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Multics circa 1976 


•  Final research report

‣  Slower than desired

‣  Bigger than desired

‣  Expensive ($7M)

‣  Low market share

‣  UNIX winning mindshare

•  Next generation systems?
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Two Directions

•  Focus on Generality and 

Performance

‣  Limited security

‣  Focus: UNIX 

‣  Put us in our current state

•  Focus on “verifiable” security

‣  Security kernels

‣  Lots of systems

•  KSOS, PSOS, Secure LAN, Secure Ada 
Target, various guard systems
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MITRE Project


•  Started in 1974 

‣  OS in 20 subroutines

•  Less than 1000 lines of code

‣  System to manage physical resources

•  What are the advantages of such an 
approach?

4




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Security Kernel


•  Goals

•  (1) Implement a specific security policy

•  (2) Define a verifiable protection behavior of the system 
as a whole (reference monitor)

•  (3) Must be shown to be faithful to the security model’s 
design (reference monitor enforces policy)

•  Recommend a special issue

‣  IEEE Computer, 16(7), July 1983
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Verification


•  Became the focus of the approach

‣  Verify that the implementation is faithful to the model

‣  Which supports a specific security policy

•  What are the formal limits of verification?

•  What is it going to take in this case? 
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Scomp


•  Secure Communications Processor (Scomp)
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Scomp


•  Like Multics

•  Access is control via segments

‣  Memory segments and I/O segments

‣  Files are defined at a higher level

•  Security Goals

‣  Secrecy: MLS

‣  Integrity: Ring brackets
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Scomp


•  Unlike Multics

•  Mediation on Segments

‣  All access control and rings are implemented in hardware

•  Formal verification

‣  Verify that a formal model enforces the MLS policy

‣  Trusted software outside the kernel is verified using a 
procedural specification

•  Separate kernel from system API functions

‣  In different rings (e.g., for file access)
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Scomp Hardware
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Scomp Drivers


•  I/O Device Drivers in Scomp can be run in user-space

•  Why can’t we do that in a normal OS?

•  How can we do that in Scomp?
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Scomp OS


•  Whole thing is called Scomp Trusted Operating 
Program (STOP)

‣  Lives on in BEA Systems XTS-400

•  Security Kernel in ring 0

‣  Provides “memory management, process scheduling, 
interrupt management, auditing, and reference monitoring 
functions”

‣  In 10K lines of Pascal

‣  Ring transitions controlled by 38 gates (APIs)
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Trusted Software


•  Officially part of STOP 

‣  But runs outside ring 0

•  Software trusted to with system security goals

‣  Like process loader

•  System policy management and use

‣  Such as authentication services

•  23 such processes, consisting of 11K lines of C code

‣  All interaction requires a trusted path

13
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Scomp Kernel Interface


•  Like a system call interface for user processes

‣  Trusted operations on user-level objects (e.g., files, 
processes, and I/O)

‣  Still trusted not to violate MLS requirements

•  Is accessible via a SKIP library

‣  But that library runs in user space (ring 3)

‣  Like libc and POSIX API…
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Scomp Applications

•  May also be MLS-Trusted Applications 

•  Mail Guard

‣  Makes sure that secrets are not leaked in communications 
to less secret subjects

‣  Mail guard obtains labeled communications

•  Has ad hoc filters to prevent leakage

•  Why is Scomp appropriate to support such an 
application?

15




Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page


Scomp Evaluation


•  Complete Mediation: Correct?

‣  In hardware

‣  In Trusted programs? In Mail guards?

•  Complete Mediation: Comprehensive?

‣  At segment level

‣  For files?  For mail data?  For DMA operations?

•  Complete Mediation: Verified?

‣  Hardware?  Kernel?  Trusted programs? Mail guards?
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Scomp Evaluation

•  Tamperproof: Reference Monitor?

‣  In hardware, in kernel, in guard

•  Tamperproof: TCB?

‣  TCB is well-defined in rings, and protected by gates

•  Verify: Code?

‣  Performed verification on implementation using semi-automated 
methods

‣  Led to assurance criteria and approach

•  Verify: Policy?

