
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

Advanced Systems Security:�
Intel SGX

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 2

Remaining Problems

•  Deploying a custom OS is painful

‣  Building a special kernel is non-trivial

•  And it may not be secure itself

‣  Still need a methodology to determine code correctness
and tamperproofing

•  What if you want to eliminate trust in the OS
altogether?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Insight: Shadowing Memory

•  VMMs need to manage physical to virtual mapping of
memory

•  This is done with a shadow page table

•  Multi-shadowing give context-aware views of this
memory

‣  Use encryption instead

3

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Memory Cloaking

•  Not new idea

‣  XOM, LT

•  Encrypt the pages in memory

‣  For each page, (IV, H) meta data

‣  What should the “secure hash” be?

•  OS can operate on encrypted
pages

‣  But can’t read them

5

5.1 Shim Overview
The shim is responsible for managing transitions between the
cloaked application and the operating system. It uses an explicit
hypercall interface for interacting with the VMM, i.e., a secure
communication mechanism between the guest and the VMM. This
arrangement allows relatively complex operations, such as OS-
specific system call proxying, to be located in user-mode shim
code, instead of the VMM. It also facilitates extensibility, provid-
ing a convenient place to add custom or OS-specific functionality
without modifying the VMM.
Shim Memory. In memory, the shim consists of both cloaked and
uncloaked regions, each with its own distinct code, data and stack
space. Each application thread has its own shim instance, and all
thread-specific data used by the shim is kept in thread-local storage,
preventing conflicts between different instances.

The cloaked shim is multi-shadowed like the rest of the appli-
cation. It is responsible for tasks where trust is required to maintain
protection, such as providing well-defined entry and exit points for
control transfers, and moving data between cloaked and uncloaked
memory securely. The cloaked shim also includes a cloaked thread
context (CTC) page, which is set aside for the VMM to store sen-
sitive data used for control transfers. This includes areas for saving
register contents, a table of entry points to shim functions, and the
identity of the shadow context containing the shim.

The uncloaked shim contains buffer space that provides a neu-
tral area for the kernel and application to exchange uncloaked data.
It also contains simple trampoline code to facilitate transitions from
the kernel to cloaked code. Nothing in the uncloaked shim is trusted
or necessary for protection. If its code or data is corrupted, it will
merely cause the application to crash.
Hypercall Interface. The VMM exports a small hypercall inter-
face to the shim. Uncloaked code is allowed to invoke operations
to initialize a new cloaked context (used to bootstrap). It can also
make calls to enter and resume cloaked execution. Since control
can be transferred only to an existing cloaked context, these calls
can be initiated safely by untrusted code. Cloaked code can make
hypercalls to cloak new memory regions, unseal existing cloaked
data, create new shadow contexts, and access other useful inter-
faces, such as metadata cache operations.
Loading Cloaked Applications. To start a cloaked application, a
minimal loader program is run with the shim linked into a distinct
portion of its address space. The actual loader is part of the shim;
before taking steps to load the program, the shim must bootstrap
into a cloaked context.

To create a new shadow context, the shim issues a hypercall
with a pointer to itself and protection metadata containing hashes
for all pages associated with cloaked code and data; see Section 7
for details. The VMM uses this metadata to verify its integrity,
as the cloaked shim will have access to the address space of the
cloaked application. Thus, to bootstrap a secure protection domain
for the application, the shim must be trusted; i.e., not malicious to
the application. The call to create a new context also takes a pointer
to a portion of thread-local storage in which the VMM can setup a
new CTC. Once this setup is complete, the VMM transfers control
to start execution in the cloaked shim.

The cloaked shim then runs its loading routine, which reads
the application binary, and maps appropriate sections into memory.
When creating anonymous memory regions or memory-mapping
protected files, the shim performs hypercalls to cloak their corre-
sponding virtual memory ranges. After the cloaked application has
been loaded, it may launch additional programs. On a subsequent
execve, if the target program is cloaked, the loader program is
prepended to the exec call so that the new program will also be
cloaked.

