\ Systems and Internet
‘ Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

Advanced Systems Security:
Principles

Trent Jaeger
Systems and Internet Infrastructure Security (S11S) Lab
Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Access Control — The Right Way S

e We said that ordinary operating systems cannot
control code controlled by an adversary

e Review formalisms developed for “protection”

» and show how they are extended to enforce “security”

e Key concepts
» Mandatory protection state
e Adversary cannot modify access control policy

» Reference monitor

e Enforce access control comprehensively

» Later: Security models

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Protection System =

e Manages the authorization policy for a system

» It describes what operations each subject (via their
processes) can perform on each object

e Consists of
» State: Protection state

» State Ops: Protection state operations

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATF

The Access Matrix Pﬂ

* An access matrix is one
way to represent policy.

— Frequently used O, |0, |0,
mechanism for describing
policy
« Columns are objects, S, |Y [Y [N

subjects are rows.
- To determine if S, has |

: . N |Y [N
right to access object O,, >
find the appropriate entry. \
« Succinct descriptor for O S [N |Y Y

(ISI*IOI) entries
« Matrix for each right.

PENNSTATE

Access Matrix Protection System 5

e Protection State

» Current state of matrix

e Can modify the protection state
» Via protection state operations
» E.g., can create objects

» E.g., owner can add a subject, operation
mapping for their objects

e Lampson’s “Protection” paper

» Can even delegate authority to perform
protection state ops

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Protection System 5

e Why is Protection State insufficient to
enforce security?

e Goal: a protection state in which we can
determine whether an unauthorized
operation will ever be allowed (Safety)

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Protection System Problems =

e Protection system approach is inadequate for security
» Suppose a process runs bad code

e Processes can change their own permissions
» Processes may become untrusted, but can modify policy

e Processes, files, etc. are created and modified

» Cannot predict in advance (safety problem)

e What do we need to achieve necessary controls!?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Define and Enforce Goals =

e Claim: If we can define and enforce a security policy that
ensures security goals, then we can prevent such attacks

e How do we know what policy will be enforced?

e How do we know the enforcement mechanism will
enforce policy as expected!?

» Look into this today

e How do we know the policy expresses effective
goals?

» Will look into this in depth later

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Mandatory Protection System =

e Is a protection system that can be modified only
by trusted administration that consists of

» A mandatory protection state where the protection
state is defined in terms of an immutable set of /abels
and the operations that subject labels can perform on
object labels

» A labeling state that assigns system subjects and
objects to those labels in the mandatory protection
state

» A fransition state that determines the legal ways that
subjects and objects may be relabeled

e MPS is immutable to user-space process

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

|_Zhve)

Mandatory Protection System S

Systems and Internet Infrastructure Security (SIIS) Laboratory

File: Transition
Labeling newfile State
State L
Y T
1
\
1
\
‘ -
' secret unclassified trusted untrusted Protection
\ State
“ read read read
\ secret write —
‘ d d d ~
Process: ' N rea rea rea L7
unclassified write P /
read W ’

trusted write write write

Process: read read read

untrusted write write wrile

Page 10

PENNSTATE

Mandatory Protection State =

e Immutable table of
» Subject labels
» Obiject labels
» Operations authorized for former upon latter
e How can you use an MPS to control use of bad code?

» E.g., Prevent modification of kernel memory?

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Mandatory Protection State =

e Immutable table of
» Subject labels
» Obiject labels
» Operations authorized for former upon latter
e How can you use an MPS to control use of bad code?
» E.g., Prevent modification of kernel memory?

» Subject labels for all subjects running “bad code” are not
allowed modify kernel memory

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Mandatory Protection State =

e Immutable table of
» Subject labels
» Obiject labels

» Operations authorized for former upon latter

e How can you use an MPS to control use of bad code?
» E.g., Prevent modification of kernel memory?

» Subject labels for all subjects running “bad code” are not
allowed modify kernel memory

e Or that may run “bad code” (be compromised)

» How do subjects (processes) get their labels!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 13

PENNSTATE

Labeling State =

e Immutable rules mapping
» Subjects to labels (in rows)

» Obijects to labels (in columns)

e How can you use labeling state to control bad code?

» E.g., Prevent modification of kernel memory?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 14

PENNSTATE

Labeling State =

e Immutable rules mapping
» Subjects to labels (in rows)

» Obijects to labels (in columns)

e How can you use labeling state to control bad code?
» E.g., Prevent modification of kernel memory?
» Assign all processes that may run bad code ...
» With a label that cannot modify kernel memory

» What about objects created by these processes!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 15

PENNSTATE

Protecting Good Code =

e How can you use labeling state to prevent good code
from going bad!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 16

PENNSTATE

Protecting Good Code =

>

>

e How can you use labeling state to prevent good code
from going bad!?

E.g., Prevent dependence on untrusted input!?

Assign object labels to all objects that may be adversary-
controlled

Do not grant subject labels that should run good code
access to those labels

Verify that you are running good code (how?) and assign
to one of these protected subject labels

What integrity model does this approximate!

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 17

PENNSTATE

Protecting Good Code =

e What if good code needs to access some adversary-
controlled resources!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 18

PENNSTATE

Mandatory Protection State =

e What if good code needs to access some adversary-
controlled resources!?

