

The second direction to investigate is choice attvltonstraint to remove from the proof of
unsolvability in the repair algorithm. Different@bes may have different impact on efficiency aostc

The third direction to investigate is the use dis$iability Modulo Theories solvers e.g., [19] fsolving
QFFs. An SMT constraint is a Boolean constraintliich some variables are replaced by constrairas in
theory. A QFF is an SMT constraint in which thediyeis simple arithmetic. The theory is kept simae
allow efficient solution by pure SAT solvers ungémh Kodkod. SMT solvers may allow efficient
solution of a richer class of QFFs e.g., with lin@dathmetic constraints.

The last direction to investigate is safe recormfagjon planning. Even if the final infrastructure
configuration is known, in general, all componesd@anot be concurrently reconfigured. Thus, one sieed
to compute the order in which to reconfigure sa thahe transition, security breaches do not aaise
mission critical services are not disrupted. Whilie problem is expressible as a SAT problem [h&}y

to scale it up to realistic size seems to be am gopestion. We are investigating easier but usafigions
of this problem.

24

Acknowledgements

We thank Professor Daniel Jackson, Emina Torlakralik Chang at MIT, Professor Simon Ou at
Kansas State University, Professor Ehab Al-ShaBe&aul University and Professor Geoffrey Xie at
Naval Post Graduate School for very helpful commentthis paper.

Biographies

Sanjai Narain is a Senior Research Scientist aofdila Technologies, Inc. His current research is i
principles of secure, survivable infrastructureigiesHis formal training is in mathematical logicda
programming languages. He received a B.Tech. iatitel Engineering from Indian Institute of
Technology, New Delhi, in 1979, an M.S. in Compuerence from Syracuse University in 1981, and a
Ph.D. in Computer Science from UCLA in 1988.

Gary Levin is a Senior Research Scientist at TdieoFechnologies. His expertise is in mathematical
logic, programming languages and design of sesurrgjvable infrastructure. He received a B.S. in
Computer Science from University of Delaware in3.@nd a Ph.D. in Computer Science from Cornell
University in 1980.

Vikram Kaul is a Senior Research Scientist at TrelieoTechnologies. His expertise is in software
development and design of secure, survivable itnfreitire. He received a B.E. (Hons) in Electrical &
Electronics Engineering from Birla Institute of Tewlogy and Science, Pilani in 1997 and an M.Snfro
The Wireless Information Networks Laboratory atdus University in 2000.

Sharad Malik is George Van Ness Lothrop Profest&lextrical Engineering at Princeton University.
His current research is in electronic design autmmaThe ZChaff SAT Solver developed by his team i
widely used in research and industry. He receivBd Bech. in Electrical Engineering from Indian
Institute of Technology, New Delhi, in 1985, andMir§. and Ph.D. in Computer Science from
University of California, Berkeley in 1987 and 19@&3pectively.

A

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

25

References

Alloy: http://alloy.mit.edu/

ZChalff: http://www.princeton.edu/~chaff/
Kodkod: http://web.mit.edu/emina/www/kodkod.html

E. Torlak and D. Jackson. Kodkod: A Relational Mdéieder.Tools and Algorithms for
Construction and Analysis of Systems (TACAS BYaga, Portugal, March 200 DF) (slides)

SWI-Prolog:http://www.swi-prolog.org/

SWI-Prolog-JPLhttp://www.swi-prolog.org/packages/jpl/prolog_apiéoview.html

Security and business continuity solutions fromtighi Telecom.
http://www.btglobalservices.com/business/globaerducts/docs/28154 219475secur_bro_single.p
df

B. LampsonComputer Security in Real Worldnnual Computer Security Applications Conference,
2000.
http://research.microsoft.com/Lampson/64-SecuriR@al\World/Acrobat.pdf

D. Oppenheimer, A. Ganapathy, D. Patter8tthy do Internet Services Fail and What Can Be Done
About 1t?4th USENIX Symposium on Internet Technologies 8gdtems, 2003.
http://roc.cs.berkeley.edu/papers/usits03.pdf

John SchwartaVho Needs Hackers®Rew York Times, September 12, 2007.
http://www.nytimes.com/2007/09/12/technology/teatspl/12threat.html

Sanjai NarainNetwork Configuration Management via Model-FindiRgoceedings of USENIX
Large Installation System Administration (LISA) @oance San Diego, CA, 2005.

B. Selman, H. Kautz, "Planning As Satisfiabiliti2foceedings of ECAI-92
http://www.cs.cornell.edu/selman/papers/pdf/92.sasmlan. pdf

J. Homer, Xinming Ou, Miles McQueen. From attachkpirs to automated configuration management
--- an iterative approachechnical Report 2008;Computer Science Department, Kansas State
University.

Ehab Al-Shaer and Hazem Hamed . Modeling and Maneageof Firewall PoliciedEEE
Transactions on Network and Service Manageméoiume 1-1, April 2004.

Telcordia IPAssuréhttp://www.argreenhouse.com/papers/narain/TelctPdiasure.pdf

Y.Mahajan, Z. Fu, Sharad Malik. Zchaff2004, An Eiiint SAT SolverProceedings of 7th
International Conference on Theory and ApplicatiohSatisfiability Testing (SAT2004.

Z. Fu, Sharad Malik. Solving the Minimum-Cost Skilility Problem using Branch and Bound
SearchProceedings of IEEE/ACM International ConferenceGamputer-Aided Design ICCAD
2006

Bratko, Ivan.Prolog Programming for Artificial IntelligenceAddison-Wesley International
Computer Science Series, 1990

Clark Barrett and Sergey Berezin. CVC Lite: A Nemplementation of the Cooperating Validity
Checker. InfProceedings of the 16th International Conferenc&€omputer Aided Verification (CAV
'04), volume 3114 of ecture Notes in Computer Scienpages 515-518. Springer, July 2004.
Boston, Massachusetts.

26

20. Sanjai Narain, Thanh Cheng, Brian Coan, Vikram KKirtthika Parmeswaran, William Stephens.
Building Autonomic Systems via ConfiguratidProceedings of AMS Autonomic Computing
Workshop Seattle, WA, 2003.

21. A. Feldmann and J. Rexford. IP network Configurafior Intradomain Traffic EngineerintEEE
Network MagazingSept. 2001

22.Y.Sung, S. Rao, G. Xie, and D. Maltz. Systemabaf@urator Design for Enterprise Networks.
Technical Report, TR ECE 08-07, Department of EREdue University, May 2008.

