Infrastructure Security

\ Systems and Internet

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

Advanced Systems Security
Retrofitting for Security

Trent Jaeger
Systems and Internet Infrastructure Security (S1IS) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retroactive Security S

* “Penetrate and
patch” as flaws
are exposed as
vulnerabilities

Adversary
exploits
vulnerability

Fix
vulnerability

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retroactive Security S

« Several codebases have
been extended with
security features
retroactively

» X Server, postgres, Apache,
OpenSSH, Linux Kernel,
browsers, etc.

« With a variety of security
Adversary
Retrofit

securit exploits controls:
4 vulnerability

» Privilege separation,
Authentication, Auditing,
Authorization, etc.

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Authorizing Access =

Resource user

Operation request l TResponse
Resource manager
Reference monitor

Allowed? l TYES/NO

(Alice, /etc/passwd, File Read’

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Authorizing Access =

Resource user

Operation request l TResponse

Resource manager

Reference monitor

Allowed? l TYES/NO

Authorization policy

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retrofitting is Hard S

 For authorization

» XI | ~ proposed 2003, upstreamed 2007, changing to date.

[Kilpatrick et al., ‘03]

» Linux Security Modules ~ 2 years wiight et a, 02

Painstaking, manual procedure

At this point, SE-PostgreSQL has taken up a *lot* of community resources,
not to mention an enormous and doubtless frustrating amount of *the lead
developer’s* time and effort, thus far without a single committed patch, or
even a consensus as fo what it should (or could) do. Rather than continuing to
blunder into the future, | think we need to do a reality check

- http:/ /archives.postgresql.org /message-id/
20090718160600.GE5172@fetter.org

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retrofitting is Common =

Mandatory access control for Linux

» Linux Security Modules wright et al,'02]

TrustedBSD, SEDarwin, sHype, XSM, ...

Secure windowing systems

» Trusted X, Compartmented-mode workstation, X1 1/
SELinux [Epstein et al,’90][Berger et al.,’90][Kilpatrick et al.’03]

Java Virtual Machine/SELinux [rieccher,0¢]

IBM Websphere/SELinux [Hocking et al.06]

« And more: Apache, PostgreSQL, dbus, gconf, ...

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retrofitting Legacy Code =

* What if you had to add security controls for a legacy
program!?

Need systematic techniques to
retrofit legacy code for security

| ; Retrofitted
SECURE

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Design for Security S

« Perhaps retroactive security
is the wrong approach

» Too late to get right

« “Design for security” from
the outset is the goal

» But, how do we teach
programmers to do that?

» In a practical and time-
effective manner

« Design methodologies may
vary widely

Systems and Internet Infrastructure Security Laboratory (SIIS)

What is Needed? g

Programs need multiple security controls

request_loop (client_data, private_data) {
read (client_passwd, client_req);
1f (necessary ||
compare_client (client_passwd,
private_data))
access_object (client_req, client_data);

}

* Program reads client passwdand client req

Don’t leak private data used to check passwords

Control client request’s access to client data

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

What is Needed? =

* Programs need multiple security controls

request_loop (client_data, private_data) {
read(client_passwd, client_req);
1f (necessary ||
compare_client (client_passwd,
private_data))
access_object (client_req, client_data);

}

Privilege separation between compare client and
access object

Authorization of access object

Auditing of execution of unsafe client req

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Past Efforts

« Automated Hook Placement:

» Assumptions: Training wheels

* (sensitive data types, hook code)
[Ganapathy et al., 2005, 2006, 2007]
[Sun et al,, 201 |, RoleCast 201]

« Automated Hook Placement 2:

» Assumptions: Training wheels

« (constraint models of function and security)

[Harris et al., 2010, 201 3]

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Security Goals =

« Retrofit security controls automatically

» From “‘security programs”

« Assist programmers in producing such security
programs

» From code analyses

« Compile such security programs into minimal cost

code for enforcing the expected security goals
correctly

» Across security controls

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Outline =

» Let’s examine the problem of retrofitting for security

« For authorization
» Then explore other security controls

« For privilege separation and auditing

» Then, discuss how to retrofit across security controls

« Step two

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retrofit for Authorization =

We want to generate complete and minimal
authorization hook placements mostly-
automatically for legacy code

[CCS 2012] Divya Muthukumaran, Trent Jaeger,Vinod Ganapathy.
Leveraging “choice” to automate authorization hook placement. In Proceedings of the
| 9t ACM Conference on Computer and Communications Security (ACM CCS), October 2012.

[ESSoS 2015] Divya Muthukumaran, Nirupama Talele, Trent Jaeger, Gang Tan.
Producing hook placements to enforce expected access control policies. In Proceedings of the 2015
International Symposium on Engineering Secure Software and Systems (ESSoS), March 2015.

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Placement Comparison S

e Based on CCS 2012 Method

« X Server:
» Manual: 201 hooks

» Automated: 532 hooks

 Postgres:
» Manual: ~370
» Automated: 579

What does this mean?

