
Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Advanced Systems Security �
Retrofitting for Security

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

1

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retroactive Security

Deploy

Adversary
exploits

vulnerability

Fix
vulnerability

•  “Penetrate and
patch” as flaws
are exposed as
vulnerabilities

2

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retroactive Security

Deploy

Adversary
exploits

vulnerability

Retrofit
security

•  Several codebases have
been extended with
security features
retroactively

‣  X Server, postgres, Apache,
OpenSSH, Linux Kernel,
browsers, etc.

•  With a variety of security
controls:

‣  Privilege separation,
Authentication, Auditing,
Authorization, etc.

3

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Resource manager

Authorizing Access

Resource user

Operation request Response

Authorization policy‹Alice, /etc/passwd, File_Read›

Reference monitor

Allowed? YES/NO

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Resource manager

Authorizing Access

Resource user

Operation request Response

Authorization policy

Reference monitor

Allowed? YES/NO

Authorization Hooks

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retrofitting is Hard

•  For authorization

‣  X11 ~ proposed 2003, upstreamed 2007, changing to date.
[Kilpatrick et al., ‘03]

‣  Linux Security Modules ~ 2 years [Wright et al., ’02]

‣  PostgreSQL: Began in 2006, still not mainline.

At this point, SE-PostgreSQL has taken up a *lot* of community resources,
not to mention an enormous and doubtless frustrating amount of *the lead
developer’s* time and effort, thus far without a single committed patch, or

even a consensus as to what it should (or could) do. Rather than continuing to
blunder into the future, I think we need to do a reality check

- http://archives.postgresql.org/message-id/
20090718160600.GE5172@fetter.org

Painstaking, manual procedure

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retrofitting is Common

•  Mandatory access control for Linux

‣  Linux Security Modules [Wright et al.,’02]

•  TrustedBSD, SEDarwin, sHype, XSM, …

•  Secure windowing systems

‣  Trusted X, Compartmented-mode workstation, X11/
SELinux [Epstein et al.,’90][Berger et al.,’90][Kilpatrick et al.,’03]

•  Java Virtual Machine/SELinux [Fletcher,‘06]

•  IBM Websphere/SELinux [Hocking et al.,‘06]

•  And more: Apache, PostgreSQL, dbus, gconf, …

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retrofitting Legacy Code

•  What if you had to add security controls for a legacy

program?

8

Need systematic techniques to
retrofit legacy code for security

Legacy
code

Retrofitted
code

INSECURE SECURE

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Design for Security

•  Perhaps retroactive security

is the wrong approach

‣  Too late to get right

•  “Design for security” from
the outset is the goal

‣  But, how do we teach
programmers to do that?

‣  In a practical and time-
effective manner

•  Design methodologies may
vary widely

9

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

What is Needed?

•  Programs need multiple security controls

•  Program reads client_passwd and client_req

•  Don’t leak private_data used to check passwords

•  Control client request’s access to client_data

grams for security is a challenging problem for any security con-
trol, recent advances in methods for retrofitting programs for se-
curity demonstrate what can be automated and how, distinguishing
what can be computed from what intelligence programmers need to
supply. The proposed approach takes a comprehensive view of the
problem, with an emphasis on automated and interactive tools that
developers can use to identify site-level security goals, explore the
design space of security mechanisms, and retrofit legacy code to
enforce security policies in a manner that can be machine-verified
for assurance.

In this position paper, we examine the unification of three com-
mon security mechanisms — containment, authorization, and au-
diting — to assess how reasoning about defense in depth encom-
passing these three mechanisms may improve security assurance.
First, we find that placing security controls for these mechanisms
involves solving a set of common problems, so designing methods
to solve those problems and to verify the effectiveness of the so-
lutions may be reused. Second, we find that we can compose the
validation of defense in depth for this combination of security con-
trols, enabling assurance for defense in depth. Third, we find that
runtime auditing can be leveraged for continuous improvement of
the placement of security controls for defense in depth, ensuring
that the controls can be optimized for the desired policies. We re-
fer to completed research results where available, but a goal of this
paper is to motivate reuse of common ideas across controls and in-
tegration of controls for improved security.

