
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

Advanced Systems Security:�
Malware Detection

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Malware

•  Attack code supplied by an adversary

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Malware

•  Attack code supplied by an adversary
‣  What do you think of when you hear “malware”?

3

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Malware

•  Attack code supplied by an adversary
‣  How do we detect that a program contains malware?

4
CMPSC443 - Introduction to Computer and Network Security Page

Example: Sirefef
• Windows malware - Trojan to install rootkit

• Technical details (see Microsoft)
• And http://antivirus.about.com/od/virusdescriptions/a/What-Is-

Sirefef-Malware.htm

• Attack: “Sirefef gives attackers full access to your system”
• Runs as a Trojan software update (GoogleUpdate)
• Runs on each boot by setting a Windows registry entry
• Some versions replace device drivers

• Downloads code to run a P2P communication
• Steal software keys and crack password for software piracy
• Downloads other files to propagate the attack to other

computers

�19

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Malware

•  Attack code supplied by an adversary
‣  How do we detect that a program contains malware?

5
CMPSC443 - Introduction to Computer and Network Security Page

Example: Sirefef
• Windows malware - Trojan to install rootkit

• Technical details (see Microsoft)
• http://antivirus.about.com/od/virusdescriptions/a/What-Is-Sirefef-

Malware.htm

• Stealth: “while using stealth techniques in order to hide its
presence”
• “altering the internal processes of an operating system so

that your antivirus and anti-spyware can't detect it.”
• Disable: Windows firewall, Windows defender
• Changes: Browser settings
• Join bot

• Microsoft: “This list is incomplete”
�20

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Malware

•  Attack code supplied by an adversary
‣  In ROP, an adversary may use existing code maliciously

6

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Malware

•  Attack code supplied by an adversary
‣  How do we detect that a program contains malware?

7

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Malware

•  Attack code supplied by an adversary
‣  How do we detect that a program contains malware?

•  Two broad methods…

‣  Anomaly and Misuse Detection

8

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Anomaly Detection

•  Detect that a program performs

“anomalous” behavior
‣  Out of the expected behavior for that program

‣  How do we know what the “expected behavior”
should be and how do we check that at runtime?

9

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Overview of Solution

•  Server accepts client requests

‣  Which include a reference to the object that the client
wants to operate on

‣  The reference identifies the object and include the
client’s permissions

•  Server only uses client capabilities to perform
client requests

‣  Server uses its own permissions for its internal
operations

‣  Server must not confuse its own capabilities and its
clients’ capabilities, but that is easier than filtering, etc.

10
CMPSC443 - Introduction to Computer and Network Security Page

Sequences of System Calls
• Forrest et al. in early-mid 90s, attempt to understand

the characteristics of an intrusion

• Idea: match sequence of system calls with profiles
– n-grams of system call sequences (learned)
‣ Match sliding windows of sequences
‣ Record the number of mismatches
‣ Use n-grams of length 5, 6, 11.

• If found, then it is normal (w.r.t. learned sequences)
�9

OPEN READ WRITE MMAP CLOSE

READ WRITE MMAP

Event Steam

System Profile

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Compare Program Execution

•  … to a state machine that describes all legal

program executions [David Wagner, PhD thesis]

‣  In terms of system calls

•  Finite state automata

‣  System calls (essentially) correspond to states and
programs transition among them

•  Pushdown automata

‣  More accurate representation of the execution stack
context in which system calls may occur

11

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Finite State Automata Detection

•  What system calls may ever follow system call X?

‣  E.g., transitions from the state of system call X to each
of the successor system calls

‣  May use a sequence of system calls to indicate a
transition

12

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Pushdown Automata Detection

•  What system calls may ever follow system call X in

context (stack)?

‣  There will be transitions from the state of system call
X and call stack to the possible successor system calls
from that context

13

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Limitations

•  How would you attack these anomaly detection

methods?

14

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Limitations

•  How would you attack these anomaly detection

methods?

