
Information Flow Control For
Standard OS Abstractions

Max Krohn, Alex Yip, Micah Brodsky,
Natan Cliffer, Frans Kaashoek,
Eddie Kohler, Robert Morris

Vulnerabilities in Websites  Exploits

• Web software is buggy
• Attackers find and exploit these bugs
• Data is stolen / Corrupted

– “USAJobs.gov hit by Monster.com attack, 146,000 people
affected”

– “UN Website is Defaced via SQL Injection”
– “Payroll Site Closes on Security Worries”
– “Hacker Accesses Thousands of Personal Data Files at CSU

Chico”
– “FTC Investigates PETCO.com Security Hole”
– “Major Breach of UCLA’s Computer Files”
– “Restructured Text Include Directive Does Not Respect ACLs”

Decentralized Information Flow
Control (DIFC)

Layoff
Plans

Free
TShirts

Web AppWeb App

Declassifier

CEO

P

Intern

Decentralized Information Flow
Control (DIFC)

Layoff
Plans

Free
TShirts

Web AppWeb App

Declassifier

CEO

Intern

/tmp
File

Helper
Process

Why is DIFC a cult?

Who Needs to Understand DIFC?

Layoff
Plans

Free
TShirts

Web AppWeb App

Declassifier

CEO

Intern

/tmp
File

Helper
Process

Why is Today’s DIFC DIFfiCult?

• Label systems are complex

• Unexpected program behavior

• Cannot reuse existing code

– Drivers, SMP support, standard libraries

Unexpected Program Behavior
(Unreliable Communication)

Process qProcess p

“I stopped reading”
“I crashed”

P
“Fire Alice, Bob, Charlie, Doug, Eddie, Frank, George, Hilda, Ilya…”

Unexpected Program Behavior
(Mysterious Failures)

Process pProcess q File

Solution/Outline

1. Flume: Solves DIFC Problems

– User-level implementation of DIFC on Linux

– Simple label system

– Endpoints: Glue Between Unix API and Labels

2. Application + Evaluation

– Real Web software secured by Flume

Outline

1. Flume: Solves DIFC Problems

– User-level implementation of DIFC on Linux

– Simple label system

– Endpoints: Glue Between Unix API and Labels

2. Application + Evaluation

Flume Implementation

• Goal: User-level implementation

– apt-get install flume

• Approach:

– System Call Delegation [Ostia by Garfinkel et al,
2003]

– Use Linux 2.6 (or OpenBSD 3.9)

System Call Delegation

Web App

glibc

Linux Kernel

Layoff
Plans

open(“/hr/LayoffPlans”, O_RDONLY);

System Call Delegation

Web App

Flume Libc

Linux Kernel

Layoff
Plans

open(“/hr/LayoffPlans”, O_RDONLY);

Flume
Reference
Monitor

Web App

Three Classes of Processes

Flume
Reference
Monitor

Linux
Kernel

Process p

Flume
Reference
Monitor

Linux
Kernel

Process p

Flume
Reference
Monitor

Linux
Kernel

Process p

Flume-Oblivious Unconfined/
Mediators

Confined

Outline

1. Flume: Solves DIFC Problems

– User-level implementation of DIFC on Linux

– Simple label system

– Endpoints: Glue Between Unix API and Labels

2. Application + Evaluation

Information Flow Control (IFC)

• Goal: track which secrets a process has seen

• Mechanism: each process gets a secrecy label

– Label summarizes which categories of data a
process is assumed to have seen.

– Examples:

• { “Financial Reports” }

• { “HR Documents” }

• { “Financial Reports” and “HR Documents” }

“tag”

“label”

Tags + Labels

Process p tag_t HR = create_tag();

Sp = {}

Dp = {}Dp = { HR }

Universe of Tags: Finance

Legal

SecretProjects

change_label({Finance});

Sp = { Finance }Sp = { Finance, HR }

HR

change_label({Finance,HR});

change_label({Finance});

change_label({});

DIFC: Declassification
in action.

