
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Systems and Internet 
Infrastructure Security 

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1


Advanced Systems Security:�
Virtual Machine Systems

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 2


Where are we?

•  OS Security from Reference 

Monitor perspective

‣  Mediation

•  LSM

‣  Tamperproof

•  Linux and SELinux

‣  Simple enough to verify

•  Correct code

•  Correct policy



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Basis for OS Security


•  Isolation

‣  A protection domain defines a 
boundary of isolation

•  Based on 

‣  Rings

‣  Address spaces

‣  Access control policy

•  Do these work for modern OSes?

3




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Virtual Machine Systems


•  Protection domain is extended to operating systems 
on one physical platform

‣  Invented for resource utilization

•  But, also provide a potential security benefit due to 
default

‣  ISOLATION

•  How does VM isolation differ from OS isolation?

4




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 5




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 7




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Hardware Virtualization


•  CPU virtualization 

‣  Instructions (still there)

‣  Sensitive instructions must be privileged

•  Memory virtualization 

‣  MMU (still there)

‣  Nested/extended page tables

•  I/O virtualization 

‣  IOMMU (new)

‣  Chipset support for configuration and address translation

11




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


VM Systems and Ref Monitor


•  How does a VM System improve ability to achieve 
reference monitor guarantees?

12




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


VM Systems and Ref Monitor


•  How does a VM System improve ability to achieve 
reference monitor guarantees?

•  Mediation

‣  Mediation between VM interactions

•  Tamperproof

‣  Protection boundaries between VMs (OS)

•  Simple Enough to Verify

‣  Code that needs to be correct?

‣  Policy

13




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


VAX VMM

•  A1-assured (formally assured) VMM system

•  Carefully crafted VMM 

•  Mediation

‣  VM (subject) and volume (object)

•  Tamperproof

‣  “Minimal” TCB – VMM only

•  Simple enough to verify

‣  Code assurance

‣  Policy assurance: MLS policy, Biba policy, privileges

14




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


VAX VMM Architecture


15


Ultrix OS VMS OS

VMM Security Kernel

VMS OS

Applications
(Top Secret)

Applications
(Secret)

Applications
(Unclassified)

Memory
Device

Disk
Device

Print
Device

Display
Device ...



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


VAX VMM Reference Monitor


•  Key design tasks

‣  Virtualize processor

•  Make all sensitive instructions privileged

‣  More rings

•  Need a new ring for the VMM

‣  I/O emulation

‣  Self-virtualizable

•  What components constitute the VAX VMM 
reference monitor?

16




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


VAX VMM Policy


•  MLS

‣  Control secrecy

•  Biba

‣  Control integrity

•  Privileges

‣  Exceptional accesses

‣  Audited

‣  There are more of these than meets the eye!

•  How is the protection state modified?
17




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


VAX VMM Evaluation


•  Mediation: ensure all security-sensitive operations 
are mediated?

‣  Virtualizing instructions, I/O emulation

‣  VM-level operations? Privileges

•  Mediation: mediate all resources?

‣  VMM level

•  Mediation: verify complete mediation?

‣  A1-assured at VMM level

18




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


VAX VMM Evaluation

•  Tamperproof: protect VMM?

‣  Similar to Multics (no gatekeepers, but some kind of filters); 
authentication in VMM; protection system ops in VMM

•  Tamperproof: protect TCB?

‣  All trusted code at ring 0; trusted path from VMs for admin;

•  Verification: verify code?

‣  A1-assured at VMM level

•  Verification: verify policy?

‣  MLS and Biba express goals and policy; Privileges are ad hoc

19




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


VAX VMM Challenges

•  Despite A1 assurance still several challenges in VAX VMM 

system

‣  Device driver management; no network

‣  Amount of assembler code

‣  Covert channel countermeasures

‣  Implications of ‘privileges’

•  Nonetheless, interesting mechanisms

‣  Virtualization for security

‣  Architecture of VMM system

‣  Trusted path administration

20




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Modern VM Systems


•  The development of a virtual machine monitor for 
x86 systems unleashed VMs on the masses

‣  Why did this take so long?

•  VMware, Xen, KVM, NetTop, …

‣  Everyone is a virtual machine monitor now

•  How do we implement a reference validation 
mechanism for these systems?

‣  What granularity of control?

