
Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Systems and Internet
Infrastructure Security

Network and Security Research Center
Department of Computer Science and Engineering
Pennsylvania State University, University Park PA

1

Advanced Systems Security:�
Integrity

Trent Jaeger
Systems and Internet Infrastructure Security (SIIS) Lab

Computer Science and Engineering Department
Pennsylvania State University

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Data Integrity

•  What is data integrity?
‣  What do we need to do to ensure data integrity?

2

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Integrity

•  List some items that have integrity
‣  What is the source of their integrity?

3

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Integrity

•  List some items that have integrity
‣  What is the source of their integrity?

•  Forbes “Most Trustworthy Companies”

‣  “In order to rank companies from the most to the least
trustworthy, we look at over 60 different governance and
forensic accounting measures…”

‣  Not likely to fail, transparent, …

•  Academic Integrity

‣  Behavior complying with a code of conduct and ethics

4

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Integrity in Software…

•  What do expect for integrity of software?

5

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

… Impacts Data Integrity

•  How does software integrity impact data integrity?

6

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Least Privilege

•  The protection mechanism should force every process to
operate with the minimum privileges needed to perform
its task.

•  Due to Saltzer and Schroeder (of Multics project)

•  One of many “design principles” in their paper “The
Protection of Information in Computer
Systems” (1975)

•  Others

‣  Principle of Psychological Acceptability

‣  Principle of Fail Safe Defaults
7

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Least Privilege

•  How to compute least privilege?

‣  Aim: Determines the permissions required for the
program to run effectively

•  Run the program and see what permissions are used

‣  Proposed for a system called Systrace

‣  SELinux audit2allow: take denied permissions and add
them to policy

‣  AppArmor Profile Wizard: Build an approximate profile
statically and

•  http://www.novell.com/documentation/apparmor/book_apparmor21_admin/?page=/documentation/
apparmor/book_apparmor21_admin/data/sec_apparmor_repo.html

8

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Least Privilege

•  Is a good goal because…

•  Is a poor goal because…

•  Can we use it to verify a policy is secure?

9

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Least Privilege

•  Is a good goal because…

‣  Unnecessary permissions lead to problems (confused
deputy)

‣  Accounts for function

•  Is a poor goal because…

‣  Task permissions may conflict with security

‣  How do we know when a permission is necessary, but
makes the system insecure?

•  Can we use it to verify a policy is secure?

‣  No. It defines a policy based on function, not security.
10

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Information Flow for Integrity

•  Another approach looks at the authorized flow of

information among processes via objects

11

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 12

Idealized Security

•  Biba Integrity
‣  Integrity requirement: Do not depend on data from lower integrity

principals

‣  Only permit information to flow from high integrity to lower
integrity

‣  E.g., Can only read a file if your integrity level is dominated by or
equal to the file’s

HighLow

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 14

Practical vs. Ideal

•  Do these idealized approaches based on information

flow enable practical realization of OS enforcement?

•  Secrecy is possible in some environments

‣  Implemented in a paper world, previously

•  Integrity has not been realized in practice

‣  Many processes provide high integrity services to others

•  Result: Depend on many applications to manage
information flows

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 15

Assured Guards

•  What do we do if a system needs an information
flow from low integrity to high?

‣  E.g., reading from a network socket

•  Not authorized by Biba

‣  Unless subject is fully assured to upgrade to high integrity
or discard low integrity data

‣  Called a guard

•  What does “fully assured” mean?

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

LOMAC [Fraser 2000]

•  Subjects and objects have an integrity label

‣  Level and category in a lattice policy

•  When subject reads an object of a lower integrity
label in lattice

‣  Subject’s label is lowered to that of object

‣  Define subject’s label in terms of objects accessed

•  When subject writes to an object of a higher integrity
label in lattice

‣  Write is denied

‣  Read is still allowed
16

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Biba vs LOMAC

•  What is allowed and what is the resultant label?

‣  Lattice A à B à C

•  Subject at A reads object at C

‣  Biba?

‣  LOMAC?

•  Subject at C writes object at A

‣  Biba?

‣  LOMAC?

•  Subject at C reads from object at A

17

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Self-Revocation

•  Can cause revocation of own access to objects in

LOMAC

18

Step 1: initial state.

ps greppipe

level 2 level 2 level 2

Step 2: ps reads file.

ps grep

r

pipe

/proc/327
level 1

level 2 level 2 level 2

Step 3: demotion.

ps greppipe

level 1 level 2 level 2

Step 4: pipe write denied.

ps w greppipe

level 1 level 2 level 2

Figure 4. The Self-Revocation Problem.

functionality in terms of our Compatibility Goals.