KERNEL
UNCLOAKED

VMM

2

UNCLOAKED
SHIM

SHIM
CLOAKED

APP
CLOAKED

1

4

3

5

Figure 3. Control Flow for Handling Faults and Interrupts

Identity Management. To switch between shadow page tables
appropriately, the VMM must employ some reliable procedure
for identifying shadow contexts uniquely. Precise identification
is challenging – contexts are associated with guest-level process
abstractions, and scheduling is controlled by the OS, not the VMM.
For example, the guest kernel may switch contexts while handling
a fault or system call.

Existing approaches for VMM tracking of guest-level pro-
cesses, such as monitoring assignments to the current page table
root in Antfarm [14], work fairly well, but are not foolproof. Other
schemes, such as accessing guest OS state at fixed kernel addresses
(e.g., Linux current pointer), or having the VMM store identify-
ing information at some fixed virtual address, are generally fragile,
or assume application pages can be pinned in physical memory.
Most importantly, these approaches cannot be guaranteed to work
in the presence of an adversarial OS. Overshadow takes an alterna-
tive shim-based approach that avoids these problems.

The VMM maintains a separate shadow context for each ap-
plication address space, for which it assigns a unique address
space identifier (ASID). Each address space may contain multiple
threads, each with its own distinct cloaked thread context. When the
shim begins execution, it makes a hypercall to initialize its CTC.
During this initialization, the VMM writes the ASID and a random
value into the CTC, and returns the ASID to the caller. The ASID
value is not protected, and can be used by the uncloaked shim.
However, since the CTC is cloaked, the random value is protected,
and cannot be read by the uncloaked shim.

Shim hypercalls that transition from uncloaked to cloaked exe-
cution are self-identifying. The uncloaked shim passes arguments
to the VMM containing its ASID, and the address of its CTC. The
hypercall handler verifies that the CTC contains the expected ran-
dom value, and also that its ASID matches the specified value. Note
that the CTC resides in ordinary, unpinned application virtual mem-
ory. If the hypercall handler finds that the GVPN for the CTC is not
currently mapped, it returns a failure code to the uncloaked shim,
which simply touches the page to fault it back into physical mem-
ory, and then retries the hypercall.

5.2 Faults and Interrupts
While a cloaked application is executing, OS intervention is re-
quired to service faults or interrupts, such as application page faults
and virtual timer interrupts. Figure 3 illustrates the flow of control
for handling a fault from a cloaked application, involving the ap-
plication, its associated shim, the guest kernel, and the VMM. The
procedure for handling a virtual interrupt is essentially identical.

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Tasks of the Overshadow

•  Mediate all application interaction with OS to ensure
correct cloaking of memory

‣  Context Identification

‣  Secure Control Transfer

‣  System Call Adaptation

‣  Mapping Cloaked Resources

‣  Managing Protection Metadata

6

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Shim baby Shim

•  The key to Overshadow is the Shim

‣  Manages transitions to and from VMM via a hypercall

•  Shim Memory protects application

‣  CTC protects control registers

•  Uncloaked Shim

‣  Neutral ground

‣  Trampoline!

7

Figure 2. Overshadow Architecture. The VMM enforces two vir-
tualization barriers (gray lines). One isolates the guest from the host, and
the other cryptographically isolates cloaked applications from the guest OS.
The shim cooperates with the VMM to interpose on all control flow between
the cloaked application and OS.

copy is still valid. If the (IV, H) had been discarded, it would not
be possible to decrypt the page after it is swapped back in.

Cloaking is compatible with copy-on-write (COW) techniques
for sharing identical pages within or between VMs. Plaintext pages
can be shared transparently, and page encryption handled like a
COW fault.

Virtual DMA. Cloaking is also compatible with virtual devices
that access guest memory using DMA. For example, suppose the
guest kernel performs disk I/O on a cloaked memory page via a
virtual SCSI adapter. For a disk read, the cloaked page contents are
already encrypted on disk, and the VMM simply permits the kernel
to issue a DMA request to read the page.

