
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

Advanced Systems Security:�
Linux Security Modules

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Linux Authorization circa 2000

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Linux Security circa 2000

3

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Linus’ Dilemna

4

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

The Answer

5

•  The solution to all computer science
problems

•  Add another layer of indirection

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Linux Security Modules Was Born

6

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Linux Before and After

7

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Requirements

8

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM – A Reference Monitor

•  To enforce mandatory access control

‣  We need to develop an authorization mechanism that
satisfies the reference monitor concept

•  How do we do that?

‣  And satisfy all the other goals?

9

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM – Complete Mediation

•  First requirement is complete mediation

•  Add security hooks to mediate various operations in
the kernel

‣  These hooks invoke functions defined by the chosen
module

•  These hooks construct “authorization queries” that
are passed to the module

‣  Subject, Object, Operations

10

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Hooks

11

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Hooks

12

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM – Complete Mediation

•  First requirement is complete mediation

•  Enables authorization by module

•  Linux extends “sensitive data types” with opaque
security fields

‣  Modules manage these fields – e.g., store security labels

•  Which Linux data types are sensitive?

14

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Security Fields

15

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM – Complete Mediation

•  First requirement is complete mediation

•  How do we know LSM implements complete
mediation?

•  Asked one of the lead developers (Cowan)

‣  His reply?

16

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM – Complete Mediation

•  First requirement is complete mediation

•  How do we know LSM implements complete
mediation?

•  Asked one of the lead developers (Cowan)

‣  His reply?

•  “We don’t”

17

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Analysis

•  Static analysis of Zhang, Edwards,

and Jaeger [USENIX Security
2002]

‣  Based on a tool called CQUAL

•  Approach

‣  Objects of particular types can be in
two states

•  Checked, Unchecked

‣  All objects in a “security-sensitive
operation” must be checked

•  Structure member access on some types
18

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Analysis

•  Static analysis of Zhang, Edwards,
and Jaeger [USENIX Security
2002]

‣  Based on a tool called CQUAL

•  Found a TOCTTOU vulnerability

‣  Authorize filp in sys_fcntl

‣  But pass fd again to fcntl_getlk

•  Many supplementary analyses
were necessary to support
CQUAL

19

/* from fs/fcntl.c */

long sys_fcntl(unsigned int fd,

unsigned int cmd,

unsigned long arg)

{

struct file * filp;

...

filp = fget(fd);

...

err = security ops->file ops

->fcntl(filp, cmd, arg);

...

err = do fcntl(fd, cmd, arg, filp);

...

}

static long

do_fcntl(unsigned int fd,

unsigned int cmd,

unsigned long arg,

struct file * filp) {

...

switch(cmd){

...

case F_SETLK:

err = fcntl setlk(fd, ...);

...

}

...

}

/* from fs/locks.c */

fcntl_getlk(fd, ...) {

struct file * filp;

...

filp = fget(fd);

/* operate on filp */

...

}

Figure 8: Code path from Linux 2.4.9 containing an ex-

ploitable type error.

THREAD-A:

(1) fd1 = open("myfile", O_RDWR);

(2) fd2 = open("target_file", O_RDONLY);

(3) fcntl(fd1, F_SETLK, F_WRLOCK);

KERNEL-A (do_fcntl):

(4) filp = fget(fd1);

(5) security_ops->file_ops

->fcntl (fd1);

(6) fcntl_setlk(fd1,cmd)

THREAD-B:

/* this closes fd1, dups fd2,

* and assigns it to fd1.

*/

(7) dup2(fd2, fd1);

KERNEL-A (fcntl_setlk)

/* this filp is for the target

* file due to (7).

*/

(8) filp = fget (fd1)

(9) lock file

Figure 9: An example exploit.

chance of race conditions when the data structures are

not properly synchronized, which may result in poten-

tial exploits.

Here we present a type error of this kind. Many se-

curity checks that intend to protect the inode structure

are performed on the dentry data structure. For exam-

ple, the following code does the permission check on the

dentry structure, but does the “set attribute” operation

on the inode structure.

/* from fs/attr.c */

...

security_ops->inode_ops

->setattr(dentry, attr);

...

inode = dentry->d_inode;

inode_setattr(inode, attr);

...

It is also quite common in Linux to check on the file

data structure and operate on the inode data structure.

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Analysis

•  Runtime analysis of Edwards,

Zhang, and Jaeger [ACM CCS
2002]

‣  Built a runtime kernel monitor

‣  Logs structure member
accesses and LSM hook calls

‣  Rules describe expected
consistency

•  Good for finding missing
hooks where one is specified

‣  Six cases were found
20

Figure 5: Authorization graph for fcntl calls for

F SETLEASE (controlled operations in lease modify
and fput) and F SETOWN (controlled operations in do fcntl
and put). When command is F SETOWN both FCNTL and
SET OWNER are authorized, but only FCNTL is authorized for
F SETLEASE.

controlled operation are not the same, then the member access is

sensitive to its location.

The system call input sensitive rule collects all the log entries

in each open system call for read-only access. The authorizations
of the open system call depend on the access for which the file is
opened, so open is system call input sensitive. Further, we also

show a negative filter in this rule that eliminates all entries within

the scope of the path_walk function. The authorizations for file

lookup, including any link traversal, can be separated from those

for authorizing the open of this file. Such filtering capabilities en-

able us to choose our analysis scope flexibly.