The remainder of the paper is structured as follows. In Section 2,
we examine the problem of designing programs to control access
to program and system resources using multiple security controls.
In Section 3, we provide an overview of how to use automated
retrofitting of programs to produce validated security controls for
defense in depth. In Sections 4 to 6, we explore the challenges
in retrofitting programs for containment, authorization, and audit-
ing independently. In Section 7, we outline the problem of unifying
retrofitting methods for defense in depth and examine opportunities
for assurance of defense in depth, including continuous improve-
ment. In Section 8, we conclude the paper.

2. BACKGROUND

2.1 What Should Retrofitting for Defense in
Depth Do?

When program vulnerabilities become too numerous, program-
mers may be motivated to make fundamental changes to their pro-
grams to add security controls. For Sendmail and OpenSSH, pro-
grammers found that the typical penetrate-and-patch approach to
security was not keeping them ahead of adversaries, leading to
complex retrofitting [?] or complete reimplementations [?, ?]. For
programs that process resources belonging to multiple clients, such
as servers and middleware, programmers often found that simple
isolation approaches (e.g., sandboxes) were insufficient to protect
data security and provide necessary functionality [?, ?]. We use the
simple program below to demonstrate the problems.

request_loop (client_data, private_data) {

read(client_passwd, client_req);

if (necessary ||

compare_client(client_passwd,

private_data))

access_object(client_req, client_data);

}

The client request loop above is representative of many
programs that require retrofitting. This program processes
requests from multiple, mutually-untrusting clients (obtained

by read) by: (1) comparing a client-supplied password
(client_passwd) to the program’s password database
(private_data) in compare_client and (2) processing
a client request (client_req) to access data managed by
the program (client_data) in access_object. In this
discussion, we assume that the program code is benign, but may
have flaws that allow client input read by the program to permit
unauthorized access. The first operation may cause vulnerabilities
if the program allows client input to affect the program’s passwords
or if some password data is leaked as a result of the comparison.
The second operation may cause vulnerabilities if it allows any
client unauthorized access to the client data of another client.
Many programs perform these two types of operations, including
operating systems, middleware, server programs, and even some
user applications. For example, operating systems process many
client requests (e.g., system calls) and process private operating
system data that must not be manipulated by clients. On the
other hand, browser applications also run programs from multiple
sources (i.e., the browser’s clients), so they must control access
to browser resources available to those programs and protect their
private resources from leakage and unauthorized modification.

In this discussion, we will focus on retrofitting programs to con-
trol client access to security-sensitive operations, such as those in
the program above that use the program’s private data and client
data.

We examine three kinds of security controls that are commonly
used to achieve this goal. First, programmers may use contain-
ment to place protection boundaries that limit the ways that clients
may access security-sensitive data. For example, the program
above may be privilege-separated [?] into two modules running
in separate processes: (1) one that receives client requests and pro-
vides access to client data using access_object and (2) an-
other that runs compare_client that has access to the private
data. Clients can only communicate directly with the first module,
limiting the program flows that may reach or leak the private data.

Second, programmers use authorization to control access to pro-
gram data. For example, the program above may be retrofitted with
a reference validation mechanism that satisfies the reference moni-
tor concept [?] to ensure correct enforcement of an access control
policy governing which clients may access which client data and
preventing leakage and unauthorized modification of private data,
regardless of the complexity of the code in the compare_client
and access_object functions. Reference validation mecha-
nisms must be designed to enforce the data access policies expected
by the programmer, whose goals may include least privilege [?],
lattice policies [?], noninterference [?].

Third, programmers use auditing to collect information to aid in-
trusion detection retroactively for authorized operations. For exam-
ple, clients authorized to run compare_client may still cause
the private data to be leaked through some program flaw, so audit-
ing could record the values of the authorized operation and the data
returned to the client to enable later detection of whether leakage
occurred. As can be seen, these security controls form three layers
of defense, where containment limits client access at the bound-
aries, authorization within the program, and auditing follows au-
thorized operations.

2.2 State-of-the-Art in Retrofitting Programs
for Defense in Depth

Programmers retrofit programs with containment [?, ?, ?], autho-
rization [?, ?, ?, ?, ?], and auditing controls [?, ?] manually, which
presents a variety of challenges. First, programmers must identify
security-sensitive operations from low-level program constructs,

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

What is Needed?

