\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

Advanced Systems Security:
Security Kernels

Trent Jaeger
Systems and Internet Infrastructure Security (S11S) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory

Multics circa 1976 PENNSTATE

e Final research report
» Slower than desired
» Bigger than desired
» Expensive ($7/M)

» Low market share

» UNIX winning mindshare

e Next generation systems?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Two Directions g

e Focus on Generality and
Performance

» Limited security
» Focus: UNIX
» Put us in our current state
e Focus on “verifiable” security

» Security kernels

» Lots of systems

e KSOS, PSOS, Secure LAN, Secure Ada
Target, various guard systems

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3

MITRE Project g

e Started in 1974

» OS in 20 subroutines

e Less than 1000 lines of code

» System to manage physical resources

e What are the advantages of such an
approach?

MIIRE

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Security Kernel =

e Goals
e (1) Implement a specific security policy

e (2) Define a verifiable protection behavior of the system
as a whole (reference monitor)

e (3) Must be shown to be faithful to the security model’s
design (reference monitor enforces policy)

e Recommend a special issue

» |EEE Computer, 16(7), July 1983

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Verification S

e Became the focus of the approach
» Verify that the implementation is faithful to the model

» Which supports a specific security policy

e What are the formal limits of verification?

e What is it going to take in this case?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

|_Zhve)

e Secure Communications Processor (Scomp)

Scomp Kernel Interface Package (6.2.4)

R Py
Applications (6.2.5) (Libraries)

Ring 3 (untrusted)

Scomp Kernel Interface Package (6.2.4)

— L Ring 2 (trusted)
(Trusted Functions) =

Scomp Trusted Scomp Trusted Operating System (6.2.3)

Computing Base {Scomp Trusted Software) Ring 1 (trusted)

Scomp Trusted Operating System (6.2.3)

{Security Kernel) Ring 0 (trusted)

Scomp Hardware (6.2.2)

Figure 6.1: The Scom tem architecture consists of hardware security mechanisms, the S Trusted

ted com

uting base consists of code in rings 0 to 2, so the SKIP libraries are not trusted.

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

|_Zhve)

o Like Multics

e Access is control via segments
» Memory segments and I/O segments

» Files are defined at a higher level
e Security Goals

» Secrecy: MLS

» Integrity: Ring brackets

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

|_Zhve)

e Unlike Multics

e Mediation on Segments

» All access control and rings are implemented in hardware
e Formal verification

» Verify that a formal model enforces the MLS policy

» Trusted software outside the kernel is verified using a
procedural specification

e Separate kernel from system API functions

» In different rings (e.g., for file access)

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Scomp Hardware =

Security 1O Controller Memory
CPU Protection
Meadule

Virtual
Memory |4——»>
Ul":h

CPU
Bus
Logic

/O Bus

Figure 6.2: The Scomp secursty protection module (SPM) mediates all accesses 1o 'O controlless and

memory by mediating the I/O bus. The SPM also translates virtual addresses to physical segment addresses

for authorization.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 10

PENNSTATE

Scomp Drivers =

e |/O Device Drivers in Scomp can be run in user-space
e Why can’t we do that in a normal OS!?

e How can we do that in Scomp!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

Scomp OS PENNS%TE

e Whole thing is called Scomp Trusted Operating
Program (STOP)

» Lives on in BEA Systems XTS-400

e Security Kernel in ring 0

» Provides “memory management, process scheduling,
interrupt management, auditing, and reference monitoring
functions”

» In 0K lines of Pascal

» Ring transitions controlled by 38 gates (APIs)

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Trusted Software =

e Officially part of STOP

» But runs outside ring 0
e Software trusted to with system security goals

» Like process loader

e System policy management and use

» Such as authentication services

e 23 such processes, consisting of | IK lines of C code

» All interaction requires a trusted path

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

PENNSTATE

Scomp Kernel Interface S

e Like a system call interface for user processes

» Trusted operations on user-level objects (e.g., files,
processes, and |/O)

» Still trusted not to violate MLS requirements

e Is accessible via a SKIP library

» But that library runs in user space (ring 3)

» Like libc and POSIX API...