21




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Isolation and Network


•  Type 1 VM Systems assume that the VMM (and 
privileged VM) will isolate guest VMs

•  Then, the problem is to control inter-VM 
communication

‣  VMs talk to VMM (hypercalls, like system calls)

‣  All other communication is via the network

•  sHype adds reference monitor for controlling 
network access between VMs

•  NetTop is built on VMware where only VMs of the 
same label may communicate via network

22




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Control of VMM Resources


•  There are many virtual machine monitor resources 
that may be used to communicate

‣  Memory, devices, IPC, VMs themselves, …

‣  E.g., VMware permits VMCI – like IPC between VMs

•  Xen Security Modules (XSM) adds reference 
validation on the Xen hypervisor’s distribution of 
these resources

‣  Less trust in privileged VMs, so finer-grained policy results

•  Minimizing TCB versus simplicity

23




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Xen as a Reference Monitor?

•  Reference Monitor

‣  XSM in Xen

‣  Scope includes “dom0” VM

•  Mediation

‣  XSM to control VMM operations

‣  SELinux in dom0; use network to communicate

•  Tamperproof

‣  Xen and Linux 

•  Verification (Xen)

‣  Xen Code – 200K+ LOC – and Dom 0 Linux

‣  Policy – SELinux style

24




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Container Systems


•  A hybrid approach is developed in container systems

•  Linux containers run multiple Linux systems (process 
hierarchies) on one Linux host operating system

‣  Cgroups enables resource control without starting VMs

‣  Also, each container gets its own namespaces for 
processes, mounts (filesystem), userids, and networks

•  Idea is to give each container an isolated view 

•  How do we configure access control for containers?

25




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Container Systems


•  How do we configure access control for containers?

‣  E.g., SELinux across and within containers…

26




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Container Systems


•  How do we configure access control for containers?

‣  Currently, the host system defines mandatory access 
control policies that govern every container

‣  What are issues with that approach?

27




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 28


Dune

•  Goal: Safe access to hardware features from 

processes

•  Normally, only the operating system can configure 
hardware features, such as page tables, ring 
protection, and TLBs

•  However, applications may benefit from direct access 
to such hardware features

‣  Modifying the kernel to provide such access in a 
sufficiently flexible way while maintaining security is a 
problem



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 29


Dune

•  Approach: Dune uses virtualization hardware to 

provide a “process” rather than a “machine” 
abstraction

•  Alternative: Instead of modifying the host kernel to 
achieve application-specific use of hardware features, 
an alternative is to deploy processes in a VM with a 
custom OS to do so

•  However, launching a process in a VM can be 
complex because of sharing of OS abstractions, such 
as file descriptors between parent and child

‣  Won’t work if they are in different VMs



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 30


Dune – Process Abstraction

•  Process: Can enter “Dune mode” to access hardware 

features 

‣  Including privilege modes, virtual memory registers, page 
tables, and interrupt, exception, and system call vectors

‣  Through use of virtualization hardware – Intel VT-x

•  VMX root and VMX non-root modes

‣  VMX root – for VMM 

‣  VMM non-root – for virtualized operating systems, governed by VMM

‣  Dune processes use VMCALL to invoke system calls – 
with help of library provided



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 31


Dune – System Architecture

•  System: Dune mode is VMX non-

root mode

‣  Kernel is in VMX root mode like a 
VMM

‣  Dune processes are in VMX non-
root mode

‣  Dune module intercepts VM exits, 
which are the only way to access 
the kernel – for syscalls and traps

•  Other processes are unaffected

HW#(VMX#root,#ring#0)#

Kernel#

Dune#Module#

Dune#Process#

Normal#Process#

HW#(VMX#non=root,#ring#0)#

libDune#

HW#(VMX#root,#ring#3)#

HW#(VMX#non=root,#ring#3)#

Untrusted#Code#

Figure 1: The Dune system architecture.

cess to access the kernel, and performs any necessary ac-
tions such as servicing a page fault, calling a system call,
or yielding the CPU after a HLT instruction. Dune also
includes a library, called libDune, to assist with manag-
ing privileged hardware features in userspace, discussed
further in Section 4.

We apply Dune selectively to processes that need it;
processes that do not use Dune are completely unaffected.
A process can enable Dune at any point by initiating a
transition through an ioctl on the /dev/dune device, but
once in Dune mode, a process cannot exit Dune mode.
Whenever a Dune process forks, the child process does
not start in Dune mode, but can re-enter Dune if the use
case requires it.