Systems and Internet Infrastructure Security Laboratory (SIIS)

Hook Hoisting

PENNSTATE

_Zhve)

. read(pgcSrc)

read(pgcSrc->planemask)

read(pgcSrc->fgPixel)

read(pgcSrc->alu)

Systems and Internet Infrastructure Security Laboratory (SIIS)

read(pgcSrc->bgPixel)

PENNSTATE

Hook Removal =

Resource res = ClientTable[i]

WindowPtr * pWin = (WindowPtr *) res

.
|

indowPtr * pChild =
pWiny>firstChild->nextSib
|

O mapped = True

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Relate to Access Control %

® Access Control
Policy:
All-or-nothing

opy: op5: o0p53:
read(pgSrc-> read(pgSrc-> op:: T read(pgSrc->
planemask) fgPixel) =N ! : bgPixel)

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Authorization Constraints =

« Allowed(o): Subset of subjects in U that are allowed
to perform operation o.

« Constraint [:
» Allowed(ol) = Allowed(o2), then ol equals o2

 Constraint 2:

» Allowed(ol) c Allowed(o2), then ol subsumes o2

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Authorization Constraints =

« Allowed(o): Subset of subjects in U that are allowed
to perform operation o.

« Constraint [:
» Allowed(ol) = Allowed(o2), then ol equals o2

 Constraint 2:

» Allowed(ol) c Allowed(o2), then ol subsumes o2

Set of Authorization Constraints limit the
access control policies that can be enforced

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Equivalence -

Equivalence:
OP, = 0P = «« = OPy;

op;: opy | R 0py3:
read(pgSrc-> read(pgSrc-> op:: o read(pgSrc->
planemask) fgPixel) o ! : bgPixel)

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Subsumption =

Resource res = clientTable[i] .
Subsumption:
Jz op, > op,
op; * op,
WindowPtr * pWin =
(WindowPtr *) res
op3: op;:
PropertyPtr * pProp = WindowPtr * pChild = pWin ->
pWin->userProps->next firstChild -> nextSib
Op4: Opz:
pProp->data= data pChild->mapped = true

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Build Retrofitting Policies =

« How do programmers build retrofitting policies!?

» Hundreds of hooks could be removed

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Build Retrofitting Policies =

« However, there are common policy assumptions

» E.g., object flows — if two operations produce the same
data flow, such as from the object to the client (read),

then they may be assumed to be equivalent

» Under this constraint, we could still enforce MLS

« Apply “constraint selectors” to collect such
authorization constraints from code

» Removes up to 2/3 of the unnecessary hooks

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retrofitting for Authorization g

(1) ldentify security-sensitive operations

» Mostly-automated identification of operations [CCS 2012]

(2) Produce retrofitting policy
» Produce default authorization hook placement for SSOs
» Apply constraint selectors for high-level policy constraints

» Interactive selection of other authorization constraints

(3) Generate minimal* authorization hook placement

» Based on retrofitting policy (* modulo assumptions)

(4) Validate reference monitor concept relative to
retrofitting policies and correct transformation

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Other Security Controls =

 Retrofitting for Privilege Separation and Auditing

Shen Liu, Gang Tan, Trent Jaeger. PtrSplit: Supporting
General Pointers in Automatic Program Partitioning.
In Proceedings of the 24th ACM Conference on
Computer and Communications Security (ACM
CCS), October 2017.

of privilege?

Sepehr Amir-Mohammadian, Stephen Chong,
Christian Skalka. Correct Audit Logging: Theory and
Practice. In Proceedings of the 5% International
Conference on Principles of Security and Trust, 2016.

dit

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retrofitting for Auditing 9

Retrofitting for Auditing g

* Audit logs are intended to provide information about
programs to support:

» Accountability and proof of authorization.

» Surveillance and intrusion detection.
» Dynamic analysis for performance/security evaluation.

« Current practice missing crucial foundational
elements:

» What is the formal relation between a program and its
audit log!?

» What policy specifies audit log generation?

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retrofitting for Auditing 9

* We propose an information algebraic semantics of
auditing that takes as input:

» An arbitrary program p in a given language.

» A logging policy LP that specifies conditions for logging
particular events. (i.e., retrofitting policy)

« This semantics, written genlog(p, LP) denotes a set of
information. An audit log L is sound (resp. complete)
with respect to the policy iff:

» L < genlog(p, LP) (resp. genlog(p, LP) < L) where < is an
information containment relation.

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Putting it all together o

« Retrofit for multiple security controls

» Claim: reasoning about retrofitting policies across security
controls enables benefits

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Retrofitting for All =

 Benefits of retrofitting policies

» Separate security program from functional program
« Prevent errors in integration of the two — even for updates
« Make policy enforcement expectations explicit
» Leverage the relationships between security controls
« Remove redundant security controls
« Use security controls to improve retrofitting policies

« Bottom line: there is no silver bullet - programmers
will need to add such security controls

Systems and Internet Infrastructure Security Laboratory (SIIS)

PENNSTATE

Summary =

« Problem: Place Security Controls in Legacy Code
» Hard to do manually
e Insights:

» Program expectations of security controls into “retrofitting policies”
or “security programs”

» Retrofit programs automatically to minimize cost, validate
correctness of security and function

» Apply across a set of security controls for coherent “Defense in
Depth”

 Targets: Authorization, Privilege Separation, and Auditing

 Future: How shall programmers “Design/program for
security’ ?

Systems and Internet Infrastructure Security Laboratory (SIIS)

