\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

Advanced Systems Security:
Intel SGX

Trent Jaeger
Systems and Internet Infrastructure Security (S11S) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Remaining Problems =

e Deploying a custom OS is painful
» Building a special kernel is non-trivial

e And it may not be secure itself

» Still need a methodology to determine code correctness
and tamperproofing

e What if you want to eliminate trust in the OS
altogether!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Insight: Shadowing Memory v

e VMMs need to manage physical to virtual mapping of
memory

e This is done with a shadow page table

e Multi-shadowing give context-aware views of this
memory

» Use encryption instead

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Memory Cloaking =

e Not new idea

» XOM, LT __
e Encrypt the pages in memory /@K\
» For each page, (IV, H) meta data i gggggﬁg
» What should the “secure hash” be? Z; ﬁ‘ 4
e 00—
e OS can operate on encrypted
pages

» But can’t read them

Systems and Internet Infrastructure Security (SIIS) Laboratory

Tasks of the Overshadow g

PENNSTATE

>

>

>

e Mediate all application interaction with OS to ensure
correct cloaking of memory

Context Identification
Secure Control Transfer
System Call Adaptation
Mapping Cloaked Resources

Managing Protection Metadata

Systems and Internet Infrastructure Security (SIIS) Laboratory

Shim baby Shim g

e The key to Overshadow is the Shim

» Manages transitions to and from VMM via a hypercall

e Shim Memory protects application

» CTC protects control registers

e Uncloaked Shim ﬁ‘
Cloaked Shim

» Neutral ground

Uncloaked Shim
A

» Trampoline!

OS Kernel

VMM

Hardware

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Loading Applications 5

e The Shim uses a Loader program
e Sets up the cloaked memory with a hypercall

e The loader / shim must be trusted

» Metadata on the CTC checks for compromise

» Here is the meat of the problem

e |s it even used?

e Propagate shims to spawned applications/,/

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Its not that easy... S

e Lot of OS interfaces that must be handled
e Faults / Interrupts

o System Calls

» Pass control to the VMM

» The shim catches this and stores registers

e Clear the registers to prevent side channels

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Complex Syscalls =

e Some syscalls are easy
» No side effects
» Nice, getpid, sync

e Others, less so...

» Pipe, r/w (kernel sees zero data, VMM needs to fix)

» Clone — must keep cloaked cloaked

» Fork

» Signal Handling — cannot signal cloaked code arbitrarily, so
VMM must signal shim

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10

PENNSTATE

Performance 5

e Microbenchmarks

» Not so hot 15-60%

» Although a lot better than Proxos
e Application Benchmarks

» SPEC isn’t so bad

v

High bandwidth hits some bottlenecks
Why!?

v

ernet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Intel Software Guard Ext S

Intel® Software Guard Extensions (SGX)

[McKeen et al, Hoekstra et al., Anati et al., HASP’13]

= Security critical code isolated in

enclave
= Only CPU is trusted 4 . :) ,;
= Transparent memory encryption APP1 APP2 Enclave
. . Security
= 18 new instructions Service

= Enclaves cannot harm the system

* Only unprivileged code (CPU ring3) ’ ‘
= Memory protection

= Designed for Multi-Core systems

= Multi-threaded execution of enclaves Operating System

= Parallel execution of enclaves and ' SGX CPU |
untrusted code

Hardware

= Enclaves are interruptible

= Programming Reference available

I Trusted ‘ ‘ Untrusted I m

SYSTEM
SECURITY u-
A.-R. Sadeghi ©OTU Darmstadt, 2007-2014 Slide Nr. 2, Lecture Embedded System Security, SS 2014 Trusted Execution Environments / Intel SGX LAB

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 12

PENNSTATE

Intel Software Guard Ext S

SGX Enclaves

= Enclaves are isolated memory regions of code and
data

= One part of physical memory (RAM) is reserved for
enclaves
= |tis called Enclave Page Cache (EPC)
= EPC memory is encrypted in the main memory (RAM)
= Trusted hardware consists of the CPU-Die only
= EPCis managed by OS/VMM

RAM: Random Access Memory
0OS: Operating System
VMM: Virtual Machine Monitor (also known as Hypervisor) “srem ‘-

