
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

CSE 544�
Advanced Systems Security

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

About Me

2

•  Trent Jaeger (PhD, University of Michigan)

•  Professor since 2005, CSE -- after 9 years at IBM Research

•  Research: Operating System Security

•  Example Systems

‣  L4 Microkernel – Minimal, high performance OS

‣  Linux – Open source, UNIX variant

‣  Xen hypervisor – Open source, virtual machine platform

‣  OpenStack – Open source, IaaS cloud platform

‣  Server and middleware – Web servers, browsers, window mgrs,
system software…

•  Office: W359 Westgate Bldg; Hours: W 1-2 and by appt

•  Email: tjaeger@cse.psu.edu

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 3

This course….

•  Is a systems course that teaches principles for

building a secure system and techniques for
implementing those principles

‣  Caveat: We are still trying to figure out the latter

‣  Topics: What makes a system secure (principles);
Example implementations of such principles (at OS,
VMM, application, etc.); Challenges in building secure
systems; Tools to assist in implementations; Recent
research in secure systems design

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 4

Background

•  Required:

‣  CSE 543, CMPSC 458 (networks), CMPSC 411 (OS)

•  Expected:

‣  Solid OS and software background

•  Additional:

‣  Willingness to read

•  We are going to read a lot of systems security papers

‣  Willingness to program

•  We are going to have an OS programming assignment (Linux) and
systems course project

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 5

Course Materials

•  Website

‣  http://www.cse.psu.edu/~tjaeger/cse544-s18/

‣  Course assignments, slides, etc. will be placed here

•  Check back often -- I may change some of the papers/assignments

•  Course Textbook

‣  My book: Operating Systems Security

•  Available for free from inside PSU network – Google “Operating
Systems Security, Trent Jaeger”

‣  Augmented with research papers

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 6

Course Calendar

•  The course calendar
has all the details

•  Links to online
papers for readings

•  Links to projects

•  Please check the
calendar frequently

‣  it’s the real-time
state of the course

Below is the calendar for this semester course. This is the preliminary schedule, which will be altered as the semester progresses. It is the
responsibility of the students to frequently check this web-page for schedule, readings, and assignment changes. As the professor, I will
attempt to announce any change to the class, but this web-page should be viewed as authoritative. If you have any questions, please contact
me (contact information is available at the course homepage).

Date Topic
Assignments

Due

Readings for Discussion

(do readings before class)

01/09/18
Introduction

(Slides)

Course syllabus link
Fast and Vulnerable: A Story of Telematic Failures. Ian Foster, Andrew
Prudhomme, Karl Koscher, and Stefan Savage, USENIX Workshop on Offensive
Technologies, 2015. link

01/11/18
Threats
(Slides)

Operating Systems Security - Chs 1 and 4 link
Chapter 2: Why Systems Are Not Secure?. Morrie Gasser, in Building a Secure
Computer System, 1988. link
The Risks Digest link
Common Vulnerabilities and Exposures link
Common Weakness Enumeration link
Security Focus: BugTraq link

01/16/18
Security Principles

(Slides)

Operating Systems Security - Ch 2 link
Protection. Butler Lampson, Proc. 5th Princeton Conf. on Information Sciences
and Systems, 1971. link
Reference Monitor Concept, Trent Jaeger, Encyclopedia of Cryptography and
Security, 2010. link
Computer Security Archives Project, Matt Bishop. link

01/18/18
Multics
(Slides)

Defense
Designlink

Operating Systems Security, Chapter 3 link
Introduction and Overview of the Multics System F. J. Corbato and V. A.
Vyssotsky, in Proceedings of the Fall Joint Computer Conference, 1965. link

01/23/18
Linux Security Modules

(Slides)

Operating Systems Security, Chapter 9 link
Linux Security Modules: General Security Support for the Linux Kernel. Chris
Wright et al. In Proceedings of the 11th USENIX Security Symposium, August
2002. link
Using CQUAL for static analysis of authorization hook placement. Xiaolan Zhang,
Antony Edwards, Trent Jaeger. In Proceedings of the 11th USENIX Security
Symposium, August 2002. link