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

PENNSTATE

Scomp Applications =

e May also be MLS-Trusted Applications
e Mail Guard

» Makes sure that secrets are not leaked in communications
to less secret subjects

» Mail guard obtains labeled communications

e Has ad hoc filters to prevent leakage

e Why is Scomp appropriate to support such an
application?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

PENNSTATE

Scomp Evaluation S

o Complete Mediation: Correct!?
» In hardware
» In Trusted programs? In Mail guards!?
o Complete Mediation: Comprehensive!
» At segment level
» For files? For mail data? For DMA operations!?
o Complete Mediation: Verified!

» Hardware! Kernel? Trusted programs! Mail guards!?

stems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Scomp Evaluation S

e Tamperproof:. Reference Monitor?

» In hardware, in kernel, in guard
e Tamperproof:. TCB!/

» TCB is well-defined in rings, and protected by gates
e Verify: Code!

» Performed verification on implementation using semi-automated
methods

» Led to assurance criteria and approach
e Verify: Policy!

» MLS is security goal; Integrity is more difficult

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

PENNSTATE

Scomp Challenges =

e Why don’t we all use Scomp-based systems now!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

GEMSOS %

e Similar system goals to Scomp

o Built for the ‘new’ x86 processor

Processor Ring # GEMSOS Ring #

Ring 3 Ring 7
B

Applications

Ring 1 Ring 2

System-Specific Trusted Code
Ring 1

Ring 0 Kemel Gate Library

GEMSOS Security Kernel Ring 0

Hardware (e.g., Intel x88)

Figure 6.3: GEMSOS consists of a security kernel, gate library, and a layer of trusted software that
3 dependent on the deployed system. GEMSOS uses a software-based ring mechanism to simulate 8

protection rings.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 19

GEMSOS g

e Also, is still around
Applications

4 Aesec CcoO rpo ration Gate Layer '

Process Manager (PM) Process
Upper Device Manager (UDM) Local
Segment Manager (SM))

Memory Manager (MM)
Inner Device Manager (IDM)

Secondary Storage Manager (SSM) \
o Eve ntu al Iy’ U N IX (PO S IX) Non-Discretionary Security Manager (NDSM) | Kernel

Kernel Device Layer (KDL) Global

PY Fi n e _g rai n e d ke rn e I d e S ign Upper Traffic Controller (UTC) | ?
L

o Inner Traffic Controller (ITC) \
e m u I atl O n Core Manager (CM) \
Intessegment Linkage Layer (SG) \
System Library (SL) I}
Hardware

e File system is inside the security |
kernel

igrure 6.4: GEMSOS Security Kernel Layers

» Kernel and trusted software
depends on data layout in files

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20

PENNSTATE

Driver Isolation S

e A big claim in Scomp was the ability to run drivers
securely in user space

» By mediating access between the CPU and I/O Bus

» But, later technology resulted in incomplete mediation

e The introduction of IOMMUs may enable effective
driver isolation

» How?

» How do we use it effectively?

e Those are the topics of Herder et al

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

PENNSTATE

Why are drivers a problem? =

e System errors cause the biggest problems

» Unplanned downtime is mainly due to faulty system
software

e Many system errors are caused by drivers

» Responsible for “majority of OS crashes”

» 2/3 of the code base is due to “extensions”, but they have
an error rate 3-7 times higher than other code

» 65-83% of all crashes in Windows XP due to drivers

e How do we reduce such problems?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Can we fix drivers? S

e There are many drivers and they change and new
ones emerge rapidly

e They are a large portion of the kernel code
» 3M lines compromising nearly 60%

e We know that we must isolate drivers

» But how?

e News: OMMU

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23

PENNSTATE

Driver isolation previously 5

e Build on: trusted kernel and MMU

e |solate drivers and wrap their invocations

» MMU enables drivers operations to be isolated from the
kernel

» But drivers can cause devices to write to privileged
memory (how?)

» So, the trusted kernel needs to check requests sent to the
device (for many drivers and devices)

e Also, use programming language, virtual machine, etc.

e My experience SawMill Linux Multiserver [11]

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24

PENNSTATE

|_Zhve)

e What exactly does an MMU do!?