•  Programs need multiple security controls

•  Privilege separation between compare_client and
access_object

•  Authorization of access_object

•  Auditing of execution of unsafe client_req

grams for security is a challenging problem for any security con-
trol, recent advances in methods for retrofitting programs for se-
curity demonstrate what can be automated and how, distinguishing
what can be computed from what intelligence programmers need to
supply. The proposed approach takes a comprehensive view of the
problem, with an emphasis on automated and interactive tools that
developers can use to identify site-level security goals, explore the
design space of security mechanisms, and retrofit legacy code to
enforce security policies in a manner that can be machine-verified
for assurance.

In this position paper, we examine the unification of three com-
mon security mechanisms — containment, authorization, and au-
diting — to assess how reasoning about defense in depth encom-
passing these three mechanisms may improve security assurance.
First, we find that placing security controls for these mechanisms
involves solving a set of common problems, so designing methods
to solve those problems and to verify the effectiveness of the so-
lutions may be reused. Second, we find that we can compose the
validation of defense in depth for this combination of security con-
trols, enabling assurance for defense in depth. Third, we find that
runtime auditing can be leveraged for continuous improvement of
the placement of security controls for defense in depth, ensuring
that the controls can be optimized for the desired policies. We re-
fer to completed research results where available, but a goal of this
paper is to motivate reuse of common ideas across controls and in-
tegration of controls for improved security.

The remainder of the paper is structured as follows. In Section 2,
we examine the problem of designing programs to control access
to program and system resources using multiple security controls.
In Section 3, we provide an overview of how to use automated
retrofitting of programs to produce validated security controls for
defense in depth. In Sections 4 to 6, we explore the challenges
in retrofitting programs for containment, authorization, and audit-
ing independently. In Section 7, we outline the problem of unifying
retrofitting methods for defense in depth and examine opportunities
for assurance of defense in depth, including continuous improve-
ment. In Section 8, we conclude the paper.

2. BACKGROUND

2.1 What Should Retrofitting for Defense in
Depth Do?

When program vulnerabilities become too numerous, program-
mers may be motivated to make fundamental changes to their pro-
grams to add security controls. For Sendmail and OpenSSH, pro-
grammers found that the typical penetrate-and-patch approach to
security was not keeping them ahead of adversaries, leading to
complex retrofitting [?] or complete reimplementations [?, ?]. For
programs that process resources belonging to multiple clients, such
as servers and middleware, programmers often found that simple
isolation approaches (e.g., sandboxes) were insufficient to protect
data security and provide necessary functionality [?, ?]. We use the
simple program below to demonstrate the problems.

request_loop (client_data, private_data) {

read(client_passwd, client_req);

if (necessary ||

compare_client(client_passwd,

private_data))

access_object(client_req, client_data);

}

The client request loop above is representative of many
programs that require retrofitting. This program processes
requests from multiple, mutually-untrusting clients (obtained

by read) by: (1) comparing a client-supplied password
(client_passwd) to the program’s password database
(private_data) in compare_client and (2) processing
a client request (client_req) to access data managed by
the program (client_data) in access_object. In this
discussion, we assume that the program code is benign, but may
have flaws that allow client input read by the program to permit
unauthorized access. The first operation may cause vulnerabilities
if the program allows client input to affect the program’s passwords
or if some password data is leaked as a result of the comparison.
The second operation may cause vulnerabilities if it allows any
client unauthorized access to the client data of another client.
Many programs perform these two types of operations, including
operating systems, middleware, server programs, and even some
user applications. For example, operating systems process many
client requests (e.g., system calls) and process private operating
system data that must not be manipulated by clients. On the
other hand, browser applications also run programs from multiple
sources (i.e., the browser’s clients), so they must control access
to browser resources available to those programs and protect their
private resources from leakage and unauthorized modification.

In this discussion, we will focus on retrofitting programs to con-
trol client access to security-sensitive operations, such as those in
the program above that use the program’s private data and client
data.

We examine three kinds of security controls that are commonly
used to achieve this goal. First, programmers may use contain-
ment to place protection boundaries that limit the ways that clients
may access security-sensitive data. For example, the program
above may be privilege-separated [?] into two modules running
in separate processes: (1) one that receives client requests and pro-
vides access to client data using access_object and (2) an-
other that runs compare_client that has access to the private
data. Clients can only communicate directly with the first module,
limiting the program flows that may reach or leak the private data.