‣  MLS is security goal; Integrity is more difficult
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Scomp Challenges


•  Why don’t we all use Scomp-based systems now?
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GEMSOS 


•  Similar system goals to Scomp

•  Built for the ‘new’ x86 processor
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GEMSOS


•  Also, is still around

‣  Aesec corporation

•  Fine-grained kernel design

•  Eventually, UNIX (POSIX) 
emulation

•  File system is inside the security 
kernel

‣  Kernel and trusted software 
depends on data layout in files

20
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Driver Isolation


•  A big claim in Scomp was the ability to run drivers 
securely in user space

‣  By mediating access between the CPU and I/O Bus

‣  But, later technology resulted in incomplete mediation

•  The introduction of IOMMUs may enable effective 
driver isolation

‣  How?

‣  How do we use it effectively?

•  Those are the topics of Herder et al
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Why are drivers a problem?


•  System errors cause the biggest problems

‣  Unplanned downtime is mainly due to faulty system 
software

•  Many system errors are caused by drivers

‣  Responsible for “majority of OS crashes”

‣  2/3 of the code base is due to “extensions”, but they have 
an error rate 3-7 times higher than other code

‣  65-83% of all crashes in Windows XP due to drivers

•  How do we reduce such problems?
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Can we fix drivers?


•  There are many drivers and they change and new 
ones emerge rapidly

•  They are a large portion of the kernel code

‣  3M lines compromising nearly 60%

•  We know that we must isolate drivers

‣  But how?

•  News: IOMMU
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Driver isolation previously

•  Build on: trusted kernel and MMU

•  Isolate drivers and wrap their invocations

‣  MMU enables drivers operations to be isolated from the 
kernel

‣  But drivers can cause devices to write to privileged 
memory (how?)

‣  So, the trusted kernel needs to check requests sent to the 
device (for many drivers and devices)

•  Also, use programming language, virtual machine, etc.

•  My experience SawMill Linux Multiserver [11]
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MMU


•  What exactly does an MMU do?

‣  Maps virtual to physical addresses using the process’s page 
tables

•  Placing a driver in a limited memory context restricts 
which pages it can access

•  We get a boundary, but there are many holes thru

‣  But the driver has to access the device (DMA)

‣  And it also performs operations that the OS depends 
upon (OS services)
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IOMMU
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Limitations


•  In addition to memory protection…

•  Must deal with multiple devices sharing an interrupt 
line

‣  One may block the line

•  Sharing of the PCI bus

‣  Conflicts between devices

•  Performance overhead of isolation

‣  10-25% in macrobenchark

‣  A lot more on microbenchmarks
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Overview of Approach
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1.1 Contribution and Paper Outline

In contrast to earlier work [17], this study addresses the
fundamental issue of fault isolation for device drivers. The
main contributions are (i) a classification of driver opera-
tions that are root causes of fault propagation, and (ii) a set
of isolation techniques to curtail these powers in the face of
bugs. We believe this analysis as well as the isolation tech-
niques proposed to be an important result for any effort to
isolate faults in drivers, in any OS. A secondary contribution
consists of the full integration of our isolation techniques in
a freely available open-source OS, MINIX 3.

MINIX 3 strictly adheres to least authority. As a base-
line, each driver is run in a separate user-mode UNIX pro-
cess with a private (IO)MMU-protected address space. This
takes away all privileges and renders each driver harmless.
Next, because this protection is too coarse-grained, we have
provided various fine-grained mechanisms to grant selective
access to resources needed by the driver to do its job. Differ-
ent per-driver policies can be defined by the administrator.
The kernel and trusted OS servers act as a reference moni-
tor and mediate all accesses to privileged resources such as
CPU, device I/O, memory, and system services. This design
is illustrated in Fig. 2.

Rather than proving isolation formally [7], we have taken
a pragmatic, empirical approach and iteratively refined our
isolation techniques using software-implemented fault in-
jection (SWIFI). After several design iterations, MINIX 3 is
now able to withstand millions of faults representative for
system code. Even though we injected 3,400,000 faults, not
a single fault was able to break the driver’s isolation or cor-
rupt other parts of the OS. We did experience one hang, but
this appears to be caused by buggy hardware.

This paper continues as follows. First, we relate our
work to other approaches (Sec 2) and discuss assumptions
and limitations (Sec. 3). Next, we introduce isolation tech-
niques based on a classification of privileged driver oper-
ations (Sec. 4) and illustrate our ideas with a case study
(Sec. 5). Then, we describe the experimental setup (Sec. 6)
and the results of our SWIFI tests (Sec 7). Finally, we dis-
cuss lessons learned (Sec. 8) and conclude (Sec. 9).
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Figure 2: MINIX 3 isolates drivers in unprivileged processes.