01/25/18
Integrity
(Slides)

Operating Systems Security, Chapter 5 link
A Comparison of Commercial and Military Computer Security Policies. David D.
Clark and David R. Wilson. In Proceedings of the 1987 IEEE Symposium on
Security and Privacy, 1987. link
Toward Automated Information-Flow Integrity Verification for Security-Critical
Applications. Umesh Shankar, Trent Jaeger, and Reiner Sailer. In Proceedings of
the 2006 Network and Distributed Systems Security Symposium, Feb. 2006, pp.
267-280. link

01/30/18
Control-Flow Integrity

(Slides)

Course
Project

Proposal -
Due

1/31/18link

Control-flow Integrity. Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti, in Proceedings of the 12th ACM Conference on Computer and
Communications Security, 2005. link
Fine-Grained Control-Flow Integrity for Kernel Software. Xinyang Ge, Nirupama
Talele, Mathias Payer, Trent Jaeger. In Proceedings of the IEEE European
Symposium on Security and Privacy, Mar. 2016, pp. 179-194. link

02/01/18
Program Diversity

(Slides)

An Analysis of Address Space Layout Randomization in Windows Vista. O.
Whitehouse. Symantec Report, 2007. link
The Case for Less Predictable Operating System Behavior. Ruimin Sun, Donald E.
Porter, Daniela Oliveira, Matt Bishop, Hot Topics on Operating Systems, 2015.
link
Readactor: Practical Code Randomization Resilient to Memory Disclosure.
Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,

course calendar Home Schedule

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Course Mailing List

•  Via Canvas

‣  Use with care

•  I will send a test email

‣  Please reply if you do not receive by Fr

‣  May need to forward to your CSE account

•  Can use to email me

‣  Please use “544” in the subject

7

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 8

Grading

•  Exams (55%)

‣  Midterm (25%)

•  Take home

‣  Final (30%)

•  In class

•  Projects (35%)

‣  Design and programming project

‣  Course Project

•  Participation (10%)

‣  Be prepared with readings – possible quizzes

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 9

Lateness Policy

•  Assignments and project milestones are
assessed a 20% per-day late penalty, up to a
maximum of 4 days. Unless the problem is
apocalyptic, don’t give me excuses.
Students with legitimate reasons who
contact the professor before the deadline
may apply for an extension.

•  You decide what you turn in

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 10

Academic Integrity

•  See Computer Science and Engineering
Department’s Policy on Academic Integrity
Standards
‣  http://www.eecs.psu.edu/students/resources/EECS-

CSE-Academic-Integrity.aspx

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 11

Ethics Statement

•  This course considers topics involving personal and public

privacy and security. As part of this investigation we will cover
technologies whose abuse may infringe on the rights of
others. As an instructor, I rely on the ethical use of these
technologies. Unethical use may include circumvention of
existing security or privacy measurements for any purpose, or
the dissemination, promotion, or exploitation of vulnerabilities
of these services. Exceptions to these guidelines may occur
in the process of reporting vulnerabilities through public and
authoritative channels. Any activity outside the letter or spirit
of these guidelines will be reported to the proper authorities
and may result in dismissal from the class.

•  When in doubt, please contact the instructor for advice. Do not
undertake any action which could be perceived as technology misuse
anywhere and/or under any circumstances unless you have received
explicit permission from Professor Jaeger.

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 12

Road Map

•  Introduction

‣  1. What is security? 2. Threats

•  System Security Principles

‣  1. Protection vs. Security 2. Security Principles

•  Systems Security Mechanisms

‣  1. Multics 2. Linux 3. SELinux

•  Systems Security Problems

‣  1. Program Integrity 2. Confused Deputy 3. Confinement 4. Malware

•  System Architectures

‣  1. Security Kernels 2. Capability Systems 3. VM Security

•  Special Topics (Systems)

‣  1. New Hardware Features 2. Trustworthy Computing 3. Cloud Security

•  Special Topics (Software)

‣  1. Information Flow Control 2. Symbolic Execution 3. Program Retrofitting

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 13

What Kind of Threats?