SECURITY

A.-R.Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 3, Lecture Embedded System Security, SS 2014 Trusted Execution Environments / Intel SGX LAB

Systems and Internet Infrastructure Security (SIIS) Laboratory 13

PENNSTATE

Intel Software Guard Ext S

SGX Memory Access Control

= Access control in two direction

" From enclaves to “outside”

= |solating malicious enclaves
" Enclaves needs some means to communicate with the outside
world, e.g., their “host applications”
" From “outside” to enclaves

" Enclave memory must be protected from
= Applications
* Privileged software (OS/VMM)
= QOther enclaves

OS: Operating System
VMM: Virtual Machine Monitor (also known as Hypervisor)

SYSTEM
SECURITY ‘- '
A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 14, Lecture Embedded System Security, SS 2014 Trusted Execution Environments / Intel SGX LAB

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

PENNSTATE

Intel Software Guard Ext S

SGX MAC from enclaves to “outside”

= From enclaves to “outside”

= All memory access has to conform to segmentation and
paging policies by the OS/VMM
= Enclaves cannot manipulate those policies, only unprivileged
instructions inside an enclave
= Code fetches from inside an enclave to a linear address
outside that enclave will results in a #GP(0) exception

MAC: Memory Access Control
#GP(0): General Protection Fault

SYSTEM ‘
SECURITY -
A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 15, Lecture Embedded System Security, SS 2014 Trusted Execution Environments / Intel SGX LAB

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

PENNSTATE

Intel Software Guard Ext S

SGX MAC “outside” to enclaves

= From “outside” to enclaves

= Non-enclave accesses to EPC memory results in abort page
semantics

= Direct jumps from outside to any linear address that maps
to an enclave do not enable enclave mode and result in a
about page semantics and undefined behavior

= Hardware detects and prevents enclave accesses using
logical-to-linear address translations which are different
than the original direct EA used to allocate the page.
Detection of modified translation results in #GP(0)

MAC: Memory Access Control
EA: Enclave Access
#GP(0): General Protection Fault

SYSTEM ‘
SECURITY -
A.-R. Sadeghi ©OTU Darmstadt, 2007-2014 Slide Nr. 16, Lecture Embedded System Security, SS 2014 Trusted Execution Environments / Intel SGX LAB

Systems and Internet Infrastructure Security (SIIS) Laboratory 16

PENNSTATE

Intel Software Guard Ext o

SGX — Create Enclave

.,_

=C

O
"

5
20

g
;9
o

,
¥

- e e e e e e e e e e

\ Loader) \ Enclave) User space ,

- es ey

\ -SK/F:K_ o J Hardware J
1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

l Trusted JL Untrusted J

A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 19, Lecture Embedded System Security, SS 2014 Trusted Execution Environments / Intel SGX

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

PENNSTATE

Intel Software Guard Ext o

,— =TT TN
|
I \
I |
I |
I |
I |
| |
I |
I |
| ! |
| ! |
I ! '
l ' User space |’
| | _
i | gl lamglamglamgPanglanglangPangPngPnglnglmg g g RV
! ! |
I Client ' I
| ! |
| | . |
| Q | Operating system ,
| I TS S T
l oy l y -
| I
\ _Sf/liK- ! | | W ©) I Hardware ‘
1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader
4. Create enclave 5. Allocate enclave pages

k Trusted ‘ E Untrusted ‘
A.-R.Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 20, Lecture Embedded System Security, SS 2014 Trusted Execution Environments / Intel SGX

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Intel Software Guard Ext o

Client

SGX — Create Enclave

- e - e e Ee e e

\
- e en e e e en e e e e er e e e

SK/PK

A.-R.Sadeghi ©TU Darmstadt, 2007-2014

} |W @ﬁ; I Hardware ‘

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader
4. Create enclave 5. Allocate enclave pages

Slide Nr. 21, Lecture Embedded System Security, SS 2014

6. Load & Measure App 7. Validate certificate and enclave integrity

I e R

User space ,

[Trusted “ Untrusted ‘

Trusted Execution Environments / Intel SGX

Systems and Internet Infrastructure Security (SIIS) Laboratory

Page 19

PENNSTATE

Intel Software Guard Ext o

‘ SGX — Create Enclave

{ ~
| \
| \
| I
| I
| I
| I
| I
| I
| I
0 | |
I I I
| | |
l ! User space '
| -
0 | _-::::::::::::::::::::::::_\
! : |
! : !
I : I
:) Operating system |
0 | I
i | \
| 7]
X SK/PK— k I W ©) C=] Hardware J
1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