Second, programmers use authorization to control access to pro-
gram data. For example, the program above may be retrofitted with
a reference validation mechanism that satisfies the reference moni-
tor concept [?] to ensure correct enforcement of an access control
policy governing which clients may access which client data and
preventing leakage and unauthorized modification of private data,
regardless of the complexity of the code in the compare_client
and access_object functions. Reference validation mecha-
nisms must be designed to enforce the data access policies expected
by the programmer, whose goals may include least privilege [?],
lattice policies [?], noninterference [?].

Third, programmers use auditing to collect information to aid in-
trusion detection retroactively for authorized operations. For exam-
ple, clients authorized to run compare_client may still cause
the private data to be leaked through some program flaw, so audit-
ing could record the values of the authorized operation and the data
returned to the client to enable later detection of whether leakage
occurred. As can be seen, these security controls form three layers
of defense, where containment limits client access at the bound-
aries, authorization within the program, and auditing follows au-
thorized operations.

2.2 State-of-the-Art in Retrofitting Programs
for Defense in Depth

Programmers retrofit programs with containment [?, ?, ?], autho-
rization [?, ?, ?, ?, ?], and auditing controls [?, ?] manually, which
presents a variety of challenges. First, programmers must identify
security-sensitive operations from low-level program constructs,

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Past Efforts

•  Automated Hook Placement:

‣  Assumptions: Training wheels
•  (sensitive data types, hook code)

[Ganapathy et al., 2005, 2006, 2007]

[Sun et al., 2011, RoleCast 2011]

•  Automated Hook Placement 2:

‣  Assumptions: Training wheels
•  (constraint models of function and security)

[Harris et al., 2010, 2013]

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Security Goals

•  Retrofit security controls automatically

‣  From “security programs”

•  Assist programmers in producing such security
programs

‣  From code analyses

•  Compile such security programs into minimal cost
code for enforcing the expected security goals
correctly

‣  Across security controls

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Outline

‣  Let’s examine the problem of retrofitting for security

•  For authorization

‣  Then explore other security controls

•  For privilege separation and auditing

‣  Then, discuss how to retrofit across security controls

•  Step two

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retrofit for Authorization

We want to generate complete and minimal
authorization hook placements mostly-

automatically for legacy code

[CCS 2012] Divya Muthukumaran, Trent Jaeger, Vinod Ganapathy.
Leveraging “choice” to automate authorization hook placement. In Proceedings of the
19th ACM Conference on Computer and Communications Security (ACM CCS), October 2012.

[ESSoS 2015] Divya Muthukumaran, Nirupama Talele, Trent Jaeger, Gang Tan.
Producing hook placements to enforce expected access control policies. In Proceedings of the 2015
International Symposium on Engineering Secure Software and Systems (ESSoS), March 2015.

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Placement Comparison

•  Based on CCS 2012 Method

•  X Server:
‣  Manual: 201 hooks

‣  Automated: 532 hooks

•  Postgres:
‣  Manual: ~370

‣  Automated: 579

What does this mean?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Hook Hoisting

read(pgcSrc->planemask) read(pgcSrc->fgPixel) read(pgcSrc->alu) ... read(pgcSrc->bgPixel)

read(pgcSrc)

Hoist

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Hook Removal

pChild->mapped = True

WindowPtr * pChild =
pWin->firstChild->nextSib

Resource res = ClientTable[i]

WindowPtr * pWin = (WindowPtr *) res

Remove

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Hook Granularity: Case 1

op1:
read(pgSrc->
planemask)

op2:
read(pgSrc->

fgPixel)

op23:
read(pgSrc->

bgPixel)
opi:

20

Relate to Access Control

Access Control
Policy:

All-or-nothing

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Authorization Constraints

•  Allowed(o): Subset of subjects in U that are allowed
to perform operation o.

•  Constraint I:

‣  Allowed(o1) = Allowed(o2), then o1 equals o2

•  Constraint 2:

‣  Allowed(o1) ⊂ Allowed(o2), then o1 subsumes o2

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Authorization Constraints

•  Allowed(o): Subset of subjects in U that are allowed
to perform operation o.