The Dune module requires VT-x. As a result, it can-
not be used inside a VM unless there is support for nested
VT-x [6]; the performance characteristics of such a con-
figuration are an interesting topic of future consideration.
On the other hand, it is possible to run a VMM on the
same machine as the Dune module, even if the VMM
requires VT-x, because VT-x can be controlled indepen-
dently on each core.

3.2 Threat Model
Dune exposes privileged CPU features without affecting
the existing security model of the underlying OS. Any ex-
ternal effects produced by a Dune-enabled process could
be produced without Dune through the same series of
system calls. However, by exposing hardware privilege
modes, Dune enables additional privilege-separation tech-
niques within a process that would not otherwise be prac-
tical.

We assume that the CPU is free of defects, although we
acknowledge that in rare cases exploitable hardware flaws
have been identified [26, 27].

3.3 Comparing to a VMM
Though all software using VT-x shares a common struc-
ture, Dune’s use of VT-x deviates from that of standard
VMMs. Specifically, Dune exposes a process environ-
ment instead of a machine environment. As a result,
Dune is not capable of supporting a normal guest OS, but
this permits Dune to be lighter weight and more flexible.
Some of the most significant differences are as follows:

• Hypercalls are a common way for VMMs to support
paravirtualization, a technique in which the guest OS
is modified to use interfaces that are more efficient and
less difficult to virtualize. In Dune, by contrast, the hy-
percall mechanism invokes normal Linux system calls.
For example, a VMM might provide a hypercall to reg-
ister an interrupt handler for a virtual network device,
whereas a Dune process would use a hypercall to call
read on a TCP socket.

• Many VMMs emulate physical hardware interfaces in
order to support unmodified guest OSes. In Dune, only
hardware features that can be directly accessed without
VMM intervention are made available; in cases where
this is not possible, a Dune process falls back on the OS.
For example, most VMMs go to great lengths to present
a virtual graphics card interface in order to support a
frame buffer. By contrast, Dune processes employ the
normal OS display service, usually an X server accessed
over a Unix-domain socket and shared memory.

• A typical VMM must save and restore all state that is
necessary to support a guest OS. In Dune, we can limit
the differences in guest and host state because processes
using Dune have a narrower hardware interface. This
results in reductions to the overhead of performing VM
entries and VM exits.

• VMMs place each VM in a separate address space that
emulates flat physical memory. In Dune, we configure
the EPT to reflect process address spaces. As a result,
the memory layout can be sparse and memory can be
coherently shared when two processes map the same
memory segment.

Despite these differences, the Dune module could be
considered a type-2 hypervisor [22] because it runs on top
of an existing OS kernel.

4



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 32


Dune – Memory Management

•  Goal: manage page tables 

from user processes

‣  But, just what programs 
want to manage – not all

‣  Without allowing arbitrary 
access to memory

•  Dune processes reference 
guest-virtual memory, so 
protected by extended page 
table – like process is a VM

‣  Sync EPT to kernel PT

Host%Physical-(RAM)-

Kernel-
Page-
Table-

Host%Virtual-

EPT-

Guest%Physical-

User-
Page-
Table-

Guest%Virtual-

Dune-Process!

Normal-Process!

Figure 2: Virtual memory in Dune.

3.4 Memory Management
Memory management is one of the biggest responsibili-
ties of the Dune module. The challenge is to expose direct
page table access to user programs while preventing arbi-
trary access to physical memory. Moreover, our goal is
to provide a normal process memory address space by de-
fault, permitting user programs to add just the functional-
ity they need instead of completely replacing kernel-level
memory management.

Paging translations occur in three separate cases in
Dune, shown in Figure 2. One translation is specified
by the kernel’s standard page table. In virtualization ter-
minology this is the host-virtual to host-physical (i.e.,
raw memory) translation. Host-virtual addresses are or-
dinary virtual addresses, but they are only used by the
kernel and normal processes. For processes using Dune,
a user controlled page table maps guest-virtual addresses
to guest-physical. Then the EPT, managed by the kernel,
performs an additional translation from guest-physical to
host-physical. All memory references made by processes
using Dune can only be guest-virtual, allowing for iso-
lation and correctness to be enforced in the EPT while
application-specific functionality and optimizations can
be applied in the user page table.