For a disk write, the action taken by the VMM depends on the
current state of the cloaked page. If the page is already encrypted,
the VMM allows the DMA to be performed directly. When the page
is in the plaintext read-only state, the VMM first encrypts the page
contents with its existing (IV, H) into a separate page that is used
for the DMA operation. Similarly, if the page is in the plaintext
read-write state, the VMM encrypts its contents into a separate page
used for the DMA operation. The cloaked page then transitions
to the read-only plaintext state, and is associated with the newly-
generated (IV, H). Note that in both plaintext states, the original
guest page is still accessible in plaintext form to the application,
since a transient encrypted copy is used during the actual DMA.

4. Overshadow Overview
Cloaking is a low-level primitive that protects the privacy and
integrity of individual memory pages. Overshadow leverages this
basic mechanism to cloak whole applications, cryptographically
isolating application resources from the operating system.

Figure 2 provides an overview of the Overshadow architecture.
A single VM is depicted, consisting of a guest OS together with
multiple applications, one of which is cloaked. The VMM enforces
a virtualization barrier between the cloaked application and the OS,
similar to the barrier it enforces between the guest OS and host
hardware. Overshadow introduces a shim into the address space
of the cloaked application, which cooperates with the VMM to
mediate all interactions with the OS.

Realizing the Overshadow design goal of whole-application
protection for unmodified applications running on unmodified com-

modity operating systems has proved challenging. In this section,
we describe several key challenges, sketch high-level solutions, and
explain where more complete technical details can be found in sub-
sequent sections.

Context Identification. The VMM must identify the guest con-
text accessing a cloaked resource precisely and securely, in order
to use the shadow page table with the correct GPPN-to-MPN view.
Section 5 explains how Overshadow leverages the shim to help
identify application contexts, without relying on an untrusted OS.

Secure Control Transfer. Applications must interact with the
OS to perform useful work, and need to be adapted for cloaked
execution. Overshadow performs this adaptation by injecting a
shim into the address space of each cloaked application. The VMM
cooperates with the shim to implement a transparent trampoline
that interposes on all control transfers between the application
and OS. The detailed mechanics of shim-based interposition for
interrupts, faults, and system calls are discussed in Section 5.

System Call Adaptation. Most system calls require only simple
argument marshalling between cloaked and uncloaked memory.
Others, such as file I/O operations, need more complex emulation.
For example, read and write system calls are implemented
using mmap for encrypted I/O. Section 6 explains how particular
system calls are adapted for cloaked execution.

Mapping Cloaked Resources. Overshadow must track the cor-
respondence between application virtual addresses and cloaked re-
sources. The shim is responsible for keeping a complete list of map-
pings, which is cached by the VMM. The shim resides in the same
guest virtual address as the application, and interposes on all calls
that modify it, such as mmap and mremap. A more detailed dis-
cussion is presented in Section 7.

Managing Protection Metadata. The VMM must maintain pro-
tection metadata, such as (IV, H) pairs, for each encrypted page, to
ensure privacy and integrity. For active mappings, the VMM main-
tains an in-memory metadata cache that is not accessible to the
guest. Metadata associated with persistent cloaked resources, such
as file-backed memory regions, is stored securely within the guest
filesystem. Section 7 contains a detailed treatment of Overshadow
metadata management.

5. OS Integration with Cloaking
The VMM interposes on transitions between the cloaked user-mode
application and the guest kernel, using distinct shadow page tables
for each. Privilege-mode transitions include asynchronous inter-
rupts, faults, and signals, and system calls issued by the cloaked
application. Mediating these interactions in a secure, backwards-
compatible manner requires adapting the protocols used to interact
with the operating system, as well as some system calls. This is fa-
cilitated by a small shim that is loaded into a cloaked application’s
address space on startup.