•  Lead to security problems…

‣  Consider XSS

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 14

Bad Code

•  Adversary may control the code that you run

•  Examples

‣  Classical: Viruses, Worms, Trojan horses, …

‣  Modern: Client-side scripts, Macro-viruses, Email,
Ransomware, …

•  Easier to update/add software (malware) than ever

•  What are the problems with adversary code on
your machine?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 15

Bad Code - Example

•  You run an adversary-controlled program

‣  What can an adversary do?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 16

Bad Code - Example

•  You run an adversary-controlled program

‣  What can an adversary do?

•  Anything you can do

‣  Do you have anything you would want to protect?

•  Secret data on your computer

•  Communications you make with your computer

•  Well, at least these are only “user” processes

‣  They do not directly compromise the host

•  Beware “local exploits”

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 17

Bad Code - Defenses

•  What can you do to avoid executing adversary-

controlled code?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 18

Bad Code - Defenses

•  What can you do to avoid executing adversary-

controlled code?

•  Defenses

‣  Only run “approved” code

•  How do you know?

•  Use automated installers or predefined images

‣  Let someone else manage it

‣  “Sandbox” code you are uncertain of

•  How do you do that?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 19

Good Code

•  Fortunately, most code is not adversary controlled

‣  I think…

•  What is the problem with running code from
benign sources?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 20

Good Code

•  Fortunately, most code is not adversary controlled

‣  I think…

•  What is the problem with running code from
benign sources?

‣  Not really designed to defend itself from a determined,
active adversary

•  Functions performed by benign code may be
exploited – i.e., have vulnerabilities

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Vulnerabilities

•  A program vulnerability consists of three

elements:

‣  A flaw

‣  Accessible to an adversary

‣  Adversary has the capability to exploit the flaw

•  Often focus on a subset of these elements

‣  But all conditions must be present for a true
vulnerability

21

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 22

Good Code – Goes Bad

•  Classic flaw: Buffer overflow

•  If adversary can access, exploits consist of two
steps usually

‣  (1) Gain control of execution – IP or stack pointer

‣  (2) Choose code for performing exploitation

•  Classic attack:

‣  (1) Overwrite return address

‣  (2) Write code onto stack and execute that

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Good Code – Defenses

•  Preventing either of these two steps prevents a

vulnerability from being exploited

•  How to prevent overwriting the return address?
‣  ???

•  How to prevent code injection onto the stack?
‣  ???

•  Are we done?
‣  End the semester early…

23

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Good Code – Evading Defenses

•  Unfortunately, no

•  (1) Adversaries gain access to the control flow
in multiple ways
‣  Function pointers, other variables, heap variables, etc.

‣  Or evade defenses – e.g., disclosure attacks

•  (2) Adversaries may perform desired operations
without injecting code
‣  Return-to-libc

‣  Return-oriented attacks

24

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Good Code – Confused Deputy

•  And an adversary may accomplish her goals

without any memory errors
‣  Trick the program into performing the desired, malicious

operations

•  Example “confused deputy” attacks
‣  SQL injection

‣  Resource access attacks

‣  Bypass attacks

‣  Race condition attacks (TOCTTOU)

25

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Result

•  Adversaries have a variety of ways to try to get code

under their control running on your computer

•  Software defenses may not prevent exploitation

‣  And still lots of room for improvement

•  Malware and intrusion detection is a hard problem

‣  How do we know whether code is bad or good?

•  Systems security is about blocking damage or limiting
damage from adversary-controlled execution

‣  Not doing well enough yet

26

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 27

Who Has a Role?

•  Who may be responsible for software and systems

security in computing environments?

•  Programmers (may be multiple groups)

•  OS Distributors

•  Administrators

•  Users

•  Service Providers

•  Content Providers

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 28

Take Away

•  In this class, we will focus on the methods to make

the adversaries’ task more difficult

‣  Harder to distribute bad code

‣  Harder to turn good code bad

‣  Harder to leverage code for malicious purposes

•  Difficult to prevent such problems completely

‣  Often applications perform unsafe actions

‣  So, we cannot just block every action that could lead
to an attack with blocking some necessary function

•  We will need to trade-off function and security