2 RELATED WORK

Several other approaches that try to improve dependabil-
ity by isolating drivers have been proposed recently. Below
we survey four different approaches in a spectrum ranging
from legacy to novel isolation techniques.

First, wrapping and interposition are used to run safely
untrusted drivers inside the OS kernel. For example,
Nooks [36] combines in-kernel wrapping and hardware-
enforced protection domains to trap common faults and per-
mit recovery. SafeDrive [38] uses wrappers to enforce type-
safety constraints and system invariants for extensions writ-
ten in C. Software fault isolation (SFI) as in VINO [32] in-
struments driver binaries and uses sandboxing to prevent
memory references outside their logical protection domain.
XFI [8] combines static verification with run-time guards
for memory access control and system state integrity.

Second, virtualization can be used to run services in sep-
arate hardware-enforced protection domains. Examples of
virtual machine (VM) approaches include VMware [34] and
Xen [9]. However, running the entire OS in one virtual ma-
chine is not enough, since driver faults can still propagate
and crash the core OS. Instead, a multiserver-like approach
is required whereby each driver runs in a paravirtualized
OS in a dedicated VM [21]. The client OS runs in a sepa-
rate VM and typically accesses its devices by issuing virtual
interrupts to the driver OS. This breaks VM isolation by in-
troducing new, ad-hoc communication channels.

Third, language-based protection and formal verification
can also be used to isolate drivers. For example, OKE [1]
uses a customized Cyclone compiler to instrument an ex-
tension’s object code according to a policy corresponding
to the user’s privileges. Singularity [19] combines type-safe
languages with protocol verification and seals processes af-
ter loading. The seL4 project [7] aims at a formally ver-
ified microkernel by mapping the design onto a provably
correct implementation. Devil [24] is a device IDL that en-
ables consistency checking and low-level code generation.
Dingo [30] simplifies interaction between drivers and the
OS by reducing concurrency and formalizing protocols.

Finally, multiserver systems like MINIX 3 encapsulate
untrusted drivers in user-mode processes with a private
address space. For example, Mach [12] experimented
with user-mode drivers directly linked into the application.
L4Linux [14] runs drivers in a paravirtualized Linux server.
SawMill Linux [11] is multiserver OS, but focuses on per-
formance rather than driver isolation. NIZZA [15] supports
safe reuse of legacy extensions for security-sensitive appli-
cations. In recent years, user-mode drivers were also used in
commodity systems such as Linux [20] and Windows [25],
but we are not aware of efforts to isolate drivers based on
least authority and believe that these systems could benefit
from the ideas presented in this work.
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Classification of Privilege Mgmt
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3 ASSUMPTIONS AND LIMITATIONS

In our research, we explore the limits on software iso-
lation, rather than proposing hardware changes. Unfortu-
nately, older PC hardware has various shortcomings that
make it virtually impossible to build a system where drivers
run in full isolation. However, now that modern hardware
with support for isolating drivers is increasingly common—
although sometimes not yet perfect—we believe the time
has come to revisit design choices made in the past. For ex-
ample, the following three hardware improvements enable
building more dependable operating systems:

(1) To start with, older PCs have no means to protect
against memory corruption by unauthorized direct memory
access (DMA). Our solution is to rely on IOMMU support.
Like a traditional MMU, which provides memory protec-
tion for CPU-visible addresses, the IOMMU provides mem-
ory protection for device-visible addresses. If a driver wants
to use DMA, a trusted party validates the request and me-
diates setting up the IOMMU tables for the driver’s device.
We have used AMD’s Device Exclusion Vector (DEV), but
IOMMUs are now common on many platforms.

(2) Furthermore, the PCI standard mandates shared,
level-triggered IRQ lines that lead to inter-driver depen-
dencies, since a driver that fails to acknowledge a device-
specific interrupt may block an IRQ line that is shared with
other devices. We avoided this problem by using dedicated
IRQ lines, but the PCI Express (PCI-E) bus provides a struc-
tural solution based on virtual message-signaled interrupts
that can be made unique for each device.

(3) Finally, all PCI devices on the standard PCI bus talk
over the same communication channel, which may lead to
conflicts. PCI-E uses a point-to-point bus design so that
devices can be properly isolated. However, hardware limi-
tations still exist, as PCI-E is known to be still susceptible
to PCI-bus hangs if a malfunctioning device claims an I/O
request but never puts the completion signal on the bus.