Although this self-revocation behavior is consistent with
the formal Low Water-Mark model, it is inconsistent with
our expectations as a user. As a user, we consider the com-
bination of the ps and grep to be a unit, or “job”, operating
to complete a single task. A superior application of the Low
Water-Mark model’s concepts might treat the entire job as
a single subject, demoting it as a unit upon reading from
the /proc filesystem, and avoiding a break in the pipeline.
While this redefinition of the meaning of subject is easily
done, the question remains: what to do with unnamed pipe
objects? In the example of figure 4, little would be gained
by demoting both ps and grep as a single subject at step 3
if the unnamed pipe object that connects them remains un-
writable at level 2.

One answer to this question might be to modify the for-
mal model, causing it to adjust the level of unnamed pipe
objects to follow subject demotion. However, this option
is unattractive, since it violates the basic tenet of the Low
Water-Mark model that object levels never change. Rather
than complicate the formal model, a better solution might
be to modify our application of the model’s object concept
to the actual operating system abstractions. The most sim-

ple solution of this kind would be not to consider unnamed
pipes as objects at all, and to implement a rule in the proto-
type to guarantee that pipes may link only processes that
are part of the same subject. We refer to this option as the
“Unnamed Pipe Possession Rule”. This option is attrac-
tive, since it allows the proper operation of unnamed pipes
by exempting them from LOMAC’s access control, while
simultaneously maintaining integrity protection by prevent-
ing IPC between subjects using unnamed pipes. Unfortu-
nately, the usage of unnamed pipes by critical UNIX ap-
plications, particularly the C shell [16], prevents the use of
such a simple rule, as shown in figure 5.
Figure 5A contains a simplified diagram of the algo-

rithm used by the C shell to create a typical job consist-
ing of two fictitious application programs, named source
and sink, connected by an unnamed pipe. At each step
in the algorithm, the diagram lists the number of subjects
and objects present according to the naive application of
Low Water-Mark concepts described above. The diagram
also introduces the process group operating system abstrac-
tion; processes possessing the same process group identifier
are members of the same job. Step 1 shows an initial state
where the shell has created a pipe. Step 2 and 3 show how
the shell subsequently creates (via the fork system call) the
sink and source processes, and gives them a new process
group identifier unique to their job (via the setpgrp system
call). Step 2 is critical to the unnamed pipe-handling issue.
At this stage in the algorithm, two processes in different
jobs possess the same unnamed pipe - a critical item of C
shell functionality that would be prohibited by the Unnamed
Pipe Possession Rule.
Because we wish to avoid causing failures in existing

applications, we must reject the Unnamed Pipe Possession
Rule in favor of a slightly less restrictive version - the Un-
named Pipe Usage Rule. This rule states that the subject-
job containing the first process to read from or write to a
particular unnamed pipe possesses it for all time, and sub-
sequent reads and writes to this unnamed pipe are allowed
only for that subject-job. This rule has the advantage that it
allows the capability to read and/or write an unnamed pipe
to be passed between jobs as required by the C shell, which
does not read from or write to the unnamed pipes it cre-
ates for other jobs. It also prevents subjects from bypassing
the Low Water-Mark model’s integrity protection by pass-
ing data between subject-jobs via unnamed pipe IPC.
Although it allows LOMAC to avoid the Self-Revocation

Problem in shell pipelines, the Unnamed Pipe Usage Rule
also has the potential to cause applications which attempt
unnamed pipe IPC across job boundaries to fail. Although
the job concept is meant to encapsulate groups of processes
that cooperate via unnamed pipe IPC, the LOMAC proto-
type will incur Total Compatibility Cost in unusual environ-
ments which do not use the job abstraction in this way. A

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Avoid Self-Revocation

•  What could you do to avoid self-revocation?

19

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Avoid Self-Revocation

•  What could you do to avoid self-revocation in some

cases?

‣  Add “floors” for subjects

•  Cannot open any objects below floor label (like Biba)

‣  This was done in the IX system

•  An MLS UNIX system by McElroy and Reeds

20

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Information Flow

•  Is a good goal because…

•  Is a poor goal because…

•  Can we use it to verify a policy is correct?

21

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Information Flow

•  Is a good goal because…

‣  No false negatives – an attack requires an illegal
information flow

‣  Can define data and functional security requirements

•  Is a poor goal because…

‣  Function may conflict with security

‣  How do we know when a permission is illegal, but is
necessary for functional requirements?

•  Can we use it to verify a policy is correct?

‣  Yes. It defines a policy based on security. But what about
exceptions?

22

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Integrity Model

•  Goal: define integrity in terms of commercial terms

rather than military (information flow)

•  Insights?