•  Mimicry [Wagner, CCS 2002]

‣  Concoct malware that produces system call sequences
that comply with state machines

‣  Hard to predict argument values on advance, so can
choose them

‣  Or ignore results

•  Possible to produce an ROP attack that mimics a
state machine?

15

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Misuse Detection

•  Detect that a program performs “attack”

behavior
‣  Program performs malicious operations

16

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Misuse Detection

•  Classically found via signatures
‣  Byte patterns present in malware

•  What are some limitations of signatures?

17

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Behavior Graphs

•  Directed acyclic graphs consisting of a malware’s

system calls [Kolbitsch, USENIX 2009]

‣  Constrain system call arguments

•  From where is the value derived – system call output

‣  G = (V, E, F, ∂)

•  V: system calls; E: VxV

•  F: Function for each system call; ∂: function to arg map

‣  Whenever an input argument ai for system call y depends on the
some output oj produced by system call x, we introduce an edge
from the node that corresponds to x, to the node that
corresponds to y.

18

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Behavior Graphs – I/O Function

•  Use binary analysis to create a “function” that

computes the output given the input

•  Given input and code executed, could compute
the argument value used in another system call

‣  What if other program data is combined with that
input?

19

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Behavior Graphs – Effective?

•  Training: Not possible to extract graphs for all

•  Detection: 92% of “known” samples

20

Name Samples Known variant samples Samples detected Effectiveness

Allaple 50 50 45 0.90

Bagle 50 26 30 0.60

Mytob 50 26 36 0.72

Agent 50 4 5 0.10

Netsky 13 5 7 0.54

Mydoom 50 44 45 0.90

Total 263 155 168 0.64

Table 3: Detection effectiveness.

False positives. In the next step, we attempted to eval-
uate the amount of false positives that our system would
produce. For this, we installed a number of popu-
lar applications on our test machine, which runs Mi-
crosoft Windows XP and our scanner. More precisely,
we used Internet Explorer, Firefox, Thunderbird, putty,
and Notepad. For each of these applications, we went
through a series of common use cases. For example,
we surfed the web with IE and Firefox, sent a mail with
Thunderbird (including an attachment), performed a re-
mote ssh login with putty, and used notepad for writ-
ing and saving text. No false positives were raised in
these tests. This was expected, since our models typi-
cally capture quite tightly the behavior of the individual
malware families. However, if we omitted the checks
for complex functions and assumed all complex depen-
dencies in the behavior graph to hold, all of the above
applications raised false positives. This shows that our
tool’s ability to capture arbitrary data-flow dependencies
and verify them at runtime is essential for effective de-
tection. It also indicates that, in general, system call in-
formation alone (without considering complex relation-
ships between their arguments) might not be sufficient to
distinguish between legitimate and malicious behavior.

In addition to the Windows applications mentioned
previously, we also installed a number of tools for perfor-
mance measurement, as discussed in the following sec-
tion. While running the performance tests, we also did
not experience any false positives.

4.2 System Efficiency

As every malware scanner, our detection mechanism
stands and falls with the performance degradation it
causes on a running system. To evaluate the performance
impact of our detection mechanism, we used 7-zip, a
well-known compression utility, Microsoft Internet Ex-
plorer, and Microsoft Visual Studio. We performed the
tests on a single-core, 1.8 GHz Pentium 4 running Win-
dows XP with 1 GB of RAM.

For the first test, we used a command line option for
7-zip that makes it run a simple benchmark. This re-
flects the case in which an application is mostly perform-
ing CPU-bound computation. In another test, 7-zip was
used to compress a folder that contains 215 MB of data
(6,859 files in 808 subfolders). This test represents a
more mixed workload. The third test consisted of using
7-zip to archive three copies of this same folder, perform-
ing no compression. This is a purely IO-bound workload.
The next test measures the number of pages per second
that could be rendered in Internet Explorer. For this test,
we used a local copy of a large (1.5MB) web page [3].
For the final test, we measured the time required to com-
pile and build our scanner tool using Microsoft Visual
Studio. The source code of this tool consists of 67 files
and over 17,000 lines of code. For all tests, we first ran
the benchmark on the unmodified operating system (to
obtain a baseline). Then, we enabled the kernel driver
that logs system call parameters, but did not enable any
user-mode detection processing of this output. Finally,
we also enabled our malware detector with the full set of
44 behavior graphs.