4. Create enclave 5. Allocate enclave pages 6. Load & Measure App 7. Validate certificate and enclave integrity

8. Generate enclave Kkey 9. Protect enclave L Trusted J L Untrusted J

A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 22, Lecture Embedded System Security, SS 2014 Trusted Execution Environments / Intel SGX

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20

PENNSTATE
A Problem =

e My computer is running a process

e |t makes a request to your computer
» Asks for some secret data to process

» Provides an input you depend on
e How do you know it is executing correctly?

e Example
» ATM machine is uploading a transaction to the bank

» How does the bank know that this ATM is running
correctly, so the transaction can be considered legal?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

: - PENNSTATE
Question You Might Ask? =

e Who owns the remote computer?

» Does this tell you whether the computer has malware!?

e Is the computer protected from ever running
malware?

» How would we know this?

e What is actually running on the computer?

» How can get this infformation securely?

e Would any of these things enable you to determine
whether to supply your personal information to the
remote computer?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

PENNSTATE

What would you do? S

e Proof by authority (Certificates)
» Validate the source of messages from the remote system
» Tells you who and what (maybe), but how
e Constrain the system (Secure Boot)
» Remote system boots using only trusted software
» Is only running if secure
e Inspect the runtime state (Authenticated Boot)
» Remote system produces record of software run

» You validate whether you trust the software

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23

PENNSTATE

Secure Boot e

e Why not just boot from a floppy (DVD now)?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24

PENNSTATE

Secure Boot e

e Check each stage in the boot process
» Is code that you are going to load acceptable!?
» If not, terminate the boot process

e Must establish a Root-of-Trust

» A component trusted to speak for the correctness of
others

» Assumed to be correct because errors are
undetectable

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

AE G | S PENN%TE

e AEGIS architecture (1997)
» ROM checks the BIOS
» BIOS checks expansion ROMs and boot block

» Boot Loader checks the OS
e What is the root of trust!?
e What can it verify?

e How do we know it booted securely?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Authenticated Boot =

e Secure boot enforces requirements and uses special
hardware to ensure a specific system is booted

» Implied verification (Good because it is)

e By contrast, we can measure each stage and have
a verifier authenticate the correctness of the
stage

» Verifier must know how to verify correctness

» Behavior is uncertain until verification

e What is root-of-trust for authenticated boot!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

PENNSTATE

Secure v Authenticated Boot =

e Odd implications of each

e Secure boot enables you to tell if your machine is
secure

» But remote parties cannot tell

e Authenticated boot enables remote parties to tell if
your machine is secure

» But you cannot tell by using it yourself

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

PENNSTATE

Trusted Computing =

e The Trusted Platform Module (TPM) brought
authenticated boot into the mainstream

e Essentially, the TPM offers few primitives

» Measurement, cryptography, key generation, PRNG
» Controlled by physical presence of the machine

» BIOS is Core Root of Trust for Measurement (CRTM)

e Spec only discussed how to measure early boot
phases and general userspace measurements

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Trusted Computing =

Trusted Computing Group Architecture

Execution Measurement
Flow Flow

O Application A
code : TCG-based

Integrity Measurement Architecture

_@ CQ code _A—
@ : Defined by Grub
e oc~ T . (IBM Tokyo Research Lab)

Defined by TCG

(Platform specific) j
0-7 4-7 >=8

T8B + Roots of Trust

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

Trusted Computing NN

Example: Web Server

= Executables
(Program & Libraries)

apachectrl, httpd, java, ..

mod_ssl.so, mod_auth.so,
mod_cgi.so,..

libc-2.3.2.s0 libjvm.so, libjava.so, ...