23

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Integrity Model

•  Goal: define integrity in terms of commercial terms

rather than military (MLS/Biba)

•  Insights? Based on Double-Blind Accounting

‣  Start with high integrity data

•  Validate data integrity (integrity verification procedures)

‣  Only apply high integrity processes to change that data

•  Distinguish high integrity code (transformation procedures)

‣  Ensure high integrity processes protect themselves

•  When they receive low integrity inputs (convert or reject)

‣  Recheck that data still satisfies integrity requirements (IVP)
24

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Integrity Model

•  Model consists of a set of certification and

enforcement rules governing integrity

•  Own terms

‣  CDI – Constrained Data Items (High integrity data)

‣  UDI – Unconstrained Data Items (Low integrity data)

‣  IVP – Integrity Verification Procedures (certify CDIs)

‣  TP – Transformation Procedures (High integrity programs)

25

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Integrity Model

•  Model consists of a set of certification and

enforcement rules governing integrity
‣  C1—When an IVP is executed, it must ensure the CDIs are valid.

‣  C2—For some associated set of CDIs, a TP must transform those
CDIs from one valid state to another.

‣  C3—Allowed relations must meet the requirements of “separation
of duty.”

‣  C4—All TPs must append to a log enough information to
reconstruct the operation.

‣  C5—Any TP that takes a UDI as input may only perform valid
transactions for all possible values of the UDI. The TP will either
accept (convert to CDI) or reject the UDI.

26

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Integrity Model

•  Model consists of a set of certification and

enforcement rules governing integrity

‣  E1—System must maintain a list of certified relations and
ensure only TPs certified to run on a CDI change that
CDI.

‣  E2—System must associate a user with each TP and set of
CDIs.

‣  E3—System must authenticate every user attempting a TP.

‣  E4—Only the certifier of a TP may change the list of
entities associated with that TP.

27

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Integrity Model

•  How does it work?

•  Certify TPs and IVPs

‣  IVPs certify CDIs and TPs modify them

‣  TPs must also be able to handle an UDIs they receive
securely

•  Run the system

‣  Authenticated users can modify a CDI if and only if:

•  They can access TP and CDI and

•  TP is authorized to change CDI

28

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Results

•  Are the information flows authorized different than

information flow?
‣  T. M. P. Lee. Using mandatory integrity to enforce “commercial”

security. In IEEE Symposium on Security and Privacy, pages 140–146,
Oakland, April 1988.

‣  W. R. Shockley. Implementing the Clark/Wilson integrity policy
using current technology. In 11th National Computer Security
Conference, pages 29–37, Baltimore, October 1988.

•  Not really

29

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Results

•  Are the information flows authorized different than

information flow?
‣  T. M. P. Lee. Using mandatory integrity to enforce “commercial”

security. In IEEE Symposium on Security and Privacy, pages 140–146,
Oakland, April 1988.

‣  W. R. Shockley. Implementing the Clark/Wilson integrity policy
using current technology. In 11th National Computer Security
Conference, pages 29–37, Baltimore, October 1988.

•  Not really, but CW is closer to current practice

‣  Test and analyze code (for integrity), certify code (e.g.,
signature), check code and data integrity before use (e.g.,
hash), and deal with untrusted inputs (e.g., filter)

30

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Results

•  If systems practice is analogous to Clark-Wilson

integrity where are we going wrong?

31

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Results

•  If systems practice is analogous to Clark-Wilson

integrity where are we going wrong?

‣  Not writing IVPs

‣  Not certifying TPs or CDIs

‣  Not systematically ensuring programs discard/upgrade UDIs

•  Or even know where programs expect to receive UDIs

•  CW-Lite Philosophy: Assume we can distinguish CDIs/
UDIs and allow programs to

32

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Results

•  If systems practice is analogous to Clark-Wilson

integrity where are we going wrong?

‣  Not writing IVPs

‣  Not certifying TPs or CDIs

‣  Not systematically ensuring programs discard/upgrade UDIs

•  But shouldn’t programs at least know where they
expect to receive UDIs?

33

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page

Clark-Wilson Lite

•  Philosophy: Ensure programs only receive UDIs at

entry points where programmers are prepared to
handle untrusted inputs

‣  Partition data into CDIs/UDIs from the program’s point
of view

‣  Allow program to declare entry points that will
upgrade/discard UDIs

‣  Only allow program to perform system calls that access
UDIs at program-specified entry points for discard/
upgrade

34

Systems and Internet Infrastructure Security (SIIS) Laboratory
 Page
 38

Take Away

•  In a secure system, we must protect data integrity

‣  Even a prerequisite to secrecy protection

•  Types of integrity – biased toward security or
function

‣  Functional: least privilege; Security: information flow

•  Integrity models

‣  Least privilege, Biba, LOMAC, Clark-Wilson

•  Need to develop approaches to design mandatory
protection system for integrity – for function and security