We describe the shim in the context of our Linux implementa-
tion, although we believe this approach could be applied to other
operating systems, including Microsoft Windows. While the sys-
tem call interface varies across kernels, low-level mechanisms for
system call vectoring, fault handling, and memory sharing are tied
more closely to the processor architecture than to a particular OS.

We begin by discussing the basic operation of the shim, how
it helps the VMM manage identity, and its interaction with the
kernel and VMM to adapt the application for cloaked execution.
Support for handling faults, interrupts, and system calls is presented
in detail. A discussion of how particular system calls are mediated
is deferred until the next section.

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Loading Applications

•  The Shim uses a Loader program

•  Sets up the cloaked memory with a hypercall

•  The loader / shim must be trusted

‣  Metadata on the CTC checks for compromise

‣  Here is the meat of the problem

•  Is it even used?

•  Propagate shims to spawned applications

8

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Its not that easy…

•  Lot of OS interfaces that must be handled

•  Faults / Interrupts

•  System Calls

‣  Pass control to the VMM

‣  The shim catches this and stores registers

•  Clear the registers to prevent side channels

9

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Complex Syscalls

•  Some syscalls are easy

‣  No side effects

‣  Nice, getpid, sync

•  Others, less so…

‣  Pipe, r/w (kernel sees zero data, VMM needs to fix)

‣  Clone – must keep cloaked cloaked

‣  Fork

‣  Signal Handling – cannot signal cloaked code arbitrarily, so
VMM must signal shim

10

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Performance

•  Microbenchmarks

‣  Not so hot 15-60%

‣  Although a lot better than Proxos

•  Application Benchmarks

‣  SPEC isn’t so bad

‣  High bandwidth hits some bottlenecks

‣  Why?

11

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 12

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 2, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� Security critical code isolated in
enclave

� Only CPU is trusted
� Transparent memory encryption
� 18 new instructions

� Enclaves cannot harm the system
� Only unprivileged code (CPU ring3)
� Memory protection

� Designed for Multi-Core systems
� Multi-threaded execution of enclaves
� Parallel execution of enclaves and

untrusted code
� Enclaves are interruptible

� Programming Reference available

Intel® Software Guard Extensions (SGX)

APP2

Hardware

APP1 Enclave
Security
Service

Operating System

CPU SGX

Trusted Untrusted

[McKeen et al, Hoekstra et al., Anati et al., HASP’13]

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 13

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 3, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� Enclaves are isolated memory regions of code and
data

� One part of physical memory (RAM) is reserved for
enclaves
� It is called Enclave Page Cache (EPC)
� EPC memory is encrypted in the main memory (RAM)

� Trusted hardware consists of the CPU-Die only

� EPC is managed by OS/VMM

SGX Enclaves

RAM: Random Access Memory
OS: Operating System
VMM: Virtual Machine Monitor (also known as Hypervisor)

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 14

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 14, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� Access control in two direction
� From enclaves to “outside“

� Isolating malicious enclaves
� Enclaves needs some means to communicate with the outside

world, e.g., their “host applications”

� From “outside“ to enclaves
� Enclave memory must be protected from

� Applications
� Privileged software (OS/VMM)
� Other enclaves

SGX Memory Access Control

OS: Operating System
VMM: Virtual Machine Monitor (also known as Hypervisor)

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 15

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 15, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� From enclaves to “outside“
� All memory access has to conform to segmentation and

paging policies by the OS/VMM
� Enclaves cannot manipulate those policies, only unprivileged

instructions inside an enclave

� Code fetches from inside an enclave to a linear address
outside that enclave will results in a #GP(0) exception

SGX MAC from enclaves to “outside“

MAC: Memory Access Control
#GP(0): General Protection Fault

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 16

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 16, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

� From “outside“ to enclaves
� Non-enclave accesses to EPC memory results in abort page

semantics

� Direct jumps from outside to any linear address that maps
to an enclave do not enable enclave mode and result in a
about page semantics and undefined behavior