The results are summarized in Table 4. As can be
seen, our tool has a very low overhead (below 5%) for
CPU-bound benchmarks. Also, it performs well in the
I/O-bound experiment (with less than 10% overhead).
The worst performance occurs in the compilation bench-
mark, where the system incurs an overhead of 39.8%.
It may seem surprising at first that our tool performs
worse in this benchmark than in the IO-bound archive
benchmark. However, during compilation, the scanned
application is performing almost 5,000 system calls per
second, while in the archive benchmark, this value is
around 700. Since the amount of computation performed
in user-mode by our scanner increases with the number
of system calls, compilation is a worst-case scenario for
our tool. Furthermore, the more varied workload in the
compile benchmark causes more complex functions to be
evaluated. The 39.8% overhead of the compile bench-
mark can further be broken down into 12.2% for the

Name Samples Kaspersky variants Our variants Samples detected Effectiveness

Allaple 50 2 1 50 1.00

Bagle 50 20 14 46 0.92

Mytob 50 32 12 47 0.94

Agent 50 20 2 41 0.82

Netsky 50 22 12 46 0.92

Mydoom 50 6 3 49 0.98

Total 300 102 44 279 0.93

Table 2: Training dataset.

Anubis [1]) and according to lists compiled by anti-virus
vendors. Moreover, these families provide a good cross
section of popular malware classes, such as mail-based
worms, exploit-based worms, and a Trojan horse. Some
of the families use code polymorphism to make it harder
for signature-based scanners to detect them. For each
malware family, we randomly selected 100 samples from
our database. The selection was based on the labels pro-
duced by the Kaspersky anti-virus scanner and included
different variants for each family. During the selection
process, we discarded samples that, in our test environ-
ment, did not exhibit any interesting behavior. Specifi-
cally, we discarded samples that did not modify the file
system, spawn new processes, or perform network com-
munication. For the Netsky family, only 63 different
samples were available in our dataset.

Detection capabilities. For each of our six malware
families, we randomly selected 50 samples. These sam-
ples were then used for the extraction of behavior graphs.
Table 2 provides some details on the training dataset. The
“Kaspersky variants” column shows the number of dif-
ferent variants (labels) identified by the Kaspersky anti-
virus scanner (these are variants such as Netsky.k or
Netsky.aa). The “Our variants” column shows the
number of different samples from which (different) be-
havior graphs had to be extracted before the training
dataset was covered. Interestingly, as shown by the
“Samples detected” column, it was not possible to extract
behavior graphs for the entire training set. The reasons
for this are twofold: First, some samples did not perform
any interesting activity during behavior graph extraction
(despite the fact that they did show relevant behavior dur-
ing the initial selection process). Second, for some mal-
ware programs, our system was not able to extract valid
behavior graphs. This is due to limitations of the current
prototype that produced invalid slices (i.e., functions that
simply crashed when executed).

To evaluate the detection effectiveness of our system,
we used the behavior graphs extracted from the train-

ing dataset to perform detection on the remaining 263
samples (the test dataset). The results are shown in Ta-
ble 3. It can be seen that some malware families, such
as Allaple and Mydoom, can be detected very accu-
rately. For others, the results appear worse. However,
we have to consider that different malware variants may
exhibit different behavior, so it may be unrealistic to ex-
pect that a behavior graph for one variant always matches
samples belonging to another variant. This is further ex-
acerbated by the fact that anti-virus software is not par-
ticularly good at classifying malware (a problem that has
also been discussed in previous work [5]). As a result,
the dataset likely contains mislabeled programs that be-
long to different malware families altogether. This was
confirmed by manual inspection, which revealed that cer-
tain malware families (in particular, the Agent family)
contain a large number of variants with widely varying
behavior.