» () if a process reads adversary-controlled object label,
remove privileged permissions (e.g., to modify kernel
memory)

» (2) if a process reads adversary-controlled object label,
remove permission to write to any object that may be
accessed by a subject whose label grants privileged
permissions

e How do we achieve this change with the MPS!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 19

PENNSTATE

Transition State S

e Immutable rules mapping
» Subject labels to conditions that change their subject labels

» Obiject labels to conditions that change their object labels

e How can you use labeling state to control bad code?
» E.g., Achieve (1) and (2)

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 20

PENNSTATE

Transition State S

e Immutable rules mapping
» Subject labels to conditions that change their subject labels

» Obiject labels to conditions that change their object labels

e How can you use labeling state to control bad code?
» E.g., Achieve (1) and (2)

» Change subject label of subject accessing adversary-
controlled resources to remove these permissions

» What integrity model does this approximate?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 21

PENNSTATE

Transition State S

e |s it possible to launch processes with more
permissions than the invoker with MPS!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 22

Managing MPS g

e Challenge

» Determining how to set and manage an MPS in a complex
system involving several parties

e Parties

» What does programmer know about deploying their
program securely!?

» What does an OS distributor know about running a
program in the context of their system?

» What does an administrator know about programs and
OS?

» Users!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 23

Managing MPS g

e Current methods use dynamic analysis to setup MAC
policies — run the program and collect the
permissions used

» Really a functional policy

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 24

PENNSTATE

Reference Monitor =

e Purpose: Ensure enforcement of security goals
» Define goals in the mandatory protection system

» Reference monitor ensures enforcement

-

S

e Every component that you depend upon to enforce your
security goals must be a reference monitor

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 25

PENNSTATE

Reference Monitor =

o« Components
» Reference monitor interface (e.g., LSM)
» Reference validation mechanism (e.g., SELinux)

» Policy store (e.g., policy database)

Process Process Process Process

system call system call system call system call

/" Operating System

! g '
» _---""" Reference Monitor Interface Hooks
Reference Monitor
> Authorization Module

Policy Store >
Labein
tate tate

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 26

PENNSTATE

Reference Monitor Guarantees -

« Complete Mediation

» The reference validation mechanism must
always be invoked

« Tamperproof

» The reference validation mechanism must be
tamperproof

o« Verifiable

» The reference validation mechanism must be
subject to analysis and tests, the completeness
of which must be assured

Systems and Internet Infrastructure Security (SIIS) Laboratory

PENNSTATE

Complete Mediation =

e Every security-sensitive operation must be mediated

» What'’s a “security-sensitive operation’?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 28

PENNSTATE

Complete Mediation =

e Every security-sensitive operation must be mediated
» What'’s a “security-sensitive operation’?

» E.g., operation that may not be authorized for every
subject

e How do we validate complete mediation!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 29

PENNSTATE

Complete Mediation =

e Every security-sensitive operation must be mediated
» What'’s a “security-sensitive operation’?

» E.g., operation that may not be authorized for every
subject

e How do we validate complete mediation!?
» Every security-sensitive operation must be identified

» E.g.,, ensure every execution of that operation is checked

e Mediation: Does interface mediate?
e Mediation: On all resources!?

e Mediation: Verifably to enforce security goals?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 30

PENNSTATE

Tamperproof 5

e Prevent modification by untrusted entities

» Prevent modification of what!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 31

PENNSTATE

Tamperproof =

e Prevent modification by untrusted entities
» Prevent modification of what!?

» Code and data that can affect reference monitor

e How to detect tamperproofing?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 32

PENNSTATE

Tamperproof =

e Prevent modification by untrusted entities
» Prevent modification of what!?
» Code and data that can affect reference monitor
e How to detect tamperproofing?
» Check for strong integrity guarantees (Biba)
» Challenge: Often some untrusted operations are present

e Tamperproof: |s reference monitor protected!?

e Tamperproof: Is system TCB protected?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 33

PENNSTATE

Verification =

e Determine correctness of code and policy
» What defines correct code!
» What defines a correct policy?
e Test and analyze reference validation mechanism
» Does code/policy do its job correctly?
» For all executions (completeness must be assured)

e Verifiable: Is TCB code base correct!?

e Verifiable: Does the MPS enforce the system’s
security goals!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 34

PENNSTATE

Evaluation =

e Mediation: Does interface mediate!?

e Mediation: On all resources!?

e Mediation: Verifably?

e Tamperproof: |s reference monitor protected!?
e Tamperproof: Is system TCB protected?

e Verifiable: Is TCB code base correct?

e Verifiable: Does the MPS enforce the system’s
security goals!?

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 35

PENNSTATE

Take Away =

e Mandatory Protection System

» Means to define security goals that applications cannot
impact

e Reference Monitor Concept

» Requirements for a reference validation mechanism that
can correctly enforce an MPS

» NOTE: This will be a major focus of this course

e Until we come up with coherent approach to validating
MPS meets security goals and validating reference monitor
guarantees, we will continue to have insecure systems

» That is the challenge of systems security research

Systems and Internet Infrastructure Security (SIIS) Laboratory Page 36