� Hardware detects and prevents enclave accesses using
logical-to-linear address translations which are different
than the original direct EA used to allocate the page.
Detection of modified translation results in #GP(0)

SGX MAC “outside” to enclaves

MAC: Memory Access Control
EA: Enclave Access
#GP(0): General Protection Fault

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 17

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 19, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX – Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

1

2

3

Client

SK/PK

Trusted Untrusted

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 18

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 20, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX – Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

5. Allocate enclave pages

1

2

3

4

4. Create enclave

5

7

Client

SK/PK

Trusted Untrusted

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 19

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 21, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX – Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

5. Allocate enclave pages 6. Load & Measure App 7. Validate certificate and enclave integrity

1

2

3

4

4. Create enclave

6

5

7

Client

SK/PK

Trusted Untrusted

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 20

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 22, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

Hardware

SGX – Create Enclave

1. Create App 2. Create app certificate (includes HASH(App) and Client PK) 3. Upload App to Loader

SGX

User space

Operating system
SGX

driver

5 Enclave Loader

5. Allocate enclave pages 6. Load & Measure App 7. Validate certificate and enclave integrity

1

2

3

4

4. Create enclave

6

5

8. Generate enclave K key

7

9. Protect enclave

8
K

Client

SK/PK

Trusted Untrusted

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 21

A Problem

•  My computer is running a process

•  It makes a request to your computer

‣  Asks for some secret data to process

‣  Provides an input you depend on

•  How do you know it is executing correctly?

•  Example

‣  ATM machine is uploading a transaction to the bank

‣  How does the bank know that this ATM is running
correctly, so the transaction can be considered legal?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Question You Might Ask?

•  Who owns the remote computer?

‣  Does this tell you whether the computer has malware?

•  Is the computer protected from ever running
malware?

‣  How would we know this?

•  What is actually running on the computer?

‣  How can get this information securely?

•  Would any of these things enable you to determine
whether to supply your personal information to the
remote computer?

22

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

What would you do?

•  Proof by authority (Certificates)

‣  Validate the source of messages from the remote system

‣  Tells you who and what (maybe), but how

•  Constrain the system (Secure Boot)

‣  Remote system boots using only trusted software

‣  Is only running if secure

•  Inspect the runtime state (Authenticated Boot)

‣  Remote system produces record of software run

‣  You validate whether you trust the software

23

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 24

Secure Boot

•  Why not just boot from a floppy (DVD now)?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 25

Secure Boot

•  Check each stage in the boot process

‣  Is code that you are going to load acceptable?

‣  If not, terminate the boot process

•  Must establish a Root-of-Trust

‣  A component trusted to speak for the correctness of
others

‣  Assumed to be correct because errors are
undetectable

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

AEGIS

•  AEGIS architecture (1997)

‣  ROM checks the BIOS

‣  BIOS checks expansion ROMs and boot block

‣  Boot Loader checks the OS

•  What is the root of trust?

•  What can it verify?

•  How do we know it booted securely?

26

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 27

Authenticated Boot

•  Secure boot enforces requirements and uses special

hardware to ensure a specific system is booted

‣  Implied verification (Good because it is)

•  By contrast, we can measure each stage and have
a verifier authenticate the correctness of the
stage

‣  Verifier must know how to verify correctness

‣  Behavior is uncertain until verification

•  What is root-of-trust for authenticated boot?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 28

Secure v Authenticated Boot

•  Odd implications of each

•  Secure boot enables you to tell if your machine is
secure

‣  But remote parties cannot tell

•  Authenticated boot enables remote parties to tell if
your machine is secure

‣  But you cannot tell by using it yourself

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Trusted Computing

•  The Trusted Platform Module (TPM) brought
authenticated boot into the mainstream

•  Essentially, the TPM offers few primitives

‣  Measurement, cryptography, key generation, PRNG

‣  Controlled by physical presence of the machine

‣  BIOS is Core Root of Trust for Measurement (CRTM)

•  Spec only discussed how to measure early boot
phases and general userspace measurements

29

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Trusted Computing

•  The Trusted Platform Module (TPM) brought
authenticated boot into the main stream

•  Essentially, the TPM offers few primitives

‣  Measurement, cryptography, key generation, PRNG

‣  Controlled by physical presence of the machine

‣  BIOS is Core Root of Trust for Measurement (CRTM)

•  Spec only discussed how to measure early boot
phases and general userspace measurements

30

•  IBM logo must not
be moved, added

to, or altered in
any way.