In addition to improved hardware dependability, perfor-
mance has increased to the point where software techniques
that previously were infeasible or too costly have become
practical. We build on the premise that computing power
is no longer a scarce resource (which is generally true on
desktops nowadays) and that most end users would be will-
ing sacrifice some performance for improved dependabil-
ity. Preliminary measurements comparing MINIX 3 against
Linux and FreeBSD show an overhead of roughly 10–25%,
but the performance can no doubt be improved through
careful analysis and removal of bottlenecks. Independent
studies have already addressed this issue and shown that
the overhead incurred by modular designs can be limited
to 5–10% [11, 14, 20, 22]. However, instead of focusing on
performance, the issue we have tried to address is isolating
untrusted drivers that threaten OS dependability.

4 ENFORCING LEAST AUTHORITY

This section first classifies the privileged operations
drivers need and then presents per class the isolation tech-
niques MINIX 3 employs to enforce least authority.

4.1 Classification of Driver Privileges

The starting point for our discussion is the classification
of potentially dangerous driver operations shown in Fig. 3.
At the lowest level, CPU usage should be controlled in order
to prevent bypassing higher-level protection mechanisms.
For example, consider kernel-mode CPU instructions that
can be used to reset page tables or excessive use of CPU
time by a driver that winds up in an infinite loop.

Unauthorized memory access is an important threat with
drivers that commonly exchange data with other parts of the
system and may engage in direct memory access (DMA).
Indeed, field research has shown that memory corruption
is one of the most important causes (27%) of system out-
ages [35]. In 15% of the crashes the corruption is so severe
that the underlying cause cannot be deduced [28].

It is important to restrict access to I/O ports and regis-
ters and device memory in order to prevent unauthorized
access and resource conflicts. Programming device hard-
ware is complex due to its low-level interactions and lack
of documentation [30]. Especially the asynchronous nature
of interrupt handling can be hard to get correct, as evidenced
by the error IRQL NOT LESS OR EQUAL that was found to
cause 26% of all Windows XP crashes [10].

Interprocess communication (IPC) allows servers and
drivers running in separate protection domains to cooperate,
but dealing with unreliable and potentially hostile senders
and receivers is a challenge [18]. A related power built on
top of the IPC infrastructure, which routes requests through
the system, is requesting (privileged) OS services.

Privileges Isolation Techniques
(Class I) CPU Usage See Sec. 4.2.1

+ Privileged instructions → User-mode processes
+ CPU time → Feedback-queue scheduler

(Class II) Memory access See Sec. 4.2.2
+ Memory references → Address-space separation
+ Copying and sharing → Run-time memory granting
+ Direct memory access → IOMMU protection

(Class III) Device I/O See Sec. 4.2.3
+ Device access → Per-driver I/O policy
+ Interrupt handling → User-level IRQ handling

(Class IV) System services See Sec. 4.2.4
+ Low-level IPC → Per-driver IPC policy
+ OS services → Per-driver call policy

Figure 3: Classification of privileged operations needed by low-
level drivers and summary of MINIX 3’s defense mechanisms.
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Complete Mediation

•  Privilege Instructions

‣  Driver in user-space

•  CPU time

‣  Scheduling

•  Memory References

‣  Address space isolation

•  DMA

‣  IOMMU protection

•  IRQ

‣  User-level IRQ handling

•  Sharing with driver

•  Grant mechanism

•  Access to services

•  Driver syscall policy

•  Driver access

•  Driver I/O policy

•  IPC 

•  Driver IPC policy
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Sharing with Drivers
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4.2 Per-Class Isolation Techniques

We now describe how MINIX 3 isolates drivers. In short,
each driver is run in an unprivileged UNIX process, but
based on the driver’s needs, we can selectively grant fine-
grained access to each of the privileged resources in Fig. 3.
We believe that UNIX processes are attractive, since they
are lightweight, well-understood, and have proven to be an
effective model for encapsulating untrusted code.

4.2.1 Class-I Restrictions—CPU Usage

Privileged Instructions All drivers are runs in an ordi-
nary UNIX process with user-mode CPU privileges, just
like normal application programs. This prevents drivers
from executing privileged CPU instructions such as chang-
ing memory maps, performing I/O, or halting the CPU.
Only a tiny microkernel runs with kernel-mode CPU priv-
ileges and a small set of kernel calls is exported to allow
access to privileged services in a controlled manner.