•  Constraint I:

‣  Allowed(o1) = Allowed(o2), then o1 equals o2

•  Constraint 2:

‣  Allowed(o1) ⊂ Allowed(o2), then o1 subsumes o2

Set of Authorization Constraints limit the
access control policies that can be enforced

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Why coarser granularity?

op1:
read(pgSrc->
planemask)

op2:
read(pgSrc->

fgPixel)

op23:
read(pgSrc->

bgPixel)
opi:

20

Equivalence:
op1 = op2 = .. = op23

Equivalence

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Why no matching hook?
f

Resource res = clientTable[i]

WindowPtr * pWin =
(WindowPtr *) res

op1:
WindowPtr * pChild = pWin ->

firstChild -> nextSib

op2:
pChild->mapped = true

op3:
PropertyPtr * pProp =
 pWin->userProps->next

op4:
pProp->data= data

Subsumption:
op1 > op2
op3 ≯ op4

Subsumption

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Build Retrofitting Policies

•  How do programmers build retrofitting policies?

‣  Hundreds of hooks could be removed

• 

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Build Retrofitting Policies

•  However, there are common policy assumptions

‣  E.g., object flows – if two operations produce the same
data flow, such as from the object to the client (read),
then they may be assumed to be equivalent

‣  Under this constraint, we could still enforce MLS

•  Apply “constraint selectors” to collect such
authorization constraints from code

‣  Removes up to 2/3 of the unnecessary hooks

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retrofitting for Authorization

•  (1) Identify security-sensitive operations

‣  Mostly-automated identification of operations [CCS 2012]

•  (2) Produce retrofitting policy

‣  Produce default authorization hook placement for SSOs

‣  Apply constraint selectors for high-level policy constraints

‣  Interactive selection of other authorization constraints

•  (3) Generate minimal* authorization hook placement

‣  Based on retrofitting policy (* modulo assumptions)

•  (4) Validate reference monitor concept relative to
retrofitting policies and correct transformation

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Other Security Controls

•  Retrofitting for Privilege Separation and Auditing

Shen Liu, Gang Tan, Trent Jaeger. PtrSplit: Supporting
General Pointers in Automatic Program Partitioning.
In Proceedings of the 24th ACM Conference on
Computer and Communications Security (ACM
CCS), October 2017.

Sepehr Amir-Mohammadian, Stephen Chong,
Christian Skalka. Correct Audit Logging: Theory and
Practice. In Proceedings of the 5th International
Conference on Principles of Security and Trust, 2016.

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retrofitting for Auditing

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retrofitting for Auditing

•  Audit logs are intended to provide information about

programs to support:
‣  Accountability and proof of authorization.

‣  Surveillance and intrusion detection.

‣  Dynamic analysis for performance/security evaluation.

•  Current practice missing crucial foundational
elements:
‣  What is the formal relation between a program and its

audit log?

‣  What policy specifies audit log generation?

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retrofitting for Auditing

•  We propose an information algebraic semantics of

auditing that takes as input:

‣  An arbitrary program p in a given language.

‣  A logging policy LP that specifies conditions for logging
particular events. (i.e., retrofitting policy)

•  This semantics, written genlog(p, LP) denotes a set of
information. An audit log L is sound (resp. complete)
with respect to the policy iff:

‣  L ≤ genlog(p, LP) (resp. genlog(p, LP) ≤ L) where ≤ is an
information containment relation.

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Putting it all together

•  Retrofit for multiple security controls

‣  Claim: reasoning about retrofitting policies across security
controls enables benefits

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Retrofitting for All

•  Benefits of retrofitting policies

‣  Separate security program from functional program

•  Prevent errors in integration of the two – even for updates

•  Make policy enforcement expectations explicit

‣  Leverage the relationships between security controls

•  Remove redundant security controls

•  Use security controls to improve retrofitting policies

•  Bottom line: there is no silver bullet - programmers
will need to add such security controls

Systems and Internet Infrastructure Security Laboratory (SIIS)
 Page

Summary

•  Problem: Place Security Controls in Legacy Code
‣  Hard to do manually

•  Insights:
‣  Program expectations of security controls into “retrofitting policies”

or “security programs”

‣  Retrofit programs automatically to minimize cost, validate
correctness of security and function

‣  Apply across a set of security controls for coherent “Defense in
Depth”

•  Targets: Authorization, Privilege Separation, and Auditing

•  Future: How shall programmers “Design/program for
security” ?