To confirm that different malware variants are indeed
the root cause of the lower detection effectiveness, we
then restricted our analysis to the 155 samples in the test
dataset that belong to “known” variants. That is, we only
considered those samples that belong to malware variants
that are also present in the training dataset (according to
Kaspersky labels). For this dataset, we obtain a detection
effectiveness of 0.92. This is very similar to the result of
0.93 obtained on the training dataset. Conversely, if we
restrict our analysis to the 108 samples that do not belong
to a known variant, we obtain a detection effectiveness
of only 0.23. While this value is significantly lower, it
still demonstrates that our system is sometimes capable
of detecting malware belonging to previously unknown
variants. Together with the number of variants shown in
Table 2, this indicates that our tool produces a behavior-
based malware classification that is more general than
that produced by an anti-virus scanner, and therefore, re-
quires a smaller number of behavior graphs than signa-
tures.

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Study Malware

•  Malware is “in the wild”
‣  Can’t we study it and learn its behavior and defenses

against that behavior?

21

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Anti-Reversing

•  Art of Unpacking
‣  Now malware developers actively develop their

malware to evade analysis

22

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Anti-Reversing

•  Art of Unpacking

•  Detect various side channels created when using
tools to analyze malware

•  E.g., Debuggers (Windows)

‣  Software breakpoint

•  Modify code – rewrite instructions to trap to debugger

‣  Hardware breakpoint

•  Debug registers are set

23

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Anti-Reversing

•  Art of Unpacking

•  Detect various side channels created when using
tools to analyze malware

•  E.g., Debuggers (Windows)

‣  Others

•  Slow the execution – can detect time delays (rdtsc)

•  Debugger privileges asserted

•  Parent process is different

•  Debug windows are created

•  Debugger processes are among tasks
24

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Anti-Reversing

•  Art of Unpacking

•  Proactive defenses against analysis

‣  Encryption

‣  Compression

‣  Permutation

‣  Garbage code

•  What is the benefit of garbage code to confusing
the reverser?

25

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Avoid Detection

•  Modify debuggers

•  Hide debuggers from the system (like malware
hides processes)

•  Don’t use debuggers

•  Avoid software and hardware breakpoints

•  …

26

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Reversing with SMM

•  System management mode (SMM)

‣  Sometimes called “ring -2”

‣  Specific to Intel x86 processors

•  “all normal execution, including the operating system, is
suspended and …” [Wikipedia]

•  “special separate software, which is usually part of the
firmware or a hardware-assisted debugger, is executed with
high privileges” [Wikipedia]

•  Originally for power management and low-level
systems management

27

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Reversing with SMM

•  System management mode (SMM)

‣  Can SMM configuration be interrogated by malware
running at user-level?

‣  …as opposed to a debugger that runs at the same
privilege level

28

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Malware Analysis in SMM

•  Analyze malware at SMI (interrupt)
‣  Can be asserted by software or hardware

•  Software: Write to Advanced Configuration and Power
Interface (ACPI) port

‣  I.e., add an instruction (out) to malware code – i.e., write code

•  Hardware: Two ways

‣  (1) Serial interrupt: configuring the redirection table in I/O Advanced
Programmable Interrupt Controller (APIC)

‣  (2) Counter: set the corresponding performance counter (PerfCtr0)
register to the maximum value

29

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Malware Analysis in SMM

•  Analyze malware at SMI (interrupt)
‣  Can be asserted by software or hardware

•  Software: Write to Advanced Configuration and Power
Interface (ACPI) port

‣  Adversary can detect malware code modifications

•  Hardware: Two ways

‣  (1) Serial interrupt: configuring the redirection table in I/O Advanced
Programmable Interrupt Controller (APIC)

‣  (2) Counter: Adversary can read performance counters from user
space

30

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 40

Take Away

•  Problem: Detect malware before it is run

•  In general, we can try to detect anomalies or misuse,
but both have significant challenges

•  Anomaly detection must detect that a running
process really runs malware – model of expected

•  Misuse detection must detect malice – and other
examples of same malice – models of malice

•  Malware writers now make reversing difficult

•  Intrusion detection is hard to do accurately w/o
causing false positives