CPU Time With drivers running as UNIX processes, nor-
mal process scheduling techniques can be used to prevent
CPU hogging. In particular, we use a multilevel-feedback-
queue scheduler (MLFQ). Processes with the same priority
reside in the same queue and are scheduled round-robin.
Starvation of low-priority processes is prevented by degrad-
ing a process’ priority after it consumes a full quantum.
Since CPU-bound processes are penalized more often, in-
teractive applications have good response times. Periodi-
cally, all priorities are increased if not at their initial value.

Two additional protection mechanisms exist. First, the
driver manager can be configured to periodically check the
driver’s state and start a fresh copy if it does not respond to
heartbeat requests, for example, if it winds up in an infinite
loop [17]. Second, a resource reservation framework is pro-
vided in order to provide more stringent temporal protection
for processes with real-time requirements [23].

4.2.2 Class-II Restrictions—Memory Access

Memory References We use MMU-hardware protection
to enforce strict address-space separation. Each driver has
a private, virtual address space with a fixed size depending
on the driver’s requirements. The MMU translates CPU-
visible addresses to physical addresses using the MMU ta-
bles controlled by the kernel. Unauthorized memory ref-
erences outside of the driver’s address space result in an
MMU exception and cause the driver to be killed.

Drivers that want to exchange data could potentially use
page sharing, but, although efficient, with page sizes start-
ing at 4 KB the protection is too coarse-grained to share
safely small data structures. Therefore, we developed the
fine-grained authorization mechanism discussed next.

Copying and Sharing We allow safe data exchange by
means of fine-grained, delegatable memory grants. Each
grant defines a memory area with byte granularity and gives
a specific other process permission to read and/or write the
specified data. A process that wants to grant another pro-
cess access to its address space must create a grant table
to store the memory grants. On first use, the kernel must
be informed about the location and size of the grant table.
After creating a memory grant it can be made available to
another process by sending an IPC message that contains
an index into the table, known as a grant ID. The grant
then is uniquely identified by the grantor’s process ID plus
grant ID. The receiver, say, B of a grant from A can re-
fine and transfer its access rights to a third process C by
means of an indirect grant. This results in a hierarchical
structure as shown in Fig. 4. This resembles recursive ad-
dress spaces [22], but memory grants are different in their
purpose, granularity, and usage—since grants protect data
structures rather than build process address spaces.
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Figure 4: Hierarchical structure of memory grants. Process A
directly grants B access to a part of its memory; C can access
subparts of A’s memory through indirect grants created by B.

The SAFECOPY kernel call is provided to copy between
a driver’s local address space and a memory area granted by
another process. Upon receiving the request message, the
kernel extracts the grant ID and process ID, looks up the
corresponding memory grant, and verifies that the caller is
indeed listed as the grantee. Indirect grants are processed
using a recursive lookup of the original, direct grant. The
overhead of these steps is small, since the kernel can di-
rectly access all physical memory to read from the grant
tables; no context switching is needed to follow the chain.
The request is checked against the minimal access rights
found in the path to the direct grant. If access is granted,
the kernel calculates the physical source and destination ad-
dresses and copies the requested amount of data. This de-
sign allows granting a specific driver access to a precisely
defined memory region with perfect safety. If needed, cer-
tain non-copying page-level performance optimizations are
possible for large pieces of memory.
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Other Policies


•  Specify a declarative, least privilege policy for each 
driver

•  Driver I/O

‣  PCI: device or class

‣  ISA: I/O ports and IRQs

•  IPC 

‣  Who can the device send IPC to?

•  OS Services

‣  What kernel interfaces are available?  OS space services?
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Mandatory Protection System


•  Does this approach implement a mandatory 
protection system?

•  Protection State: devices and interfaces

‣  Fig 5 policy – mandatory?

‣  Distributed among several components

‣  Sharing – setup under discretion, but?

•  Labeling State

•  Transition State
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Security Analysis 


•  Complete Mediation?

‣  Who does mediation?

‣  Are they all reference monitors?

•  Tamperproofing

‣  Reference monitors and who they depend upon

•  Verification

‣  Code and Policy

•  Does this approach satisfy reference monitor 
concept?
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Take Away

•  Security kernel design approach was designed to address 

security shortcomings of Multics

‣  In particularly, size and complexity

•  Security kernel design approach

‣  Documented in a book by Morrie Gasser

‣  Led to the assurance approach in the Orange Book

•  When people speak of how to build “secure OSes” they 
probably mean these systems

•  So, we aren’t we building systems this way?

•  What ideas/approaches can we take into current systems?