Same as Step 1.

Any process can add
any tag to its label.
DIFC Rule: A process can

create a new tag; gets
ability to declassify it.

Communication Rule

Process qProcess p

Sq = { HR, Finance }Sp = { HR }

P

p can send to q iff Sp Sq

Outline

1. Flume: Solves DIFC Problems

– User-level implementation of DIFC on Linux

– Simple label system

– Endpoints: Glue Between Unix API and Labels

2. Application + Evaluation

Recall: Communication Problem

Process p
stdinstdout

“Fire Alice, Bob, Charlie, Doug, Eddie, Frank, George, Hilda, Ilya…”

“SLOW DOWN!!”
“I crashed”

P

Sq = { HR }

?

Sp = {}
Dp = { HR }

Process q

New Abstraction: Endpoints

f

Sf = { HR }Se = { HR }

Process qProcess p

Sp = {}
Dp = { HR }

e

• If Se Sf , then allow e to send to f
• If Sf Se , then allow f to send to e

• If Sf = Se , then allow bidirectional flow

Sq = { HR }

“Fire Alice, Bob, Charlie, Doug, Eddie, Frank, George, Hilda, Ilya…”

“SLOW DOWN!!”
“I crashed”

P
P

Thus p needs
HR Dp

Endpoints Declassify Data

Data enters
process p with
secrecy { HR }

But p keeps its
label Sp = {}Se = { HR }

Process p

Sp = {}
Dp = { HR }

e

Endpoint Invariant

• For any tag t Sp and t Se

• Or any tag t Se and t Sp

• It must be that t Dp

Process p e

Sp = { Finance }
Se = { HR }

Dp = { Finance, HR}

Writing

Reading

Endpoints Labels Are Independent

f

g

Sf = { HR }

Sg = {}

Se = { HR }
Process qProcess p

Sq = { HR }Sp = {}
Dp = { HR }

e

Recall: Mysterious Failures

Process p FileProcess q

Endpoints Reveal Errors Eagerly

Process p

Sp = {}

/tmp/public.dat

Spublic.dat = {}

open(“/tmp/public.dat”, O_WRONLY);
change_label({HR})

e

Se = {}

Process q

Sq = { HR }

Dp = {}

Sp = { HR } ?
Violates endpoint invariant!

Sp – Se = { HR } Dp

Endpoints Reveal Errors Eagerly

Process p

Sp = {}

/tmp/public.dat

Spublic.dat = {}

fd = open(“/tmp/public.dat”, O_WRONLY);
close(fd);
change_label({HR})

e

Se = {}

Process q

Sq = { HR }

Dp = {}

Sp = { HR }

Outline

1. Flume: Solves DIFC Problems

2. Application + Evaluation

Questions for Evaluation

• Does Flume allow adoption of Unix software?

• Does Flume solve security vulnerabilities?

• Does Flume perform reasonably?

Example App: MoinMoin Wiki

How Problems Arise…

MoinMoin
Wiki

(100 kLOC)

FreeTShirts

LayoffPlans
if not self.request.user.may.read(pagename):

return self.notAllowedFault() x43

MoinMoin + DIFC

Apache
Web Server

MoinMoin
Wiki

(100 kLOC)

FreeTShirts

LayoffPlans

Declassifier
1 kLOC

UntrustedTrusted

FlumeWiki

Apache
MoinMoin
(100 kLOC)

FreeTShirts

LayoffPlans

Declassifier
1 kLOC

Web Client

GET /LayoffPlans?user=Intern&PW=abcd

S={}

S={ HR }

reliable IPC

file I/O

Flume-
Oblivious

unconfined confined

Future Work

Apache
Totally
Suspect

Software

FreeTShirts

LayoffPlans

Declassifier
1 kLOC

Web Client

GET /LayoffPlans?user=Intern&PW=abcd

S={}

S={ HR }

Results

• Does Flume allow adoption of Unix software?
– 1,000 LOC launcher/declassifier
– 1,000 out of 100,000 LOC in MoinMoin changed
– Python interpreter, Apache, unchanged