» Maps virtual to physical addresses using the process’s page
tables

e Placing a driver in a limited memory context restricts
which pages it can access

e We get a boundary, but there are many holes thru

» But the driver has to access the device (DMA)

» And it also performs operations that the OS depends
upon (OS services)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

PENNSTATE

|_Zhve)

Main memory

TPhysical addressesT

é,..{|0|\/|Mu]....g,...{ MMU }mé

Device aFdresses Virtual a?dresses

Device § CPU

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

PENNSTATE

Limitations -

e |n addition to memory protection...

e Must deal with multiple devices sharing an interrupt
line

» One may block the line
e Sharing of the PCI bus
» Conflicts between devices
e Performance overhead of isolation

» 10-25% in macrobenchark

» A lot more on microbenchmarks

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 27

PENNSTATE

Overview of Approach 5

—_—_——- —- —_- —_- — — —_ — — —_ —_ — —_— —_— — —_— —_ —_— —_— —_— —_— —_— — e — e — — = = =~

% ' Super User Visolation |
' Grant Selective Access «_Policy |

oT ! |

@) User Space Isolated

g’ Unprivileged Processes Drer

(]

2 Kernel Space Store .. Verify

g Privileges Access

Mediate Resource Access

Hardware ' (IO)MMU !
Enforce Protection Domains

Tables

Figure 2: MINIX 3 isolates drivers in unprivileged processes.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

PENNSTATE

Classification of Privilege Mgmt 5

Privileges Isolation Techniques
(Class I) CPU Usage See Sec. 4.2.1
+ Privileged instructions — User-mode processes
+ CPU time — Feedback-queue scheduler
(Class II) Memory access See Sec. 4.2.2
+ Memory references — Address-space separation
+ Copying and sharing — Run-time memory granting
+ Direct memory access — IOMMU protection
(Class III) Device 1/0 See Sec. 4.2.3
+ Device access — Per-driver I/O policy
+ Interrupt handling — User-level IRQ handling
(Class IV) System services See Sec. 4.2.4
+ Low-level IPC — Per-driver IPC policy
+ OS services — Per-driver call policy
Figure 3: Classification of privileged operations needed by low-
level drivers and summary of MINIX 3’s defense mechanisms.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

. g PENNSTATE
Complete Mediation %
e Privilege Instructions e Sharing with driver
» Driver in user-space e Grant mechanism
e CPU time e Access to services
> Scheduling e Driver syscall policy

e Memory References e Driver access

» Address space isolation

e Driver I/O policy

» DMA . IPC
IOMMU i
} protection e Diriver IPC policy
e |IRQ

» User-level IRQ handling

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

PENNSTATE

Sharing with Drivers v

% 5 Address Space of Process A
Ok}
3 A:0x400 A:0x500 A:0x600
Direct 2| .. | | . ‘
Grant [a 1 [B:R+W . A allows B to Read+Write
ID = 1 -< O 1 \. i
. 512B
o A:0x440 A:0X500
e |<_Y5 4| CR C can Read \ .
€3 (o2 B " A:0x4c0 A:0x5¢c0
Indirect S2| ..]
Grants [N7] O 1 |D:R+W D can Read+Write
IDS = 1,4 .w 0
| m
I 256 B

Figure 4: Hierarchical structure of memory grants. Process A
directly grants B access to a part of its memory; C can access
subparts of A’s memory through indirect grants created by B.

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

PENNSTATE

Other Policies S

e Specify a declarative, least privilege policy for each
driver

e Driver |/O

» PCI: device or class

» ISA: I/O ports and IRQs
e |PC

» Who can the device send IPC to?

e OS Services

» What kernel interfaces are available! OS space services!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

PENNSTATE

Mandatory Protection System =

e Does this approach implement a mandatory
protection system?

e Protection State: devices and interfaces
» Fig 5 policy — mandatory?
» Distributed among several components

» Sharing — setup under discretion, but!
e Labeling State

e Transition State

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Security Analysis S

e Complete Mediation!?

» Who does mediation!?

» Are they all reference monitors!?
e Tamperproofing

» Reference monitors and who they depend upon
e Verification

» Code and Policy

e Does this approach satisfy reference monitor
concept!

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

PENNSTATE

Take Away =

e Security kernel design approach was designed to address
security shortcomings of Multics

» In particularly, size and complexity

e Security kernel design approach
» Documented in a book by Morrie Gasser

» Led to the assurance approach in the Orange Book

e When people speak of how to build “secure OSes” they
probably mean these systems

e So, we aren’ t we building systems this way?

e What ideas/approaches can we take into current systems!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