Ideally, we would like to match the EPT to the ker-
nel’s page table as closely as possible because of our goal
to give processes using Dune access to the same address
space they would have as normal processes. If it were
permitted by hardware, we would simply point the EPT
and the kernel’s page table to the same page root. Unfor-
tunately, two limitations make this impossible. First, the
EPT requires a different binary format from the standard
x86 page table. Second, Intel x86 processors limit the

address width of guest-physical addresses to be the same
as host-physical addresses. In a standard virtual machine
environment this would not be a concern because any ma-
chine being emulated would have a realistically bounded
amount of RAM. For Dune, however, the problem is that
we want to expose the full host-virtual address space and
yet the guest-physical address space is limited to a smaller
size (e.g., a 36-bit physical limit vs. a 48-bit virtual limit
on many contemporary Intel processors). We note that
this issue is not present when running in 32-bit protected
mode, as physical addresses are at least as large as virtual
addresses.

Our solution to EPT format incompatibility is to query
the kernel for process memory mappings and to manually
update the EPT to reflect them. We start with an empty
EPT. Then, we receive an EPT fault (a type of VM exit)
each time a missing EPT entry is accessed. The fault han-
dler crafts a new EPT entry that reflects an address trans-
lation and permission reported by the kernel’s page fault
handler. Occasionally, address ranges will need to be un-
mapped. In addition, the kernel requires page access in-
formation, to assist with swapping, and page dirty status,
to determine when write-back to disk is necessary. Dune
supports all of these cases by hooking into an MMU no-
tifier chain, the same approach used by KVM [30]. For
example, when an address is unmapped, the Dune module
receives an event. It then evicts affected EPT entries and
sets dirty bits in the appropriate Linux page structures.

We work around the address width issue by allow-
ing only some address ranges to be mapped in the EPT.
Specifically, we only permit addresses from the beginning
of the process (i.e., the heap, code, and data segments),
the mmap region, and the stack. Currently, we limit each
of these regions to 4GB, allowing us to compress the ad-
dress space to fit in the first 12GB of the EPT. Typically
the user’s page table will then expand the addresses to
their original layout. This could result in incompatibilities
in programs that use nonstandard portions of the address
space, though such cases are rare. A more sophisticated
solution might pack each virtual memory area into the
guest-physical address space in arbitrary order and then
provide the user program the additional information re-
quired to remap the segment to the correct guest-virtual
address in its own page table, thus avoiding the possibil-
ity of unaddressable memory regions.

3.5 Exposing Access to Hardware

As discussed previously, Dune exposes access to excep-
tions, virtual memory, and privilege modes. Exceptions
and privilege modes are implicitly available in VMX non-

5



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 33


Container Security

•  Better or worse than VMs?

•  Worse: Containers share the same OS

•  Better: Containers only have one application

•  Better: Containers can have limited attack surface by 
running it in a “jail”

•  Worse?: Hypervisor can provide stronger isolation 
than an OS

‣  However, Dune shows that such isolation is implemented 
by VT-x hardware, so same in OS and hypervisor



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 35


Conventional OS vs VM System


•  Conventional OS

‣  Broken easily and often

•  VM system 

‣  Coarser control based on isolation

•  If we trust the VM system and don’t trust the OS, 
what can we do?



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Deploy Critical Applications


•  Don’t trust OS, but need its services

•  Run programs directly on VMM

‣  No services

•  Run programs on a specialized, trusted system

‣  Custom services must be written (yuk!)

•  Reuse untrusted system services

‣  Trusted system (custom, but potentially smaller) must 
enable secure use of such services

37




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Splitting Interfaces


39




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Proxos Architecture


40




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Proxos Guarantees


41




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Proxos Routing Language


42




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Proxos Implementation


43




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Proxos Implementation


44




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Proxos SSH Server


45




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Compare to Privilege Separation


46




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Implementation Effort


47




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Performance


48




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 49


TrustShadow

•  The TrustShadow system employs the Proxos 

approach to deploy isolated applications that do not 
trust the Linux kernel

‣  An application of Proxos to approximate SGX guarantees 
(next time)

•  Isolated, unmodified applications are launched on the 
TrustShadow runtime system using the ARM 
TrustZone “Secure World”

•  Runtime intercepts most system calls and forwards to 
them to the Linux kernel in the “Normal World”



Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 60


Take Away

•  VM Systems provide isolation

‣  At OS granularity: some can be untrusted

•  Moving towards container systems

‣  Dune enables flexible use of hardware by “containers”

•  Can we use VM isolation to prevent compromise of 
applications by malicious OS?

‣  Proxos: use a “trusted” OS and redirect service requests

•  Applied in TrustShadow to isolate domains