• Does Flume solve security vulnerabilities?
– Without our knowing, we inherited two ACL bypass

bugs from MoinMoin
– Both are not exploitable in Flume’s MoinMoin

• Does Flume perform reasonably?
– Performs within a factor of 2 of the original on read

and write benchmarks

Most Related Work

• Asbestos, HiStar: New DIFC OSes

• Jif: DIFC at the language level

• Ostia, Plash: Implementation techniques

• Classical MAC literature (Bell-LaPadula, Biba,
Orange Book MAC, Lattice Model, etc.)

Limitations

• Bigger TCB than HiStar / Asbestos

– Linux stack (Kernel + glibc + linker)

– Reference monitor (~22 kLOC)

• Covert channels via disk quotas

• Confined processes like MoinMoin don’t get
full POSIX API.

– spawn() instead of fork() & exec()

– flume_pipe() instead of pipe()

Summary

• DIFC is a challenge to Programmers

• Flume: DIFC in User-Level

– Preserves legacy software

– Complements today’s programming techniques

• MoinMoin Wiki: Flume works as promised

• Invite you to play around:

http://flume.csail.mit.edu

Thanks!

To: ITRI, Nokia, NSF and You

Reasons to Read the Paper

• Generalized security properties

– Including: Novel integrity policies

• Support for very large labels

• Support for clusters of Flume Machines

Flume’s Rule is Fast

• Recall:

p can send to q iff: Sp – Dp Sq Dq

• To Compute:
– for each tag t Sp:

• If t Sq and t Dp and t Dq:

–output “NO”

– output “OK”

• Runs in time proportional to size of Sp.

• No need to enumerate Dp or Dq !!!

Flume Communication Rule

1. q changes to Sq = { Alice }

2. p sends to q

3. q changes back to Sq= {}

MoinMoin
(r)

MoinMoin
(p)

Sr = { Bob }Sp = { Alice }

Database
(q)

Sq = {}
Dq = { Alice, Bob }

? ?

Sp Sq

Sq = { Alice }
Dq = { Alice, Bob }

P

Flume Communication Rule

MoinMoin
(r)

MoinMoin
(p)

Sr = { Bob }Sp = { Alice }

Database
(q)

Sq = {}
Dq= { Alice, Bob }

P P

Senders get extra latitude

Receivers get extra latitude
• p can send to q iff:

– In IFC: Sp Sq

– In Flume: Sp – Dp Sq Dq

Flume Kernel Module

Flume Kernel Module

Flume Libc

Linux Kernel

Alice’s
Data

open(“/alice/inbox.dat”, O_RDONLY);

Flume
Reference
Monitor

Web App
mov $0x5, %eax
int $0x80

open(…)

P

Reference Monitor Proxies Pipes

Linux Kernel

write(0, “some data”, 10);

Flume
Reference
Monitor

Web App Helper Process

Unconfined Processes

sendmail mmap’ed memory

f
o
r
k

’ed
ch

ild

kill

e

Se = {}

/tmp/public.dat

Spublic.dat = {}

Sp = {}Dp = {}
Process q

Sq = { HR }

DIFC

“Unconfined
processes get e
endpoint.”

change_label({HR})

Dp = { HR } Sp = { HR }

PP

Endpoints Reveal Errors Eagerly

Process p

Sp = {}

/tmp/public.dat

Spublic.dat = {}

open(“/tmp/public.dat”, O_WRONLY);
change_label({HR})

e

Se = {}

Process q

Sq = { HR }

Dp = {HR}

Sp = { HR }

P

P

Why Do We Need Sp?

Process p e

Sp = { Finance }
Se = { Finance, HR }

Dp = { HR }