4.2.2 Graphical Log Analysis

The analysis tool can also generate graphs that enable visual

analysis of the filtered data. Using these graphs, it is possible to

verify the authorization sensitivities by inspection, as we will de-

scribe below. An authorization graph consists of two sets of nodes

in a filtered log: (1) the controlled operations and (2) the autho-

rizations made. Edges are drawn from each controlled operation

to the authorizations that have been satisfied when it is run. There

are two types of edges: (1) always edges mean that the associated

authorization is satisfied every time the controlled operation is run

and (2) sometimes edges mean that the associated authorization is

satisfied at least once when the controlled operation is run.

An always edge (as well as the lack of an edge) means that the

authorization is not sensitive to lower-level attributes. A sometimes

edge indicates a sensitivity. The lack of an edge where an edge

would be expected would indicate a missing authorization.

Figure 5 shows an example authorization graph. The example

graph is displayed using the dotty graph visualization tool [10].

In this case, the authorization graph shows the controlled oper-

ations and the authorizations for two types of fcntl calls: (1)
fcntl(fd, F_SETOWN, pid_owner) and (2) fcntl(fd,
F_SETLEASE,F_UNLCK). The controlled operation nodes in-
clude location (function name, file name, line number) and oper-

ation (data type, member offset, operation type) information. The

authorization nodes include the authorization, command, and func-

tion containing the authorization. Always edges are indicated by a

DFN d 0 FILE f dentry -1
DFN d 0 FILE f dentry 1
DFN d 0 FILE f vfsmnt -1
DFN d 0 FILE f op -1
...

SFN(ALWAYS) d 0 FILE READ

DFN d 1 SUPERBLOCK s blocksize -1
DFN d 1 SUPERBLOCK s type -1
...
DFN d 1 TASK state -1

DFN d 1 TASK state 0
DFN d 1 TASK flags -1
...
SFN() NONE

DFN o 0 INODE i blocks -1

DFN o 0 INODE i blocks 1
DFN o 0 INODE i version -1
...
SFN(ALWAYS) o 0 FILE READ

DFN o 1 INODE i dnotify mask -1

SFN() NONE

Figure 6: Sensitivity class list for read system call with the

following fields: (1) entry type (DFN or SFN); (2) sensitivity (

for datatype and for object); (3) class number; (4) datatype;

(5) member; (6) access identifier.

solid line and sometimes edges are indicated by a dashed line. If

no edge exists between a controlled operation and an authorization,

then that authorization is never performed for that operation.

By visually analyzing this graph we can identify whether the in-

variants described in Section 3.2 hold for the current graph or not.

In this case, the sometimes relation between fput and its autho-

rizations may indicate a problem. Also, the fact that different sets

of authorizations are made for the same field (member offset 480

which happens to be f_owner) may be indicative of a problem.
Manual investigation is then required to identify whether any in-

consistency is due to an error or a legitimate sensitivity.

4.2.3 Sensitivity Class Lists

The sensitivity class lists show the partition of the controlled op-

erations by sensitivity level in which authorizations are consistent

and the authorization requirements at those levels. This partition

is computed using the algorithm described in Section 3.2. The

sensitivity class lists provide a different view than the authoriza-

tion graphs of the same authorization results. Whereas an autho-

rization graph shows the relationship between each individual con-

trolled operation and authorization, the sensitivity class lists show

the collection of controlled operations with the same authorization

requirements. The sensitivity class lists makes more obvious the

number of different authorization cases that exist in the data. Also,

the sensitivity class lists are easier to use in regression testing since

they are textual [9].

Figure 6 shows the partition of controlled operations for the read
system call. This partition is used as the example in Section 3.2. As

described there, the sensitivity class list shows two classes that are

sensitive at the datatype level: one for tasks and superblocks with

no authorizations and one for files with read authorization. Then,

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Analysis

21

•  Automatically inferring security specifications from
code – Tan, Zhang, Ma, Xiong, Zhou [USENIX
Security 2008]

‣  Automate look at which fns are behind pointers

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM – Tamperproof

•  Second requirement is tamperproof

•  Prevent adversaries from modifying the reference
monitor code or data

•  How is LSM code protected?

•  How is LSM data protected?

22

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM – Tamperproof

•  Second requirement is tamperproof

•  Prevent adversaries from modifying the reference
monitor code or data

•  How is LSM code protected?

•  How is LSM data protected?

23

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM – Tamperproof

•  Second requirement is tamperproof

•  Add functions to register and unregister Linux
Security Modules

‣  Implemented as a set of function pointers defined at
registration time

•  LSM module defines code

•  LSM function pointers define targets of hooks

‣  These are data – modifiable

•  Implications?

24

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM – Tamperproof

•  Second requirement is tamperproof

•  Add functions to register and unregister Linux
Security Modules

‣  Implemented as a set of function pointers defined at
registration time

•  Adversaries could modify the code executed by Linux
by modifying these function pointer data values

‣  Some people opposed this idea and refused to participate

‣  Eventually changed to require compiled-in LSM modules

25

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM API

26

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Tasks

27

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Hook Details

28

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Performance

29

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LSM Use

30

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 31

Take Away

•  Aiming for mandatory controls in Linux

‣  But everyone had their own approach

•  Linux Security Modules is a general interface for any*
authorization module

‣  Much finer controls – interface is union of what everyone
can do

•  What does this effort say about
•  Achieving complete mediation?

•  Whether complete mediation should be policy-dependent?