•  Background should
not be modified,

except for quotes,
which use gray
background.

•  Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

blue R204 | G204 | B255

green R223 | G255 | B102

Recommended maximum

•  Copyright: 10pt Arial
Regular, white

Template release: Oct 02

For the latest, go to http://w3.ibm.com/ibm/presentations

Thomas J. Watson Research Center

TCG-based Integrity Measurement Architecture | Usenix Security Symposium 2004 © 2004 IBM Corporation

Optional slide number:
10pt Arial Bold, white

Indications in black = Optional elements

4

Trusted Computing Group Architecture

Execution

Flow

 Measurement

Flow

 Defined by TCG

(Platform specific)

 Defined by Grub

(IBM Tokyo Research Lab)

Platform Configuration Registers 0-23

 TCG-based

Integrity Measurement Architecture

0-7 4-7 >= 8

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Trusted Computing

•  What would you measure in the following system to
prove it is running correctly to remote verifiers?

31

•  IBM logo must not
be moved, added

to, or altered in
any way.

•  Background should
not be modified,

except for quotes,
which use gray
background.

•  Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

blue R204 | G204 | B255

green R223 | G255 | B102

Recommended maximum

•  Copyright: 10pt Arial
Regular, white

Template release: Oct 02

For the latest, go to http://w3.ibm.com/ibm/presentations

Thomas J. Watson Research Center

TCG-based Integrity Measurement Architecture | Usenix Security Symposium 2004 © 2004 IBM Corporation

Optional slide number:
10pt Arial Bold, white

Indications in black = Optional elements

7

Example: Web Server

  Executables
(Program & Libraries)

–  apachectrl, httpd, java, ..

–  mod_ssl.so, mod_auth.so,
mod_cgi.so,..

–  libc-2.3.2.so libjvm.so, libjava.so, …

  Configuration Files

–  httpd.conf, html-pages,

–  httpd-startup, catalina.sh, servlet.jar

  Unstructured Input

–  HTTP-Requests

–  Management Data

Basic Input Output System

Linux GRUB Bootstrap Loader

Linux 2.6.7 System Kernel

e100.ko
…

autofs.ko

 httpd.conf

java.security

java.classes

 apachectrl, httpd

catalina.sh, java,

startup.sh

 Libraries

Module

 User & File I/O

IPC

Network I/O

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Trusted Computing

•  How would you measure code and static files to
prove system is running correctly to remote verifiers?

32

•  IBM logo must not
be moved, added

to, or altered in
any way.

•  Background should
not be modified,

except for quotes,
which use gray
background.

•  Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

blue R204 | G204 | B255

green R223 | G255 | B102

Recommended maximum

•  Copyright: 10pt Arial
Regular, white

Template release: Oct 02

For the latest, go to http://w3.ibm.com/ibm/presentations

Thomas J. Watson Research Center

TCG-based Integrity Measurement Architecture | Usenix Security Symposium 2004 © 2004 IBM Corporation

Optional slide number:
10pt Arial Bold, white

Indications in black = Optional elements

5

Integrity Measurement Architecture – Solution

Analysis

System-Representation
Signed TPM Aggregate

 SHA1(Boot Process)

SHA1(Kernel)
SHA1(Kernel Modules)

SHA1(Program)

SHA1(Libraries)

SHA1(Configurations)

SHA1(Structured data)
…

Measurement

System Properties

 ext. Information

(CERT,…)

 Known

Fingerprints

Attested System

 Program

 Kernel Kernel
module

 Config

data

 Boot-
Process

 Data

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Linux Integrity Measurement

•  How would you measure the following system to
prove it is running correctly to remote verifiers?