= Configuration Files
— httpd.conf, html-pages,

— httpd-startup, catalina.sh, servlet.jar

» Unstructured Input
— HTTP-Requests

— Management Data

Systems and Internet Infrastructure Security (SIIS) Laboratory

e What would you measure in the following system to
prove it is running correctly to remote verifiers!?

httpd.conf
java.security
java.classes

apachectrl, httpd
catalina.sh, java,
startup.sh

e100.ko

Linux 2.6.7 System Kernel

Linux GRUB Bootstrap Loader

Basic Input Output System

Page 31

PENNSTATE

Trusted Computing S

e How would you measure code and static files to
prove system is running correctly to remote verifiers!?

Measurement ‘

6HA1 (Boot Process) \

SHA1(Kernel)
ll SHA1(Kernel Modules)
SHA1(Program)
SHA1(Libraries)

SHA1(Configurations)
SHA1(Structured data)

Kernel \\)j

Process module

Boot-

Kernel

7 Signed TPM Aggregate System Representation

\ Known
Fingerprints

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

PENNSTAT

Linux Integrity Measurement -

Measurement list aggregation:

Compute 160bit-SHA1 over the contents of the data (measurement)

Adjust Protected hw Platform Configuration Register (PCR) to maintain
measurement list integrity value

Add measurement to ordered measurement list
- Executable content is recorded before it impacts the system

- That is, before it can corrupt the system

PCR,:=0 PCR, SHA1(PCR || new measurement) O

>
new measurement Measurement List

Integrity Value

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

PENNSTATE

IMA Implementation S

e Place hooks throughout Linux kernel

» Later added more general LIM hooks
e Extend TPM PCR at file load-time

» PCR =SHAI((File || PCR)
o Extend kernel-stored measurement list

» List of SHAI hashes taken by kernel

» Including those requested by user space applications
e Generate attestation using TPM hardware

» S(K1pmy PCR+NONCE)

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Intel Software Guard Ext o

SGX — Remote Attestation

|
|
i '
! & i 0
¢ @ nonce ||
A
|
|
|
|
\ Enclave Quoti Enclav User space /
7

- e e e er e
- e e er e

\
|
|

. |

Operating system ,

-—ee e e er e o

\

1. Verifier sends nonce 2. Generate Report = (HASH(Enclavel), ID-QuotingEnclave, nonce)

L Trusted “ Untrusted J

A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 33, Lecture Embedded System Security, SS 2014 Trusted Execution Environments

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 37

PENNSTATE

Intel Software Guard Ext o

SGX — Remote Attestation

g (Mnonce |

User space /

-eee -
-een e

\
|
|

Operating system ,'

-een e

1. Verifier sends nonce 2. Generate Report = (HASH(Enclavel), ID-QuotingEnclave, nonce)
3. Pass Report to Quoting Enclave

{ Trusted JL Untrusted J

A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 34, Lecture Embedded System Security, SS 2014 Trusted Execution Environments

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 38

PENNSTATE

Intel Software Guard Ext o

SGX — Remote Attestation

(\- ‘
Q (MDnonce |

User space /

- e -
- e er e er e - e

\
]
!

. !

Operating system ,

1. Verifier sends nonce 2. Generate Report = (HASH(Enclavel), ID-QuotingEnclave, nonce)
3. Pass Report to Quoting Enclave 4. Quoting Enclave verifies Report 5. Signs Report with “Platform Key”

6. Signed Report is send to verifier l Trusted J t Untrusted J

A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 35, Lecture Embedded System Security, SS 2014 Trusted Execution Environments

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 39

PENNSTATE

Intel Software Guard Ext o

SGX — Remote Attestation

User space /

- e s
-— e e e en e en e e e e e e e e en e er e e e e e e e e e s e e

\
|
|
|
/

Operating system

1. Verifier sends nonce 2. Generate Report = (HASH(Enclavel), ID-QuotingEnclave, nonce)
3. Pass Report to Quoting Enclave 4. Quoting Enclave verifies Report 5. Signs Report with “Platform Key”

6. Signed Report is send to verifier L Trusted J t Untrusted J

A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Slide Nr. 36, Lecture Embedded System Security, SS 2014 Trusted Execution Environments

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 40

PENNSTATE

Take Away =

e Problem: Do not want to trust systems software

» ldea: Cloak memory from system software

e Overshadow — Virtualization-based implementation of
cloaking

e Intel SGX

» Hardware-based memory cloaking

» Hardware-based attestation to prove properties

e VC3 — Application of Intel SGX for cloud computing

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 41