33

•  IBM logo must not
be moved, added

to, or altered in
any way.

•  Background should
not be modified,

except for quotes,
which use gray
background.

•  Title/subtitle/confidentiality line: 10pt Arial Regular, white
Maximum length: 1 line

blue R204 | G204 | B255

green R223 | G255 | B102

Recommended maximum

•  Copyright: 10pt Arial
Regular, white

Template release: Oct 02

For the latest, go to http://w3.ibm.com/ibm/presentations

Thomas J. Watson Research Center

TCG-based Integrity Measurement Architecture | Usenix Security Symposium 2004 © 2004 IBM Corporation

Optional slide number:
10pt Arial Bold, white

Indications in black = Optional elements

9

PCRk+1

 Measurement List

Integrity Value

PCR0:=0

System-

start
k k+1

PCRk

IMA Implementation – Measurement List Maintenance

Measurement list aggregation:

  Compute 160bit-SHA1 over the contents of the data (measurement)

  Adjust Protected hw Platform Configuration Register (PCR) to maintain
measurement list integrity value

  Add measurement to ordered measurement list

  Executable content is recorded before it impacts the system

  That is, before it can corrupt the system

SHA1(PCRk || new measurement)

new measurement

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

IMA Implementation

•  Place hooks throughout Linux kernel

‣  Later added more general LIM hooks

•  Extend TPM PCR at file load-time

‣  PCR = SHA1(File || PCR)

•  Extend kernel-stored measurement list

‣  List of SHA1 hashes taken by kernel

‣  Including those requested by user space applications

•  Generate attestation using TPM hardware

‣  S(K-
TPM, PCR+nonce)

34

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 37

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 33, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

SGX – Remote Attestation

Trusted Untrusted

1. Verifier sends nonce 2. Generate Report = (HASH(Enclave1), ID-QuotingEnclave, nonce)

SGX

User space

Operating system

Quoting Enclave Enclave1

nonce 1

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 38

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 34, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

SGX – Remote Attestation

Trusted Untrusted

1. Verifier sends nonce

3. Pass Report to Quoting Enclave

2. Generate Report = (HASH(Enclave1), ID-QuotingEnclave, nonce)

SGX

User space

Operating system

Quoting Enclave Enclave1

nonce 1

2

3

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 39

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 35, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

SGX – Remote Attestation

Trusted Untrusted

1. Verifier sends nonce

6. Signed Report is send to verifier

3. Pass Report to Quoting Enclave

2. Generate Report = (HASH(Enclave1), ID-QuotingEnclave, nonce)

4. Quoting Enclave verifies Report

SGX

User space

Operating system

Quoting Enclave Enclave1

nonce

5. Signs Report with “Platform Key”

1

2

3

4/5

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 40

Intel Software Guard Ext

•  What if we only want to run one high-integrity user-

process?

SYSTEM
SECURITY
LAB Slide Nr. 36, Lecture Embedded System Security, SS 2014 A.-R. Sadeghi ©TU Darmstadt, 2007-2014 Trusted Execution Environments / Intel SGX

SGX – Remote Attestation

Trusted Untrusted

1. Verifier sends nonce

6. Signed Report is send to verifier

3. Pass Report to Quoting Enclave

2. Generate Report = (HASH(Enclave1), ID-QuotingEnclave, nonce)

4. Quoting Enclave verifies Report

SGX

User space

Operating system

Quoting Enclave Enclave1

nonce

5. Signs Report with “Platform Key”

1

2

3

4/5

6

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 41

Take Away

•  Problem: Do not want to trust systems software

‣  Idea: Cloak memory from system software

•  Overshadow – Virtualization-based implementation of
cloaking

•  Intel SGX

‣  Hardware-based memory cloaking

‣  Hardware-based attestation to prove properties

•  VC3 – Application of Intel SGX for cloud computing

